The 7th International Symposium on
Generalized Convexity/Monotonicity

August 27-31, 2002
Hanoi, Vietnam

Hanoi Institute of Mathematics
Contents

1. Topics .. 4
2. Organizers .. 5
3. Committees ... 6
4. Sponsors .. 8
5. List of Contributions ... 9
6. Abstracts .. 15
7. List of Participants .. 61
8. Index .. 76
Topics

The symposium is aimed at bringing together researchers from all continents to report their latest results and to exchange new ideas in the field of generalized convexity and generalized monotonicity and their applications in optimization, control, stochastic, economics, management science, finance, engineering and related topics.
Organizers

- International Working Group on Generalized Convexity (WGGC)
- Institute of Mathematics, Vietnam NCST

Location

The conference takes place at the Institute of Mathematics
National Centre for Natural Sciences and Technology (NCST)
18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam.
International Advisory Committee

Ansari, Q.H. (Aligarh, India)
Bector, C.R. (Winnipeg, Canada)
Chen, G.Y. (Beijing, China)
Demyanov, V.F. (St. Petersburg, Russia)
Ferland, J.A. (Montreal, Canada)
Hien, N.V. (Namur, Belgium)
Jahn, J. (Erlangen, Germany)
Jeyakumar, V. (Sydney, Australia)
Kim, D.S. (Pusan, Korea)
Konnov, I.V. (Kazan, Russia)
Lee, G.M. (Pusan, Korea)
Martein, L. (Pisa, Italy)
Penot, J.P. (Pau, France)
Prekopa, A. (New Brunswick, USA)
Rubinov, A.M. (Ballarat, Australia)
Studniarski, M. (Lodz, Poland)
Tanaka, T. (Niigata, Japan)
Volle, M. (Avignon, France)
Yang, X.Q. (Hong Kong, China)
Yao, J.C. (Kaohsiung, Taiwan)
Program Committee
Sach, P.H. (Hanoi, Vietnam, Co-chair)
Schaible, S. (Riverside, USA, Co-chair)
Cambini, R. (Pisa, Italy)
Crouzeix, J.-P. (Clermont-Ferrand, France)
Eberhard, A. (Melbourne, Australia)
Hadjisavvas, N. (Samos, Greece)
Komlosi, S. (Pecs, Hungary)
Luc, D.T. (Avignon, France, and Hanoi, Vietnam)
Martinez-Legaz, J.-E. (Barcelona, Spain)

Organizing Committee
Cong, N.D. (Hanoi, Co-chair)
Luc, D.T. (Avignon and Hanoi, Co-chair)
Chau, V.N. (Hanoi)
Dien, P.H. (Hanoi)
Hadjisavvas, N. (Samos)
Komlosi, S. (Pecs)
Muu, L.D. (Hanoi)
Phu, H.X. (Hanoi)
Tan, N.X. (Hanoi)
Yen, N.D. (Hanoi)
Main Sponsors

- National Centre for Natural Sciences and Technology
- Institute of Mathematics, NCST
- National Program for Basic Research in Mathematics
- National Project “Selected Problems of Optimization and Scientific Computing”
- The Abdus Salam International Centre for Theoretical Physics
Contributed lectures and posters

1. P.T. An and H.X. Phu
 Stability of generalized convex functions 16

2. P.N. Anh and L.D. Muu
 The Banach iterative procedure for solving monotone variational
 inequalities ... 16

3. Q.H. Ansari, S. Schaible and J.-C. Yao
 The system of (generalized) vector equilibrium problems and its
 applications .. 17

4. D. Aussel
 Normal operator in quasiconvex programming 18

5. T.Q. Bao and P.Q. Khanh
 On the equivalence of several generalizations of the Ekeland vari-
 ational principle and the original principle 18

6. C.R. Bector, S.K. Bhatt and V.N. Sharma
 A finite iteration technique for a fuzzy quadratic programming
 problem ... 19

7. D. Bhatia and A. Sharma
 Inf-invex alternative theorem with application to vector valued
 games ... 19

8. M. Bianchi, N. Hadjisavvas and S. Schaible
 On pseudomonotone maps T for which $-T$ is also pseudomonotone 20

9. A.F. Biosca
 Testing a global optimization method for D.C. programming prob-
 lems ... 20

10. R.S. Burachik, L.M.G. Drummond and S. Scheimberg
 A logarithmic barrier strategy for vector optimization 21
11. R. Burkard
 Combinatorial optimization and convexity 21

12. A. Cambini, L. Martein and S. Schaible
 Pseudoconvexity under the Charnes-Cooper transformation 22

13. A. Cambini, L. Carosi and S. Schaible
 Duality for fractional optimization with set constraints 22

14. R. Cambini and L. Carosi
 Duality in multiobjective optimization problems with set constraints 23

15. R. Cambini and C. Sodini
 On convex relaxations for nonconvex quadratic programs 23

16. S. Chandra
 Convexifactors, approximate Jacobians and optimality conditions 24

17. B. Craven
 Characterizing invex and related properties 24

18. G.P. Crespi, A. Guerraggio and M. Rocca
 Convex Minty vector variational inequality 25

19. G.P. Crespi and M. Rocca
 Mollified derivatives and second-order optimality conditions ... 26

 Closedness and connectedness of efficient solution set in \mathcal{S}-strictly quasiconcave vector maximization 29

21. T.S.H. Driessen
 Convexity and the core for set games and cooperative games: an equivalence theorem 29

22. A. Eberhard
 Some applications of generalized convexity/nonsmooth analysis techniques to second order PDEs 30

23. R. Elster
 Criteria for the convexity behavior of homogeneous functions ... 31

24. M.G. Govil and A. Mehra
 Epsilon-optimality for nonsmooth programming on a Banach space 32
25. P. Gupta, A. Mehra and D. Bhatia
 Approximate optimization of convex set functions

 Epsilon-optimality without constraint qualification for multiobjective fractional program

27. N.X. Ha and D.V. Luu
 Invexity of supremum and infimum functions and applications

28. N. Hadjisavvas
 On maximality, continuity and single-valuedness of pseudomonotone maps

29. N.N. Hai and H.X. Phu
 Boundedness and continuity of \(\gamma \)-convex functions in normed spaces

30. Z. Hao
 Some quasi-physical algorithm on optimization research

31. N.-J. Huang
 Generalized variational inclusions with generalized m-accretive mappings

32. N. Q. Huy
 Contractibility of the solution set of a semistrictly quasiconcave vector maximization problem

33. K. Ikeda
 Non-archimedean solutions for linear inequality systems

34. A. N. Iusem, T. Pennanen and B. F. Svaiter
 Inexact variants of the proximal point method without monotonicity

35. J.S. Jung and D.S. Kim
 Convergence of iteration processes for nonexpansive mappings in Banach spaces

36. M.-K. Kang and B.-S. Lee
 Generalized semi-pseudomonotone set-valued variational-type inequality

37. A. Khaliq
 Generalised vector quasi variational inequalities
38. P.Q. Khanh and L.M. Luu
 On the existence and upper semicontinuity of solutions to quasi-
 variational inequalities .. 41

39. P.T. Kien and D.V. Luu
 Higher - order optimality conditions for isolated local minima ... 42

40. D.S. Kim, G.M. Lee and P.H. Sach
 Hartley proper efficiency in multifunction optimization 43

41. S. Komlosi
 Generalized derivatives and generalized convexity 43

42. D. Kuroiwa
 Convexity of set-valued maps on set optimization 44

43. H.A. Le Thi
 Optimization over the efficient and weakly efficient sets by d.c.
 programming ... 45

44. H.A. Le Thi and D.T. Pham
 The predictor-corrector DCA for globally solving large scale mole-
 cular optimization from distance matrices via reformulations ... 45

45. C. Le Van and H. C. Saglam
 Quality of knowledge technology, returns to production technology
 and economic development .. 47

46. G.M. Lee
 On connectedness of solution sets for affine vector variational in-
 equality .. 47

 Hidden convex minimization 48

48. L.-J. Lin, Q. H. Ansari and J.-Y. Wu
 Geometric properties and coincidence theorems with applications
 to generalized vector equilibrium problems 48

49. D.T. Luc
 On local uniqueness of solutions of general variational inequalities 49

50. A. Marchi
 On the mix-efficient points 49
51. J.E. Martinez-Legaz, A.M. Rubinov and S. Schaible
Increasing quasiconcave production and utility functions with diminishing returns to scale ... 50

52. M. Mehta and C.S. Lalitha
Pseudomonotonicity and variational inequality problems 50

53. B. Mordukhovich
The extremal principle and its applications to optimization and economics .. 50

54. H.V. Ngai
On error bounds for inequality systems in Banach 51

55. S. Nishizawa, T. Tanaka and B. Zhang
On inherited properties and scalarization algorithms for set-valued maps .. 51

56. J.-P. Penot
Representations of monotone operators by convex functions 53

57. H.X. Phu
Rough convexity ... 55

58. S. Schaible
Fractional programming - a recent survey 57

59. N.N. Tam
Some recent results on (nonconvex) quadratic programming 57

60. P.T. Thach
Equilibrium in an exchange economy and quasiconvex duality .. 58

61. N.V. Thoai
Convergence of duality bound methods for programming problems dealing with partly convex functions 58

62. H. Tuy
Monotonicity in a framework of generalized convexity 58

63. J. S. Ume
Generalized distance and its applications 59

64. X. Yang
Duality methods via augmented Lagrangian functions 59
65. N.D. Yen
 Mordukhovich δ-derivative for multifunctions and implicit function theorems 60

66. J. Zafarani
 Generalized equilibrium for quasimonotone and pseudomonotone bifunctions 60
Abstracts
Stability of generalized convex functions

Phan Thanh An and Hoang Xuan Phu
Institute of Mathematics
P.O.Box 631 Bo Ho, Hanoi, Vietnam

Some kind of generalized convexity is said to be stable (or absolutely stable, respectively) with respect to some property (P) if this property is maintained during an arbitrary function from this class is disturbed by a continuous linear functional with sufficiently small norm (or by an arbitrary linear functional, respectively). In this paper we consider some main properties of generalized convex functions:

(P_l) Each lower level set is convex,
(P_m) Each local minimizer is a global minimizer,
(Pγ_m) Each γ-local minimizer \(x^* \) of a function \(f(\cdot) : D \to \mathbb{R}^1 \) defined by \(f(x^*) \leq f(x) \) for all \(x \in D \) with \(\|x - x^*\| \leq \gamma \) is a global minimizer.

There arise the questions: What kinds of generalized convexities are stable or absolutely stable with respect to (P_l), (P_m) or (Pγ_m)?

We prove that known generalized convexities like quasiconvexity, explicit quasiconvexity and pseudoconvexity are not stable with respect to (P_l) or (P_m). The notion of \(s \)-quasiconvex functions is introduced which is stable with respect to (P_l) and (P_m). Moreover, only classical convexity is absolutely stable with respect to (P_l) and (P_m). Additionally, we prove that so-called γ-convex-like functions are absolutely stable with respect to (Pγ_m) and if a lower semi-continuous function \(f(\cdot) : [a, b] \subset \mathbb{R}^1 \to \mathbb{R}^1 \) is absolutely stable with respect to (Pγ_m) then it must be γ-convex-like.

The Banach Iterative Procedure for Solving Monotone Variational Inequalities

Pham Ngoc Anh and Le Dung Muu
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, Hanoi, Vietnam

A function (mapping) \(F : C \to C \) is said to be strongly Lipschitzian on \(C \) with constant \(\delta > 0 \) if
\[||F(x) - F(x')||^2 \leq \delta \langle x - x', F(x) - F(x') \rangle \quad \forall x, x' \in C. \]

We consider the variational inequality

\[
\text{find } x^* \in C : \langle F(x^*) - x - x^* \rangle \geq 0 \quad \forall x \in C.
\]

where \(C \subset \mathbb{R}^n \) is a closed convex set and \(F \) is a Lipschitzian mapping from \(C \) to \(\mathbb{R}^n \).

We use the differentiable merit function recently developed by Fukushima for solving variational inequality (1). We show that one can choose a suitable regularization matrix such that a solution of the variational inequality can be found by computing a fixed point of a certain nonexpansive mapping. This result allows that the Banach iterative procedure for contractive mapping can be used for solving variational inequality with strongly Lipschitzian function. Our method gives a new look for the Auxiliary Principle for monotone variational inequalities.

The system of (generalized) vector equilibrium problems and its applications

Qamar Hasan Ansari
Aligarh Muslim University, India

Siegfried Schaible
University of California, Riverside, USA

Jen-Chih Yao
National Sun Yat-sen University, Kaohsiung, Taiwan

We introduce the system of vector equilibrium problems and prove the existence of a solution. As an application we derive some existence results for a system of vector variational inequalities. We also establish some existence results for a system of vector optimization problems which includes the Nash equilibrium problem with vector-valued functions.

In a follow-up study we introduce the system of generalized vector equilibrium problems with its various realizations for variational inequalities and optimization models. By using a maximal element theorem we establish existence results for such a system. As an application we derive existence results for a solution of a more general Nash equilibrium problem with vector-valued functions. Results are obtained under suitable generalized convexity assumptions.
Normal operator in quasiconvex programming

Didier Aussel
Departement de Mathematiques
Universite de Perpignan, France

Let us consider the optimization problem

\[(P) \text{ Minimize } f(x) \text{ with } x \in K\]

where \(X\) is a Banach space
\(K\) is a closed convex subset of \(X\)
\(f\) is a nondifferentiable quasiconvex function.

Using some recent existence results for variational inequality problems and the particular properties of the normal operator we obtain an existence theorem and a uniqueness theorem for problem (P). The Banach space \(X\) is not supposed to be reflexive, nor \(K\) to be compact.

Some other interesting properties of the normal operator will be presented.

On the equivalence of several generalizations of the Ekeland variational principle and the original principle

Truong Quang Bao and Phan Quoc Khanh
Department of Mathematics
Vietnam National University - Hochiminh City

The Ekeland variational principle is one of the most important principles in nonlinear analysis which appeared in the last three decades. There have been numerous applications in optimization, fixed point theory, critical point theory.... Also, many generalizations of the principle have been proposed for more general settings (e.g. for vector optimization, and for multivalued optimization) and for additional or deeper conclusions. Recently, in [1], [2] the authors proved several generalized principles, containing additional properties of the approximate extremal point which is asserted to exist in the Ekeland principle. In the present note we prove that these generalizations are in fact equivalent to the original principle.

REFERENCES

A finite iteration technique for a fuzzy quadratic programming problem

C.R. Bector, S.K. Bhatt, and V.N. Sharma
Department of Business Administration
University of Manitoba
Winnipeg, Manitoba R3T 5V4, Canada

In this paper we consider two problems, one under symmetric fuzzy environment, and the second under non-symmetric fuzzy environment, such that each problem has a single fuzzy quadratic objective function and a number of fuzzy and crisp linear constraints. To solve such a problem, we suggest a finite step method that uses linear programming and parametric quadratic programming approach. Furthermore, we present a numerical example to demonstrate the method developed.

Inf-Invex Alternative Theorem With Application
To Vector Valued Games

D. Bhatia
Department of Operational Research
University of Delhi, Delhi-110007, India

Arpana Sharma
Department of Mathematics
University of Delhi, Keshav Puram, Delhi-10035, India
E-mail: arpana.sharma@yahoo.com

The definition of inf-invexity is extended for a function of two variables and is then utilized to prove an inf-invexity alternative theorem of Gordan type. As
an application of this, a vector valued non-linear constrained game is shown to be equivalent to a pair of symmetric dual multiobjective non-linear programming problems in which the multiplier corresponding to the objective is a vector valued function of two variables.

On pseudomonotone maps T for which \(-T\) is also pseudomonotone

Monica Bianchi, Nicolas Hadjisavvas\(^{(\ast)}\) and Siegfried Schaible

\(^{(\ast)}\)University of the Aegean
83200 Karlovassi, Samos, Greece

Recently pseudomonotone variational inequalities have been studied quite extensively, hereby extending the theory of pseudoconvex minimization problems. The focus of the present work are "pseudoaffine maps", i.e., pseudomonotone maps \(T\) for which \(-T\) is also pseudomonotone. A particular case of such maps are the gradients of pseudolinear functions, which also have been studied extensively. Our main goal is to derive the general form of pseudoaffine maps which are defined on the whole space.

Testing a global optimization method for D.C. programming problems

Albert Ferrer Biosca

Universitat Politècnica de Catalunya
Departament de Matemàtica Aplicada I
EUPB, Campus SUD, Barcelona, Spain
e-mail:alberto.ferrer@upc.es

A method for modeling a real constrained optimization problem as a D.C. canonical programming problem has been developed from a new procedure of D.C. representation of any polynomial function. A modified algorithm of D.C. programming has been implemented to solve this problem. The solution obtained with a local optimization package is also included and their results are compared.
A Logarithmic Barrier Strategy
for Vector Optimization

R.S. Burachik, L.M. Grana Drummond* and S. Scheimberg
* Federal University of Rio de Janeiro
R.Barao da Torre 445/704 Rio de Janeiro
RJ, CEP 22411-003 Brazil, Brazil

We propose a logarithmic penalization method for finding efficient points of
coupled smooth constrained convex vector-valued problems. Under the sole assump-
tion of the existence of a Slater-type point, we show that the technique produces a
uni-parametric point-to-set mapping, whose nonempty outer limit at zero is con-
tained in the dual optimal set, and such that the primal projection of this limit is
included in the primal optimal set.

Combinatorial Optimization and Convexity

Rainer Burkard
Institute for Mathematics B
Graz University of Technology
Steyrergasse 30, A-8010 Graz, Austria
e-mail: burkard@tugraz.at

(abstract to be given later).

Pseudoconvexity under the Charnes-Cooper
transformation

Alberto Cambini
Department of Statistics and Applied Mathematics
University of Pisa, Via Cosimo Ridolfi, 10 56124 Pisa, Italy
acambini@ec.unipi.it

Laura Martein
Department of Statistics and Applied Mathematics
University of Pisa, Via Cosimo Ridolfi, 10 56124 Pisa, Italy
lmartein@ec.unipi.it
Charnes and Cooper (1962) reduced a linear fractional program to a linear program with help of a suitable transformation of variables. We show that this transformation preserves pseudoconvexity of a function. The result is then used to characterize sums of two linear fractional functions which are still pseudoconvex. This in turn leads to a characterization of pseudolinear sums of two linear fractional functions.

Duality for fractional optimization with set constraints

Alberto Cambini
Department of Statistics and Applied Mathematics
University of Pisa, Via Cosimo Ridolfi, 10 56124 Pisa, Italy
acambini@ec.unipi.it

Laura Carosi
Department of Statistics and Applied Mathematics
Faculty of Economics, University of Pisa, Italy
lcarosi@ec.unipi.it

Siegfried Schaible
A.G. Anderson Graduate School of Management
University of California, Riverside, CA 92521, USA
siegfried.schaible@ucr.edu

(Abstract to be given later)
Duality in multiobjective optimization problems
with set constraints

Riccardo Cambini and Laura Carosi
Department of Statistics and Applied Mathematics
Faculty of Economics, University of Pisa, Italy
cambric@ec.unipi.it, lcarosi@ec.unipi.it

We propose four different duality problems for a vector optimization program with both set constraints and inequality constraints. For all dual problems we state weak and strong duality theorems based on various generalized convexity assumptions. The proposed dual problems provide a unified framework generalizing Wolfe and Mond-Weir results.

On convex relaxations for nonconvex quadratic programs

Riccardo Cambini and Claudio Sodini
Department of Statistics and Applied Mathematics
Faculty of Economics - University of Pisa
Via Cosimo Ridolfi 10 - 56124 Pisa - Italy
e-mails: csodini@ec.unipi.it - cambric@ec.unipi.it

The aim of this paper is to suggest a branch-and-bound scheme, based on convex relaxations of the objective function, to solve nonconvex quadratic programs over a compact feasible region.

In order to obtain the various relaxations, the quadratic objective function is decomposed in different d.c. forms.

To improve the tightness of the relaxations, we finally suggest to use a particular decomposition and to solve the corresponding relaxed problems with an algorithm based on the so called “optimal level solutions” parametric approach.
Convexifactors, approximate Jacobians and optimality conditions

S. Chandra
Mathematics Department, Indian Institute of Technology (I.I.T.)
Hauz Khas New Delhi - 110016, India
chandras@maths.iitd.ernet.in

(Abstract to be given later)

Characterizing invex and related properties

Bruce Craven
University of Melbourne, Australia

A characterization of invex, given by Glover and Craven, is extended to functions in abstract spaces. Pseudoinvex for a vector function coincides with invex in a restricted set of directions. The V-invex property of Jeyakumar and Mond is also characterized. Some differentiability properties of the invex scale function are also obtained.

Convex Minty vector variational inequality

Giovanni P. Crespi
University of Bocconi, I.M.Q., v.le Isonzo 25, 20137 Milano, Italia
e-mail: giovanni.crespi@uni-bocconi.it

Angelo Guerraggio
Dipartimento di Economia, University of Insubria
Via Ravasi 2, 21100 Varese, Italia
e-mail: angelo.guerraggio@uni-bocconi.it

Matteo Rocca
Dipartimento di Economia, University of Insubria
via Ravasi 2, 21100 Varese, Italia
e-mail: mrocca@eco.uninsubria.it
In the past decade, the results concerning variational inequalities, both of Minty and Stampacchia type, have been adapted to the vector inequalities introduced by Giannessi in [3] (Stampacchia type) and in [4] (Minty type).

Since the early beginning, they have been applied to the study of vector optimization problems. However some lacks arise when comparing the results obtained for scalar inequalities and the new ones presented in [4]. Mainly it is possible to see that some more convexity assumptions are due to prove a (integrable) Minty vector inequality is a sufficient condition for efficiency, while the same results hold trivially without assumptions for scalar Minty inequalities.

We will first show that such a gap could not be filled, and we deduce that a stronger solution concept is what we need to solve the problem. To do that we apply some convexification starting from the definition of solution given in [4] to get a new Minty type vector variational inequality which shows to be, in the integrable case, a sufficient condition for efficient minimizers without convexity of the objective function. Moreover we prove the result in [4] follows from our as a special case.

REFERENCES

Mollified derivatives and second-order optimality conditions

Giovanni P. Crespi
University of Bocconi
I.M.Q., v.le Isonzo 25, 20137 Milano, Italia
e-mail: giovanni.crespi@uni-bocconi.it

Matteo Rocca
University of Insubria
Via Ravasi 2, 21100 Varese, Italia
e-mail: mrocca@eco.uninsubria.it

In this talk we present an extension to the second-order of the approach introduced by Craven [3] and by Ermoliev, Norkin and Wets [4] to define generalized derivatives even for discontinuous functions, which often arise in applications (see [4] for references). To deal with such problems a number of approaches have been proposed to develop a subdifferential calculus for nonsmooth and even discontinuous functions. Among the many possibilities, let us remember the notions due to Aubin [1], Clarke [2], Ioffe [6], Michel and Penot [10], Rockafellar [12], in the context of Variational Analysis. The previous approaches are based on the introduction of first-order generalized derivatives. Extensions to higher-order derivatives have been provided for instance by Hiriart-Hurruty, Strodiot and Hien Nguyen [5], Jeyakumar and Luc [7], Klatte and Tammer [8], Michel and Penot [9], Yang and Jeyakumar [15], Yang [16]. Most of these higher-order approaches assume that the functions involved are of class $C^{1,1}$, that is once differentiable with locally Lipschitz gradient, or at least of class C^1. Anyway, another possibility, concerning the differentiation of nonsmooth functions dates back to the 30 and is related to the names of Sobolev [14], who introduced the concept of "weak derivative" and later of Schwartz [13] who generalized Sobolev approach with the "theory of distributions". These techniques are widely used in the theory of partial differential equations, in Mathematical Physics and in related problems, but they have not been applied to deal with optimization problems involving nonsmooth functions, until the work of Ermoliev, Norkin and Wets.

The tools which allow to link the "modern" and the "ancient" approaches to Nonsmooth Analysis are those of "mollifier" and of "mollified functions". More specifically, the approach followed by Ermoliev, Norkin and Wets appeals to some of
the results of the theory of distributions. They associate with a point \(x \in \mathbb{R}^n \) a family of mollifiers (density functions) whose support tends toward \(x \) and converges to the Dirac function. Given such a family, say \(\{\psi_\varepsilon, \varepsilon > 0\} \), one can define a family of mollified functions associated to a function \(f : \mathbb{R}^n \to \mathbb{R} \) as the convolution of \(f \) and \(\psi_\varepsilon \) (mollified functions will be denoted by \(f_\varepsilon \)). Hence a mollified function can be viewed as an averaged function. The mollified functions possess the same regularity of the mollifiers \(\psi_\varepsilon \) and hence, if they are at least of class \(C^2 \), one can define first and second-order generalized derivatives as the cluster points of all possible values of first and second-order derivatives of \(f_\varepsilon \). For more details one can see [4].

We remember also that an approach based on similar techniques has been used to solve nonsmooth equations, with the introduction of smoothing functions and smoothing Newton methods [11].

REFERENCES

Closedness and Connectedness of Efficient Solution Set in \mathcal{S}-Strictly Quasiconcave Vector Maximization

Hong-Bin Dong, Shou-Yang Wang
Institute of Systems Science, Academy of Mathematics and Systems Sciences Chinese Academy of Sciences, Beijing 100080, China

Xun-hua Gong
Department of Mathematics, Nanchang University, Nanchang 330047, China
In this paper, we discuss the relationship among the concepts of an \(S \)-strictly quasiconcave vector-valued function introduced by Benson and Sun, a \(C \)-strongly quasiconcave vector-valued function and a \(C \)-strictly quasiconcave vector-valued function in a topological vector space with a lattice ordering. We generalize a main result obtained by Benson and Sun about the closedness of an efficient solution set in multiple objective programming. We prove that an efficient solution set is closed and connected when the objective function is a continuous \(S \)-strictly quasiconcave vector-valued function, the objective space is a topological vector lattice and the ordering cone has a nonempty interior.

Convexity and the core for set games and cooperative games: an equivalence theorem

Theo S. H. Driessen
Faculty of Mathematical Sciences (TW-DOS)
University of Twente
P.O. Box 217, NL-7500 AE Enschede, The Netherlands
E-mail: t.s.h.driessen@math.utwente.nl

Let the universe \(\mathcal{U} \) denote an abstract set which is fixed throughout the remainder. Following various introductory papers, a set game is a pair \(\langle N, v \rangle \), where \(N \) is a nonempty, finite set, called player set, and \(v : 2^N \to 2^\mathcal{U} \) is a characteristic mapping, defined on the power set of \(N \), satisfying \(v(\emptyset) := \emptyset \).

An element \(i \in N \) and a nonempty subset \(S \subseteq N \) (or \(S \in 2^N \) with \(S \neq \emptyset \)) is called a player and coalition respectively, and the associated set \(v(S) \subseteq \mathcal{U} \) is called the worth of coalition \(S \), to be interpreted as the (sub)set of items from \(\mathcal{U} \) that can be obtained (are needed, preferred, owned) by coalition \(S \) if its members cooperate.

Concerning the solution theory for set games, a solution \(\psi \) on the class of set games associates a so-called allocation \(\psi(N, v) = (\psi_i(N, v))_{i \in N} \in (2^\mathcal{U})^N \) with every set game \(\langle N, v \rangle \). The so-called set allocation \(\psi_i(N, v) \subseteq \mathcal{U} \) to player \(i \) in the set game \(\langle N, v \rangle \) represents the items that are given, according to the solution \(\psi \), to player \(i \) from participating in the game.

Concerning the yet undeveloped solution theory for set games, the paper focuses on the core concept for a special family of set games called convex set games. The main equivalence theorem states that, for the convexity of a monotonic set game,
it is necessary and sufficient that a large number of appropriately chosen set allocations belong to the core of the set game. These so-called marginalistic worth set allocations are constructed with the help of orderings of the fixed player set, the orderings of which may be classified in two types, called even or odd orderings. The main equivalence theorem resembles a similar one in the context of convex cooperative games with transferable utility. Recall that a cooperative TU-game with player set \(N \) is described by a characteristic mapping \(w : 2^N \rightarrow \mathbb{R} \), where the (positive) real number \(w(S) \) usually is interpreted as the monetary worth of the benefits achieved by coalition \(S \) if its members cooperate (e.g., in a joint venture). The convexity notion for cooperative TU-games is very well established since its introduction in 1971 by Shapley.

Some Applications of Generalized Convexity/Nonsmooth Analysis techniques to Second Order PDEs

Andrew Eberhard

Department of Mathematics and Statistics

RMIT University

GPO Box 2476V, Melbourne, Australia 3001

A central theme of the theory of second order elliptic partial differential is the so-called comparison principle. A general second order elliptic partial differential equation is of the form

\[
F(x, u(x), Du(x), D^2u(x)) = 0 \quad \text{for } x \in \Omega \\
u(x) = g(x) \quad \text{for } x \in \delta \Omega
\]

(1)

where \(Du(x), D^2u(x) \) are the first and second order derivatives of \(u \) (possibly in a generalized sense) and \(g \) denotes the boundary condition which the solution \(u \) must satisfy on the boundary \(\delta \Omega \) of the domain \(\Omega \). The function \(F(x, r, p, Q) : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \times S(n) \rightarrow \mathbb{R} \) usually has to satisfy some structure condition. Unfortunately such a nonlinear equation may not admit classical solution (i.e. a function \(u \in C^2(\mathbb{R}^n) \) that satisfies the equation pointwise). Thus an array of generalized solution have been proposed by a number of authors. One such concept is the so-called viscosity solution which (when it exists) may be
constructed as the supremum of the class of subsolutions of (1) which also satisfy
the boundary condition. We say u is a sub (super) solution of (1) when

$$F(x, u(x), p, Q) \leq (\geq) 0 \quad \text{for } x \in \Omega$$

for all $(p, Q) \in \partial^{2,+}u(x) = -\partial^{2,-}(-u)(x)$ (or $(p, Q) \in \partial^{2,-}u(x)$ for super solution). Here $\partial^{2,-}w$ denotes the so called subjet (or second order viscosity subdifferential)
defined by

$$\partial^{2,-}w(x) := \{(p, Q) = (\nabla \varphi(x), \nabla^2 \varphi(x)) \mid f - \varphi \text{ has a local minimum at } x\}.$$

We say comparison holds if whenever u is a super solution and v is a subso-
lution with $u(x) \geq v(x)$ for $x \in \delta \Omega$ then $u \geq v$ on all of Ω. To establish this
results one need to investigate the maximizing point of $v - u$ (and show it is
non-positive). In this talk we will discuss two different ways of establishing com-
parison. One approach uses composite supremal and infimal convolutions, like
the Lasry-Lions double convolution, to provide a $C^{1,1}(\mathbb{R}^n)$ approximation of the
possibly nonsmooth functions u and v. Unlike earlier work we provide explicit
formula describing how the subdifferential information of the function is effected
by such a smoothing processes, correcting an error in the literature. The second
method takes its motivation form the study of the subdifferential of the difference
of two functions to provide a new proof a fuzzy sum formula for the difference
of two nonsmooth functions. This has some novel character and allows compar-
ison to be established under weaker assumptions than are usually used. Some
discussion of applications will be given and future directions for research.

Criteria for the convexity behavior of
homogeneous functions

Rosalind Elster
Universitat Autònoma de Barcelona
Departament d’Economia i d’Història Econòmica
E-08193 Bellaterra (Barcelona), Spain
relster@compuserve.com, elster@softas.de

Homogeneous functions with certain differentiability properties satisfy a sys-
tem of partial differential equations. For such functions being twice continuously
differentiable on open convex sets we give necessary and/or sufficient conditions
for different kinds of convexity. Homogeneous functions are extensively used not only in the economics literature but also in the theory of inequalities and optimization. Relationships to these subjects will be presented.

Epsilon-optimality for nonsmooth programming on a Banach space

Misha G. Govil and Aparna Mehra
Department of Mathematics
Shri Ram College of Commerce University of Delhi
Delhi-110007, India

We establish Lagrange multiplier rule, in terms of generalized gradient, that characterizes the epsilon-efficiency of a nonsmooth programming problem(s) on a real Banach space. This rule is then utilized to establish relationship between epsilon-efficient solution of program(s) and generalized saddle point under appropriate conditions.

Approximate Optimization of Convex Set Functions

Pankaj Gupta, Aparna Mehra and D. Bhatia
Department of Operational Research
Faculty of Mathematical Sciences
University of Delhi, Delhi-110007, India
email: amehra@himalaya.du.ac.in

We introduce the notion of epsilon-subdifferential for convex set function and discuss some of its properties. These properties are then utilized to derive epsilon-Pareto optimality conditions of Karush-Kuhn-Tucker type for non-differentiable multiobjective optimization problem with convex set functions.
epsilon-optimality without constraint qualification for multiobjective fractional program

Pankaj Gupta
Department of Mathematics, Deen Dayal Upadhyaya College
University of Delhi, Shivaji Marg, Karampura, New Delhi-110015, India

Aparna Mehra
Department of Operational Research, Faculty of Mathematical Sciences
University of Delhi, Delhi-110007, India

Shiraishi K. Yokoyama
Faculty of Economics, Toyama University
Toyama, Japan

In this paper, we concentrate on a non-differentiable multiobjective fractional programming problem subject to convex inequality constraints, equality constraints, and abstract constraints. Epsilon-parametric technique is used to transform the given problem into non-differentiable multiobjective programming problem. Subsequently, we employ the exact penalty function approach to derive the Karush-Kuhn-Tucker type necessary and sufficient optimality conditions for the given problem without using any constraint qualification.

Invexity of supremum and infimum functions and applications

Nguyen Xuan Ha
Institute of Cryptographic Technology, Hanoi, Vietnam

Do Van Luu
Institute of Mathematics, Hanoi, Vietnam

Let Q be a metricable compact topological space, and for all $\alpha \in Q$, let f_α be a real-valued function defined on \mathbb{R}^n. Consider the following functions

$$f(x) = \sup_{\alpha \in Q} f_\alpha(x), \quad g(x) = \inf_{\alpha \in Q} f_\alpha(x).$$
Under suitable assumption we derive the results ensuring the functions f and g are invex when all the functions $f_\alpha (\alpha \in Q)$ are invex. Applying these results to a class of mathematical programs, optimality conditions are established under suitable invexity hypotheses.

On maximality, continuity and single-valuedness of pseudomonotone maps

Nicolas Hadjisavvas
Department of Mathematics
University of the Aegean, 83200 Karlovassi, Samos, Greece

We define the concept of “D-maximal pseudomonotone map”, where ‘D’ stands for “domain”. Conditions for a pseudomonotone map to be D-maximal are given; in particular, it is shown that the Clarke subdifferential of a locally Lipschitz pseudoconvex function is D-maximal pseudomonotone. Finally, the continuity and single-valuedness of pseudomonotone maps are investigated.

Boundedness and continuity of γ-convex functions in normed spaces

Nguyen Ngoc Hai
Department of Mathematics
College of Education, Hue University
Hue, Vietnam

Hoang Xuan Phu
Hanoi Institute of Mathematics
P.O. Box 631 - Bo Ho, Hanoi, Vietnam

For a fixed positive number γ, a real-valued function f defined on a convex subset D of a normed space X is said to be γ-convex if it satisfies the inequality

$$f(x_0') + f(x_1') \leq f(x_0) + f(x_1) \quad \text{for} \quad x_i' \in [x_0, x_1], \quad \|x_i' - x_i\| = \gamma, \quad i = 0, 1,$$

whenever $x_0, x_1 \in D$ and $\|x_0 - x_1\| \geq \gamma$. This condition implies that the Jensen inequality

$$f(x_\lambda) \leq (1 - \lambda)f(x_0) + \lambda f(x_1), \quad x_\lambda := (1 - \lambda)x_0 + \lambda x_1$$

(1)
holds at \(x_{\lambda} = x'_{0} \) or \(x_{\lambda} = x'_{1} \). This condition is rather weak, nevertheless \(\gamma \)-convex functions possess some interesting analytical properties, which are presented in our talk. For instance,

- if there is some \(x_{*} \in D \) such that \(f \) is bounded below on \(D \cap \bar{B}(x_{*}, \gamma) \), then so is it on each bounded subset of \(D \);

- if \(f \) is bounded on some closed ball \(\bar{B}(x_{*}, \gamma/2) \subset D \) and \(D' \) is a bounded subset of \(D \), then \(f \) is bounded on \(D' \) iff it is bounded above on the boundary of \(D' \);

- if \(\dim X > 1 \) and the interior of \(D \) contains a closed ball of radius \(\gamma \) then \(f \) is either locally bounded or nowhere locally bounded on the interior of \(D \);

- if \(D \) contains some open ball \(B(x_{*}, \gamma/2) \) in which \(f \) has at most countably many discontinuities, then \(f \) possesses at most countably many discontinuities on each line through \(x_{*} \), which implies that the set of all points at which \(f \) is continuous is dense in \(D \).

As a particular kind, \(f \) is called symmetrically \(\gamma \)-convex if it satisfies the Jensen inequality (1) at both \(x_{\lambda} = x'_{0} \) and \(x_{\lambda} = x'_{1} \). Such a function has stronger analytical properties. For example, if \(X \) is a finite-dimensional normed space then a symmetrically \(\gamma \)-convex function \(f \) on \(D \subset X \) is locally Lipschitzian at any so-called \(\gamma \)-interior point \(x \) of \(D \) defined by \(B(x, r) \subset D \) for some \(r > \gamma \).

Some quasi-physical algorithm on optimization research

Zhifeng Hao
Department of Applied Mathematics
South China University of Technology, Guangzhou, 510640, China
mazfhao@scut.edu.cn

(Abstract to be given later)

Generalized variational inclusions with generalized m-accretive mappings

Nan-Jing Huang
Sichuan University Chengdu, Sichuan 610064, China
nic2601@scu.edu.cn

(Abstract to be given later)
Contractibility of the solution set of a semistrictly quasiconcave vector maximization problem

Nguyen Quang Huy
Department of Mathematics
Hanoi Pedagogical University No.2
huyngq@yahoo.com

(Abstract to be given later)

Non-Archimedean Solutions for Linear Inequality Systems

Kiyoshi Ikeda
School of Information Science
Japan Advanced Institute of Science and Technology, Japan
ky-ikeda@jaist.ac.jp

Let S be an arbitrary set of vectors in \mathbb{R}^{n+1}. Our problem is to find a necessary and sufficient condition for the existence of a solution (x_1, x_2, \ldots, x_n) to the following system of linear inequalities:

$$a_1 x_1 + a_2 x_2 + \cdots + a_n x_n < b \quad \text{for all } (a_1, a_2, \ldots, a_n, b) \in S. \quad (A)$$

If S is a finite set, the separating hyperplane lemma gives the well-known condition: there exists a solution to (A) if and only if 0 is not a linear convex combination of the vectors in $S \cup \{(0, \cdots, 0, 1)\}$. In this talk we show that the same condition can also be applied to the infinite case if we adopt a suitable non-Archimedean structure as the domain of solutions to linear inequality systems.

For this purpose we introduce an extended structure of the reals \mathbb{R} with an infinitesimal ϵ, that is, a solution of the system $-x < 0$ and $x < 1/k$ for all $k \in \mathbb{N}$. We show that this extended structure coincides with the set of lexicographically ordered vectors. The main result is derived as a consequence of the lexicographical separation theorem (see [1], [2]) that any two disjoint convex sets in \mathbb{R}^n can be separated lexicographically.
Some applications in utility theory are also presented.

REFERENCES

Inexact variants of the proximal point method without monotonicity

A. N. Iusem
Instituto de Matemática Pura e Aplicada (IMPA)
Estrada Dona Castorina 110, Rio de Janeiro, RJ, CEP 22460-320, Brazil
iusp@impa.br

T. Pennanen
Helsinki School of Economics and Business Administration
Department of Management Sciences, PL 1210, 00101, Helsinki, Finland
pennanen@hkkk.fi

B. F. Svaiter
Instituto de Matemática Pura e Aplicada (IMPA), Estrada Dona Castorina 110, Rio de Janeiro, RJ, CEP 22460-320, Brazil
benar@impa.br

We study some variants of the proximal point method for finding zeroes of operators. We are interested in the case of procedures with inexact iterates, which allow for constant relative errors, in the line of the recently proposed hybrid proximal-extragradient algorithm. We consider the case of nonmonotone operators. Generalizing the recent work of Pennanen, who dealt only with the case of exact solution of the proximal subproblems, we establish local convergence when the operator is ρ-hypomonotone, provided the regularization coefficients are greater than 2ρ. We also prove linear convergence rate when, additionally,

1The work of this author was partially supported by CNPq grant no. 301280/86.
the inverse of the operator is locally Lipschitz continuous near 0. Finally, as an application of these results, we present new inexact multiplier methods for a rather general family of problems, including variational inequalities and constrained optimization problems.

Convergence of iteration processes for nonexpansive mappings in Banach spaces

Jong Soo Jung
Department of Mathematics, Dong-A University
Busan 604-714, South Korea
E-mail address: jungjs@mail.donga.ac.kr

Do Sang Kim
Department of Applied Mathematics, Pukyong National University
Busan 608-737, South Korea
E-mail address: dskim@pknu.ac.kr

Let E be a reflexive Banach space with a uniformly Gateaux differentiable norm, and S a mapping of the form

$$S = \alpha_0 I + \alpha_1 T_1 + \alpha_2 T_2 + \cdots + \alpha_k T_k,$$

where $\alpha_i \geq 0$, $\alpha_0 > 0$, $\sum_{i=0}^k \alpha_i = 1$ and $T_i : E \to E$ ($i = 1, 2, \cdots, k$) is a nonexpansive mapping. For an arbitrary $x_0 \in E$, let $\{x_n\}$ be a sequence in E defined by an iteration $x_{n+1} = Sx_n$, $n = 0, 1, 2, \cdots$. We establish a dual weak almost convergence result of $\{x_n\}$ in a reflexive Banach space with a uniformly Gateaux differentiable norm. As a consequence of the result, a weak convergence result of $\{x_n\}$ is also given.

Generalized semi-pseudomonotone set-valued variational-type inequality

Byung-Soo Lee
Department of Mathematics, Kyungsung University, Pusan 608-736, Korea

Mee-Kwang Kang
Department of Mathematics, Dongeui University, Pusan 614-714, Korea
In [1], Chen considered the following variational inequality (P-1) for a semi-monotone single-valued map $A : K \times K \to E^*$, where K is a bounded closed convex subset of E^{**}, the second dual of a real Banach space E.

(P-1) Find an $x \in K$ such that
$$\langle A(x, x), y - x \rangle \geq 0 \quad \text{for all} \quad y \in K.$$

And then, very recently Fang and Huang [2] considered the following generalized variational-type inequality (P-2) for a semi-monotone single-valued map $A : K \times K \to E^*$.

(P-2) Find an $x \in K$ such that
$$\langle A(x, x), \eta(y, x) \rangle + f(y) - f(x) \geq 0 \quad \text{for all} \quad y \in K,$$
where $\eta : K \times K \to E^{**}$ is a map and $f : K \to \mathbb{R} \cup \{\infty\}$ is a function.

In 2000, Kassay and Kolumban [4] considered the existence of solutions to the following variational inequalities (P-3) and (P-4) for semi-pseudomonotone set-valued maps $A : K \times K \to 2^E$, where K is a nonempty convex subset of E^*.

(P-3) Find an $x \in K$ such that
$$\sup_{u \in A(x, x)} \langle u, y - x \rangle \geq 0 \quad \text{for all} \quad y \in K.$$

(P-4) (Minty-type problem)
Find an element $x \in K$ such that
$$\sup_{u \in A(y, x)} \langle u, y - x \rangle \geq 0 \quad \text{for all} \quad y \in K.$$

In this paper, we consider the existence of solutions to the following variational-type inequality for a relaxed α-semi-pseudomonotone set-valued map $A : K \times K \to 2^{E^*}$, where K is a nonempty closed convex subset of E^{**};

Find $x \in K$ such that for each $y \in K$ there exists $u \in A(x, x)$ satisfying
$$\langle u, \eta(y, x) \rangle + f(y, x) \geq 0.$$ (1)

Definition 1 Let K be a nonempty subset of E^{**}. A set-valued map $A : K \times K \to 2^{E^*}$ is said to be relaxed α-semi-pseudomonotone if the following conditions hold;
Theorem 2 Let K be a real Banach space and K a nonempty bounded closed convex subset of E^*. Let $A : K \times K \to 2^{E^*}$ be a relaxed α-semi-pseudomonotone set-valued map, and $f : K \times K \to \mathbb{R} \cup \{+\infty\}$ a proper function such that

(i) for fixed $v \in E^*$, $x \mapsto \langle v, \eta(x, \cdot) \rangle + f(x, \cdot)$ is linear, weakly lower semicontinuous,

(ii) $\eta(x, y) + \eta(y, x) = 0$ and $f(x, y) + f(y, x) = 0$ for $x, y \in K$,

(iii) $\alpha : E^{**} \to \mathbb{R}$ is convex, weakly lower semicontinuous, and

(iv) for each $x \in K$, $A(x, \cdot) : K \to 2^{E^*}$ is finite dimensional continuous.

Then problem (1) is solvable.

Theorem 2 Let E be a real Banach space and K a nonempty unbounded closed convex subset of E^*. Let $A : K \times K \to 2^{E^*}$ be a relaxed α-semi-pseudomonotone set-valued map, and $f : K \times K \to \mathbb{R} \cup \{+\infty\}$ a proper function such that

(i) for fixed $v \in E^*$, $x \mapsto \langle v, \eta(x, \cdot) \rangle + f(x, \cdot)$ is linear, lower semicontinuous,

(ii) $\eta(x, y) + \eta(y, x) = 0$ and $f(x, y) + f(y, x) = 0$ for $x, y \in K$,

(iii) $\alpha : E^{**} \to \mathbb{R}$ is convex, weakly lower semicontinuous,

(iv) for each $x \in K$, $A(x, \cdot) : K \to 2^{E^*}$ is finite dimensional continuous, and

(v) there exists an $x_0 \in K$ such that

$$\lim_{\|x\| \to \infty} \langle u, \eta(x, x_0) \rangle + f(x, x_0) > 0$$
for all $x \in K$ and for all $u \in A(x, x)$. Then problem (1) is solvable.

REFERENCES

Generalised Vector Quasi Variational Inequalities

Abdul Khaliq
Department of Mathematics
University of Jammu, Jammu and Kashmir, India
abdulkhaliqin@yahoo.com

(Abstract to be given later)

On the existence and upper semicontinuity of solutions to quasivariational inequalities

Phan Quoc Khanh
Vietnam National University - Hochiminh City

Le Minh Luu
University of Dalat

Let X and Y be Hausdorff topological vector spaces, U be a Hausdorff topological space and $A \subset X$ be a nonempty, closed and convex subset. Let $C : A \rightarrow 2^Y$, $T : U \rightarrow 2^{L(X,Y)}$ and $K : U \times A \rightarrow 2^X$ be multifunctions with values of C being
closed convex cones with nonempty interiors. Let $g : U \times A \to A$ be a continuous mapping. Consider the two quasivariational inequality problems with parameters

(QVI) : find $\bar{u} \in U$ and $\bar{x} \in A \cap clK(\bar{u}, \bar{x})$ such that
\[
\forall x \in K(\bar{u}, \bar{x}), \exists \bar{t} \in T(\bar{u}, \bar{x}),
\bar{t}, x - g(\bar{u}, \bar{x}) \in Y \setminus intC(\bar{x}),
\]

(SQVI) : find $\bar{u} \in U$ and $\bar{x} \in A \cap clK(\bar{u}, \bar{x})$ such that
\[
\forall x \in K(\bar{u}, \bar{x}), \forall t \in T(\bar{u}, \bar{x}),
(t, x - g(\bar{u}, \bar{x})) \in Y \setminus intC(\bar{x}).
\]

With relaxed assumptions on semicontinuity and pseudomonotonicity of involved multifunctions (for (QVI) even without pseudomonotonicity) we prove theorems simultaneously on the existence of solutions and its upper semicontinuity with respect to parameter u.

Applications to quasi-complementarity problems and traffic equilibrium problems are also presented. Note that the theorems for (QVI) generalize and improve several recent results in the literature, while the ones for (SQVI) are new, since to our knowledge this problem has never been considered.

Higher - order optimality conditions for isolated local minima

Pham Trung Kien
Financial Institute, Hanoi, Vietnam

Do Van Luu
Institute of Mathematics, Hanoi, Vietnam

Let C be a subset of Banach space X, and let S be a closed convex cone of another Banach Space Y. Let f be an extended real-valued function defined on X, and g be a mapping from X to Y. Consider the optimization problem:

(P): \{ \text{minimize } f(x) \mid -g(x) \in S \text{ and } x \in C \}

Higher - order necessary and sufficient optimality conditions for isolated local minima of problem (P) are established in terms of higher - order counterparts of lower and upper Dini directional derivatives.
Hartley Proper Efficiency in Multifunction Optimization

Do Sang Kim, Gue Myung Lee
Department of Applied Mathematics, Pukyong National University
Pusan 608-737, South Korea.

Pham Huu Sach
Hanoi Institute of Mathematics
P.O. Box 631, Boho, Hanoi, Vietnam

This paper gives a necessary condition for the Hartley proper efficiency in a vector optimization problem whose objectives and constraints are described by multifunctions F and G. This condition is established under a quasiconvexity requirement of the support function of F and G or a generalized cone-convexity of a multifunction constructed from F and G.

Generalized Derivatives and Generalized Convexity

Sandor Komlosi
University of P—cs, R,k cz80, H-7622 P—cs, Hungary
komlosi@ktk.pte.hu

(Abstract to be given later)

Convexity of Set-Valued Maps on Set Optimization

Daishi Kuroiwa
Department of Mathematics and Computer Science
Interdisciplinary Faculty of Science and Engineering
Shimane University, Matsue, 690-8504, Japan
E-mail: kuroiwa@math.shimane-u.ac.jp
Let \((E, \leq)\) be an ordered topological vector space, and \(F\) be a set-valued map from a nonempty set \(X\) to \(E\). We consider an optimization problem whose objective map is a set-valued map as follows:

\[
\text{(SP)} \quad \text{Minimize} \quad F(x) \\
\text{subject to} \quad x \in X.
\]

We know that there are two criteria of solutions in these set-valued optimization problems. One is a vector optimization sense (see, for example [3]); \(x_0\) is a solution if \(F(x_0)\) has a minimal element of \(\text{Min} \bigcup_{x \in X} F(x)\), that is, there exists an element \(y_0\) of \(F(x_0)\) such that

\[
x \in X, \quad y \in F(x), \quad y \leq y_0 \quad \Rightarrow \quad y_0 \leq y,
\]

and the other is a set optimization sense (see, [1]); \(x_0\) is a solution if \(F(x_0)\) is a minimal element for some set-relation \(\preceq\), that is,

\[
x \in X, \quad F(x) \preceq F(x_0) \quad \Rightarrow \quad F(x_0) \preceq F(x).
\]

The former is a usual set-valued optimization problem, and notions of cone-convexity of set-valued maps have been defined and investigated, see [2]. In this paper we consider notions of convexity of set-valued maps in the latter set optimization sense.

REFERENCES

Optimization over the efficient and weakly efficient sets by d.c. programming

Le Thi Hoai An

Laboratory of Modelling, Applied Optimization and Operations Research
We study concave minimization problems over the efficient and weakly efficient sets of a multi-objective programming problem. They are formulated as d.c. (difference of convex functions) programs in the criteria space, and solved by a d.c. optimization approach called DCA.

Numerical experiments are reported which show the efficiency of the proposed algorithms.

The predictor-corrector DCA for globally solving Large Scale Molecular Optimization from Distance Matrices via reformulations

Le Thi Hoai An and Pham Dinh Tao
Laboratory of Modeling, Optimization & Operations Research
National Institute for Applied Sciences-Rouen
BP 8, 76 131 Mont Saint Aignan Cedex, France.
lethi@insa-rouen.fr pham@insa-rouen.fr

In recent years there has been very active research in the molecular optimization, especially in the protein folding framework which is one of the most important problems in biophysical chemistry. Molecular optimization problems arise also in the study of clusters (molecular cluster problems) and of large, confined ionic systems in plasma physics. The determination of a molecular conformation can be tackled by either minimizing a potential energy function (if the molecular structure corresponds to the global minimizer of this function) or solving the distance geometry problem (when the molecular conformation is determined by distances between pairs of atoms in the molecule). Both methods are concerned with global optimization problems.

In this paper we are interested in the large-scale molecular conformation from the distance geometry problem which can be formulated as follows: Find positions of n atoms x^1, \ldots, x^n in \mathbb{R}^3 such that

$$
\|x^i - x^j\| = \delta_{ij}, \quad (i, j) \in S,
$$

(1)
where \mathcal{S} is a subset of the atom pairs, δ_{ij} with $(i, j) \in \mathcal{S}$ is the given distance between atoms i and j, and $\| \cdot \|$ denotes the Euclidean norm. Usually, a small subset of pairwise distances is known, i.e., \mathcal{S} is sparse.

The above formulation corresponds to the exact geometry problem. By the error in the theoretical or experimental data, there may not exist any solution to this problem, for example, when the triangle inequality

$$\delta_{ij} \leq \delta_{ik} + \delta_{kj}$$

is violated for atoms i, j, k. Then an ε-optimal solution of (1), namely a configuration x^1, \ldots , x^n satisfying

$$| \|x^i - x^j\| - \delta_{ij}| \leq \varepsilon, \quad (i, j) \in \mathcal{S},$$

is useful in practice.

The general distance geometry problem then is to find positions x^1, \ldots , x^n in \mathbb{R}^3 verifying

$$l_{ij} \leq \|x^i - x^j\| \leq u_{ij}, \quad (i, j) \in \mathcal{S},$$

where l_{ij} and u_{ij} are lower and upper bounds of the distance constraints, respectively.

A so-called DCA method based on a d.c. (difference of convex functions) optimization approach for solving large-scale distance geometry problems is developed. Different formulations of equivalent d.c. programs, in the l_1-approach, are stated via Lagrangian duality without gap relative to d.c. programming and new nonstandard nonsmooth reformulations, in the l_∞-approach (resp. the l_1-l_∞-approach) are introduced. Substantial subdifferential calculations permit to compute quite simply sequences of iterations in the DCA. It actually requires matrix-vector products and only one Cholesky factorization (resp. plus solution of a convex program) in the l_1-approach (resp. the l_1-l_∞-approach), and allows exploiting sparsity in the large-scale setting. Two techniques, using the triangle inequality to generate a complete approximate distance matrix and the spanning trees procedure respectively, were investigated in order to compute a good starting point for the DCA. Finally, many numerical simulations of the molecular optimization problems with up to 12567 variables are reported which prove the practical usefulness of the nonstandard nonsmooth reformulations, the globality of found solutions, the robustness, and the efficiency of our algorithms.
Quality of knowledge Technology, Returns to Production Technology and Economic Development

Cuong Le Van and H. Cagri Saglam
French National Center for Scientific Research
CERMSEM 106-112 boulevard de l’Hopital 75013 Paris, France

Adopting a discrete time version of the Romer (1986) model, this paper analyzes optimal paths in a one-sector growth model when the individual production function is convex-concave and the social production technology exhibits globally increasing returns. We prove that for a given quality of knowledge technology, the countries could take-off if their initial stock of capital are above a critical level. We show that for an economy which wants to take-off by means of knowledge technology requires three factors: large amount of initial knowledge, small fixed costs and a good quality of knowledge technology.

On Connectedness of Solution Sets for Affine Vector Variational Inequality

Gue Myung Lee
Department of Applied Mathematics
Pukyong National University
Pusan 608-737, South Korea
gmlee@pknu.ac.kr

The concept of vector variational inequality was introduced by Giannessi in 1980. Since then, many authors have shown that vector variational inequality can be efficient tools for studying multiobjective optimization problems.

In this talk, we will discuss the boundedness and connectedness of solution sets for affine vector variational inequalities with noncompact polyhedral constraint sets and positive semidefinite (or monotone) matrices. Moreover, we show that the boundedness and connectedness results can be applied to multiobjective linear fractional optimization problems and multiobjective convex linear-quadratic optimization problems.
Hidden Convex Minimization

Duan Li, Zhiyou Wu, Heung Wing Joseph Lee
Xinmin Yang and Liansheng Zhang

Department of Systems Engineering and Engineering Management
Chinese University of Hong Kong, Hong Kong
Email: dli@se.cuhk.edu.hk
http://www.se.cuhk.edu.hk/dli/

A class of nonconvex minimization problems can be classified as hidden convex minimization problems. A nonconvex minimization problem is called a hidden convex minimization problem if there exists an equivalent transformation such that the equivalent transformation of it is a convex minimization problem. Sufficient conditions are derived in this paper for identifying such class of seemingly nonconvex minimization problems that are equivalent to convex minimization problems. Thus, a global optimality can be achieved for this class of hidden convex optimization problems by using local search methods. The results presented in this paper extend the reach of convex minimization by identifying its equivalent with a nonconvex representation.

Geometric Properties and Coincidence Theorems with Applications to Generalized Vector Equilibrium Problems

Lai-Jiu Lin, Qamrul Hassan Ansari and Jai-Yen Wu

Department of Mathematics, National Changhua University of Education, Changhua, Taiwan

The present paper is divided into two fold, we derive a Fan-KKM type theorem and establish some geometric properties of convex spaces. By applying our results we also establish some coincidence and fixed point theorems in the setting of convex spaces. Second fold deals with the applications of our coincidence theorems to establish some existence results for a solution to the generalized vector equilibrium problems.
On local uniqueness of solutions of general variational inequalities

Dinh The Luc
University of Avignon, France
dtluc@univ-avignon.fr

By using Fréchet approximate Jacobian matrices, we present some criteria for the local uniqueness of solutions to the general variational inequalities which involve continuous, not necessarily locally Lipschitz continuous data.

On the mix-efficient points

Anna Marchi
Department of Statistics and Applied Mathematics
University of Pisa
Via Ridolfi, 10 56124 Pisa (Italy), Italy

In this paper the concepts of mix-efficient point and mix quasi-convex set are introduced. By means of these concepts we will investigate the connectedness of the mix-efficient frontier for vector optimization problems defined by quasi-concave, strictly and strong quasi-concave functions. Conditions under which the outcome of a vector function is a set mix-efficient are established. Applications for three criteria problems are given.

Increasing quasiconcave production and utility functions with diminishing returns to scale

Juan Enrique Martinez-Legaz
Universitat Autonoma de Barcelona, Spain

Alexander M.Rubinov
University of Ballarat, Australia

Siegfried Schaible
University of California, Riverside, USA
In microeconomic analysis functions with diminishing returns to scale (DRS) have frequently been employed. Various properties of increasing quasiconcave aggregator functions with DRS are derived. Furthermore duality in the classical sense of economic theory as well as a new type of duality are studied for such aggregator functions both in production and consumer theory. In particular, representation theorems for direct and indirect aggregator functions are obtained. These involve only small sets of generator functions. The study is carried out in the contemporary framework of abstract convexity and abstract concavity.

Pseudomonotonicity and Variational Inequality Problems

Monika Mehta
Department of Mathematics, Satyawati College
University of Delhi, Ashok Vihar, Delhi 110052, India

C.S. Lalitha
Department of Mathematics, Rajdhani College
University of Delhi, Raja Garden, New Delhi 110052, India

Variational inequality problem was introduced by Hartman and Stampacchia while dealing with solutions of partial differential equations. In natural sciences this problem is mostly studied in infinite dimensional spaces. Economists and management scientists are particularly interested in the finite dimensional version. The equilibrium conditions of virtually every equilibrium problem may be formulated as a variational inequality problem. Monotonicity and its generalizations play a crucial role in establishing the solution of variational inequality problem.

The extremal principle and its applications to optimization and economics

Boris Mordukhovich
Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

This lecture is devoted to the extremal principle in variational analysis that can be viewed as a variational analogue of the classical convex separation principle.
in nonconvex settings. We consider two basic versions of the extremal principle formulated in terms of Frechet normals and their sequential limits. Then we discuss their relationships with variational principles and their applications to the generalized differential calculus for nonsmooth and set-valued mappings, to necessary optimality and suboptimality conditions, and to the study of Pareto optimality in nonconvex models of welfare economics.

On error bounds for inequality systems in Banach

Huynh Van Ngai
Pedagogy university of Quy Nhon, Vietnam

(Abstract to be given later)

On Inherited Properties and Scalarization Algorithms for Set-Valued Maps

Shogo Nishizawa
Graduate School of Science and Technology, Niigata University
Niigata 950-2181, Japan
shogo@ekeland.gs.niigata-u.ac.jp

Tamaki Tanaka
Graduate School of Science and Technology, Niigata University
Niigata 950-2181, Japan
tamaki@math.sc.niigata-u.ac.jp

Bingjiang Zhang
Graduate School of Science and Technology, Niigata University
Niigata 950-2181, Japan
zhang@ekeland.gs.niigata-u.ac.jp

This paper consists of two parts which are several inherited properties of set-valued maps and scalarization algorithms for set-valued maps.

Firstly, we present certain results on inherited properties on convexity and semicontinuity. Convexity and lower semicontinuity of real-valued functions are
useful properties for analysis of optimization problems, and they are dual concepts to concavity and upper semicontinuity, respectively. These properties are related to the total ordering of \mathbb{R}^n. We consider certain generalizations and modifications of convexity and semicontinuity for set-valued maps in a topological vector space with respect to a cone preorder in the target space, which have studied in [1] for generalizing the classical Fan inequality. These properties are inherited by special scalarizing functions;

\begin{align}
\inf\{h_C(x, y; k) : y \in F(x)\} \quad (0.1) \\
\sup\{h_C(x, y; k) : y \in F(x)\} \quad (0.2)
\end{align}

where \(h_C(x, y; k) = \inf\{t : y \in tk - C(x)\} \), \(C(x) \) is a closed convex cone with nonempty interior, \(x \) and \(y \) are vectors in two topological vector spaces \(X, Y \), and \(k \in \text{int} C(x) \). Note that \(h_C(x, \cdot; k) \) is positively homogeneous and subadditive for every fixed \(x \in X \) and \(k \in \text{int} C(x) \); and moreover \(-h_C(x, -y; k) = \sup\{t : y \in tk + C(x)\} \).

Secondly, we develop computational procedures how to calculate the values of functions (0.1) and (0.2). In order to find solutions in multicriteria situations, we use some types of scalarization algorithms such as positive linear functionals and Tchebyshev scalarization. The function \(h_C(x, y; k) \) is regarded as a generalization of the Tchebyshev scalarization. By using the function, we give four types of characterizations of set-valued maps.

REFERENCES

Representations of monotone operators by convex functions

Jean-Paul Penot
Laboratoire de Mathematiques Appliquees, Faculte des Sciences, BP 1155, 64013 PAU cedex, France
The analogies between closed proper convex functions and maximal monotone operators are striking. Among them are: (a) almost convexity of the domains of such operators, (b) local boundedness on the interiors of their domains, (c) the Brondsted-Rockafellar theorem, (d) qualification conditions for calculus rules, (e) single valuedness results, (f) regularization processes, etc... These facts prompt one to derive the main results about maximal monotone operators from convex analysis.

Among the possible tools to reach that aim are the representation theorems of Fitzpatrick [9], Krauss [11] - [14], and their supplements by Burachik and Svaiter [7], Martinez-Legaz and Thera [16] which characterize maximal monotone operators. We complete these representations by introducing another natural representation which is closely connected with the restriction of the coupling function \(c \) to the graph of the operator. This representation dominates any closed convex function majorized by \(c \) on the graph of the operator. This representation and the Fitzpatrick representation are simply related by the Fenchel transformation. We also establish relationships with the Krauss representation which is more complex since it relies on the theory of saddle functions. It has been recently pointed out to the author by B. Svaiter that the new representation of [18] mentioned above is related to the study of enlargements of maximal monotone operators conducted by him and R. Burachik in the forthcoming paper [8] ; see also [4] - [7], [10], [19], [20], [21] . Other representations are given in [17], [22] and in the works by S. Simons.

However, in order to reach our aim, we devise another representation of a maximal monotone operator \(M : X \rightrightarrows X^* \), where \(X \) is a reflexive Banach space. It is not unique, but it is invariant under the conjugacy obtained by composing the Fenchel conjugacy with a permutation of the variables in \(X \times X^* \). In order to prove the existence of such a representation, we use the Zorn lemma, so that our existence result is non constructive. For obtaining calculus rules, we rely on a nice result of R. Burachik and B. Svaiter [7] which characterizes closed convex functions which are Fitzpatrick representations of maximal monotone operators.

REFERENCES

Rough Convexity

Hoang Xuan Phu

Institute of Mathematics
P.O. Box 631 - Bo Ho, Hanoi, Vietnam
hxphu@thevinh.ncst.ac.vn

A set M is called roughly convex (in some sense) with respect to a given roughness degree $r > 0$ if certain points of the segment $[x_0, x_1]$ belong to M whenever $x_0, x_1 \in M$ and $\|x_0 - x_1\| \geq r$.

A function $f : M \to \mathbb{R}$ is said to be roughly convex (in some sense) with respect to a given roughness degree $r > 0$ provided that some convexity property
holds true at certain points of the segment $[x_0, x_1]$ whenever $x_0, x_1 \in M$ and $\|x_0 - x_1\| \geq r$.

We will present some kinds of rough convexity and their application to global optimization.

REFERENCES

Fractional Programming - a recent survey

Siegfried Schaible
University of California, Riverside, USA

Fractional programming is concerned with the optimization of one or several ratios of functions, usually subject to constraints. After about forty years of research well over one thousand articles have appeared, in addition to the monographs by Schaible (1978), Craven (1988) and Stancu-Minasian (1997) dealing with applications, theory and solution methods.

The purpose of this survey is to identify some recent developments in fractional programming. To make the survey somewhat self-contained we provide briefly the necessary background from the known literature.

We consider single-ratio as well as multi-ratio fractional programs. In the latter case, we focus on the maximization of the smallest of several ratios and the maximization of a sum of ratios with an emphasis on the difficult sum-of-ratios fractional problem.

Some recent results on (nonconvex) quadratic programming

Nguyen Nang Tam
Department of Mathematics
Hanoi Pedagogical Institute No. 2, Vietnam
ngntam@yahoo.com

(Abstract to be given later)
Equilibrium in an exchange economy and quasiconvex duality

Phan Thien Thach
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam
hha@hn.vnn.vn

(Abstract to be given later)

Convergence of duality bound methods for programming problems dealing with partly convex functions

Nguyen Van Thoai
Department of Mathematics
University of Trier D-54286 Trier, Germany

We discuss the convergence of a decomposition branch and bound algorithm using Lagrangian duality for partly convex programs in the general form. It is shown that this decomposition algorithm has all useful convergence properties for solving the underlying problem class under usual assumptions. Thus, some strict assumptions discussed in the literature are avoidable.

Monotonicity in a Framework of Generalized Convexity

Hoang Tuy
Institute of Mathematics
P.O. Box 631, Bo Ho, Hanoi, Vietnam

Given a family L of real-valued functions on R^n a set $G \subset R^n$ is said to be convex w.r.t. L or L-convex if for any point $a \in R^n \setminus G$ there exists a function $\ell \in L$ separating a from G, i.e. such that $\ell(a) \geq 0$ and $\ell(x) \leq 0 \ \forall x \in G$. A function $f : R^n \to R \cup \{+\infty\}$ is said to be L-convex if for any $\alpha \in R$ the set $\{x \in R^n | f(x) \leq \alpha\}$ is L-convex.
An increasing function $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a function such that $f(x') \geq f(x)$ whenever $x' \geq x$ (i.e. $x'_i \geq x_i \forall i$). A downward set $G \subset \mathbb{R}^n$ is a set such that $x' \in G$ whenever $x' \leq x$ for some $x \in G$. We present a geometric theory of monotonicity in which increasing functions and downward sets are convex functions and convex sets w.r.t. the family \mathcal{L} of functions of the form $\ell(x) = \min_i \{x_i - a_i\}, \ a \in \mathbb{R}^n$. In particular, the concepts of \mathcal{L}-convex hull (downward hull), \mathcal{L}-polytope (polyblock) and extreme point are introduced such that several properties hold that remind similar facts from convex analysis: any closed \mathcal{L}-convex (downward) set is the intersection of a family of \mathcal{L}-polytopes, any closed \mathcal{L}-convex set is the \mathcal{L}-convex hull of the set of its extreme points, a \mathcal{L}-polytope is the \mathcal{L}-hull of a finite set, the set of extreme points of the \mathcal{L}-convex hull of a compact set K is a subset of K, etc.

We also discuss applications to the study of systems of monotonic inequalities and optimization problems of the form: $\max \{ f(x) \mid g(x) \leq 0 \leq h(x) \}$ where f, g, h are increasing.

Generalized distance and its applications

Jeong Sheok Ume
Department of Applied Mathematics
Changwon National University
Changwon 641-773, South Korea, South Korea
jsume@changwon.ac.kr

(Abstract to be given later)

Duality methods via augmented Lagrangian functions

Xiaoqi Yang
Department of Applied Mathematics
The Hong Kong Polytechnic University
Kowloon, Hong Kong
mayangxq@polyu.edu.hk

There are a number of augmented Lagrangian schemes in the literature, which provide the zero duality gap and the exact penalty property. In this talk, a generalized augmented Lagrangian scheme is discussed. Under weaker conditions,
this new scheme is also able to provide the zero duality gap and the exact penalty property. Moreover, the equivalences among the zero duality gap results which are obtained using various duality functions are reviewed.

Mordukhovich’s Coderivative for Multifunctions and Implicit Function Theorems

Nguyen Dong Yen
Hanoi Institute of Mathematics
P.O. Box 631 - Bo Ho Hanoi, Vietnam
Email: ndyen@thevinh.ncst.ac.vn

In the first part of this talk, I would like to present some remarks about the history and the role of B. Mordukhovich’s theory of coderivative for multifunctions.

In the second part of this talk, I shall outline a way to obtain new implicit function theorems for set-valued maps by using the above-mentioned theory of coderivative.

Generalized equilibrium for quasimonotone and pseudomonotone bifunctions

Jafar Zafarani
Department of Mathematics
University of Isfahan, Isfahan, 81745-163, Iran

By using quasimonotone and pseudomonotone bifunctions, we drive sufficient conditions which include weak coercivity conditions for existence of equilibrium points. As consequences we generalize various recent results on the existence of such solutions and for variational inequalities.
List of Participants

1. Phan Thanh An
 Hanoi Institute of Mathematics
 National Center for Sciences and Technology
 18, Hoang Quoc Viet Str., Cau Giay Dist., Hanoi, Vietnam
 thanhan@thevinh.ncst.ac.vn

2. Pham Ngoc Anh
 University of Hai Phong
 ngocanhnecs@yahoo.com

3. Qamrul Hassan Ansari
 Department of Mathematics
 Aligarh Muslim University
 Aligarh 202 002, India
 qhansari@sancharnet.in

4. Didier Aussel
 Laboratoire MANO, Universite de Perpignan
 52 Av. de Villeneuve, F-66860 PERPIGNAN Cedex, France
 aussel@univ-perp.fr

5. Nguyen Luong Bach
 Hanoi Institute of Mathematics
 P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam
 nlbach@thevinh.ncst.ac.vn

6. Nguyen Sinh Bay
 Khoa Toan, Dai hoc Thuong mai
 Hanoi, Vietnam

7. Chhajju Bector
 Asper School of Business Faculty of Management
 University of Manitoba Winnipeg, Manitoba R3T 5V4, Canada
 bector@ms.umanitoba.ca
8. Albert Ferrer Biosca
Departament de Matematica Aplicada 1
EUPB/UPC, 08028 Barcelona, Spain
albert@ma1.upc.es

9. Hans Georg Bock
IWR, University of Heidelberg
Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
bock@iwr.uni-heidelberg.de

10. Rainer Burkard
Institute for Mathematics
B Graz University of Technology
Steyrergasse 30 A-8010 Graz, Austria
burkard@tugraz.at

11. Alberto Cambini
Department of Statistics and Applied Mathematics
University of Pisa
Via Ridolfi 10 56124 Pisa, Italy
acambini@ec.unipi.it

12. Riccardo Cambini
Dept. Statistics and Applied Mathematics - Faculty of Economics
University of Pisa
Via Cosimo Ridolfi 10 - 56124 Pisa, Italy
cambric@ec.unipi.it

13. Laura Carosi
Department of Statistics and Applied Mathematics
Faculty of Economics, University of Pisa
Via Cosimo Ridolfi 10 56124 Pisa, Italy
lcarosi@ec.unipi.it

14. Suressh Chandra
Mathematics Department
Indian Institute of Technology (I.I.T.)
Hauz Khas New Delhi - 110016, India
chandras@maths.iitd.ernet.in
15. Vuong Ngoc Chau
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam

16. Nguyen Ngoc Chu
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam
chunn@hn.vnn.vn

17. Nguyen Dinh Cong
Hanoi Institute of Mathematics
P.O.Box 631 Bo Ho, 10000 Hanoi, Vietnam
ndcong@thevinh.ncst.ac.vn

18. Bruce Craven
Department of Mathematics and Statistics
University of Melbourne, Victoria 3010, Australia
craven@ms.unimelb.edu.au

19. Vu Van Dat
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho Ha Noi, Vietnam
vdat@thevinh.ncst.ac.vn

20. Nguyen Huu Dien
Hanoi Institute of Mathematics
P.O. Box 631 BoHo, 10000 Hanoi, Vietnam
nhdien@thevinh.ncst.ac.vn

21. Pham Huy Dien
Hanoi Institute of Mathematics
P.O. Box 631 BoHo, 10000 Hanoi, Vietnam
phdien@thevinh.ncst.ac.vn

22. Luis Drummond
Federal University of Rio de Janeiro
R.Barao da Torre 445/704 Rio de Janeiro
RJ, CEP 22411-003 Brazil, Brazil
lm@ondaalta.com
23. Pham Ngoc Duc
Faculty of Applied Mathematics
Hanoi University of Technology, Vietnam

24. Vo Van Tuan Dung
Department of Information Technology
University of Forestry and Agriculture, HCM City
votuandung@hcm.vnn.vn

25. Andrew Eberhard
RMIT University
c/o Department of Mathematics
GPO Box 2476V Melbourne
Victoria 3001, Australia
andy.eb@rmit.edu.au

26. Rosalind Elster
Departament d’Economia i d’Història Econòmica
Universitat Autònoma de Barcelona E-08193, Bellaterra, Barcelona, Spain
r.elster@compuserve.com

27. Yan Gao
China University of Mining and Technology
Beijing 100083, China
gaoyan@mail.cumtb.edu.cn; gaoyan1962@263.net

28. Misha G. Govil
Shri Ram College of Commerce
University of Delhi, Delhi-110007, India
mishagovil@yahoo.com

29. Angelo Guerraggio
Dept. of Economics
University of Insubria
Via Ravasi 2, 21100 Varese, Italy
angelo.guerraggio@uni-bocconi.it

30. Pankaj Gupta
Deen Dayal Upadhyaya College
University of Delhi
31. Nguyen Xuan Ha
 Institute of Cryptographic Technology, Vietnam
 xuanha_nguyen@vol.vnn.vn

32. Nguyen Ngoc Hai
 Mathematics Section
 The Abdus Salam ICTP
 Strada Costiera, 11, 34014, Trieste, Italy
 nhai@ictp.trieste.it

33. Zhifeng Hao
 Department of Applied Mathematics
 South China University of Technology
 Guangzhou, 510640, China
 mazfhao@scut.edu.cn

34. Nguyen Khanh Hoa
 Faculty of Applied Mathematics
 Hanoi University of Technology, Vietnam

35. An Nhat Hoan
 Truong chuyen Nguyen Hue
 Thi xa Ha Dong, Vietnam

36. Le Van Hot
 CMKHOA Dai hoc kinh te Tp. HCM
 blht@hcm.vnn.vn

37. Nan-Jing Huang
 Sichuan University Chengdu
 Sichuan 610064, China
 nic2601@scu.edu.cn

38. Le Thanh Hue
 University of Mining and Geology
 ttcnth@hn.vnn.vn
39. Tran Thi Hue
Khoa Toan, DHTH Hue, Vietnam

40. Hoang Mai Huong
Optimization and Control Depart.
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam
hmhvn@yahoo.com

41. Nguyen Quang Huy
Department of Mathematics
Hanoi Pedagogical University No.2
Me Linh, Vinh Phuc, Vietnam
huyngq@yahoo.com

42. Kiyoshi Ikeda
Japan Advanced Institute of Science and Technology
Asahidai 1-1, Tatsunokuchi, Ishikawa, 923-1292, Japan
ky-ikeda@jaist.ac.jp

43. Alfredo Iusem
IMPA
Estrada Dona Castorina 110 Jardim Botanico Rio de Janeiro
RJ, CEP 22460-320, Brazil
iusp@impa.br

44. Jin-Bao Jian
Department of Mathematics
Guangxi University, Nanning City 530004, China
jianjb@gxu.edu.cn

45. Jong Soo Jung
Department of Mathematics
Dong-A University
Hadan -2Dong 840, Saha-Ku, Busan 604-714, South Korea
jungjs@mail.donga.ac.kr

46. Mee-Kwang Kang
Department of Mathematics
Dongeui University
Pusan Korea, 614-714, South Korea
mee@dongeui.ac.kr

47. Abdul Khaliq
Department of Mathematics
University of Jammu, Jammu and Kashmir, India
abdulkhaliqin@yahoo.com

48. Phan Quoc Khanh
Vietnam National University - Ho Chi Minh City
227 Nguyen Van Cu, Ho Chi Minh City, Vietnam
pqkhanh@hcmuns.edu.vn

49. Bui Trong Kien
Hanoi Institute of Mathematics
P.O.Box 631, Bo Ho, 10000 Hanoi, Vietnam
Vietnambtkien@hotmail.com

50. Pham Trung Kien
Accounting and Financial University of Hanoi
Dong Ngac, Tu Liem, Hanoi, Vietnam
tkien@yahoo.com

51. Do Sang Kim
Department of Applied Mathematics
Pukyong National University Pusan 608-737, South Korea
and A.G.Anderson Graduate School of Management
University of California Riverside, CA 92521, USA.
dskim@pknu.ac.kr or do@agsmmail.ucr.edu

52. Nguyen Thi Bach Kim
Faculty of Applied Mathematics
Hanoi University of Technology, Vietnam
nvchau@thevinh.ncst.ac.vn

53. Sandor Komlosi
University of P—cs
R,k czisQ, H-7622 P—cs, Hungary
komlosi@ktk.pte.hu
54. Daishi Kuroiwa
Shimane University
Nishikawatsu 1060, Matsue, Shimane 690-8504, Japan
kuroiwa@math.shimane-u.ac.jp

55. C.S. Lalitha
Rajdhani College, Raja Garden
University of Delhi, New Delhi-110015
BA/121-A, Janakpuri
New Delhi-110058, India, India
cslalitha@rediffmail.com

56. Le Thi Hoai An
National Institute for Applied Sciences-Rouen
LMI, INSA de Rouen Place Emile Blondel
BP 8 76 131 Mont Saint Aignan, France
lethi@insa-rouen.fr

57. Cuong Le Van
French National Center for Scientific Research
CERMSEM 106-112 boulevard de l Hopital 5013 Paris, France
levan@univ-paris1.fr

58. Gue Myung Lee
Department of Applied Mathematics
Pukyong National University
599-1 Daeyeon-3dong Nam-gu, Pusan 608-737, South Korea
gmlee@pknu.ac.kr

59. Byung-Soo Lee
Department of Mathematics
Kyungsung University
Pusan 608-736 Korea, South Korea
bslee@ks.ac.kr

60. Duan Li
Department of Systems Engineering
Engineering Management Chinese University of Hong Kong
Shatin, NT Hong Kong
dli@se.cuhk.edu.hk
61. Lai-Jiu Lin
Department of Mathematics
National Changhua University of Education
Changhua, Taiwan 50058, Taiwan
maljlin@math.ncue.edu.tw

62. Nguyen Manh Linh
Ministry of National Defense, Vietnam
linhnm2001@yahoo.com

63. Zhen-Hai Liu
Department of Mathematics
Changsha University of Electric Power
Changsha, Hunan 410077, China
zhzhliu@hotmail.com; liuzh@mail.csuep.edu.cn

64. Phan Phuoc Long
Academy of Finalcy
42D/70 Ngoc Khanh, Ba Dinh, Ha Noi, Vietnam
phanphuoclong2002@yahoo.com

65. Dinh The Luc
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, Hanoi, Vietnam
dtluc@thevinh.ncst.ac.vn

66. Do Van Luu
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, Hanoi, Vietnam
dvluu@thevinh.ncst.ac.vn

67. Anna Marchi
Department of Statistics and Applied Mathematics
University of Pisa
Via Ridolfi, 10 56124 Pisa, Italy
marchiae@ec.unipi.it

68. Laura Martein
Department of Statistics and Applied Mathematics
University of Pisa
69. Aparna Mehra
Department of Operational Research
Faculty of Mathematical Sciences, University of Delhi, Delhi - 110 007
amehra@himalaya.du.ac.in

70. Nguyen Ba Minh
Hanoi University of Commerce
450 Hoang Hoa Tham , Hanoi, Vietnam

71. Shashi Kant Mishra
Raja Balwant Singh College, Bichpuri Campus
Agra 283 105, Agra, India
shashikmishra@rediffmail.com

72. Boris Mordukhovich
Wayne State University
1150 FAB Department of Mathematics Detroit, MI 48202, USA
boris@math.wayne.edu

73. Le Dung Muu
Optimization and Control Department
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, 10 000 Hanoi, Vietnam
ldmuu@thevinh.ncst.ac.vn

74. Phan Ba Nam
Faculty of Applied Mathematics
Hanoi University of Technology, Vietnam

75. Huynh Van Ngai
Pedagogy university of Quy Nhon, Vietnam

76. Luong Van Nguyen
Faculty of Applied Mathematics
Hanoi University of Technology, Vietnam
nguyentud@yahoo.com
77. Jean-Paul Penot
Maths, Faculté des Sciences
Avenue de l’Université
BP 1155, F64013 PAU cedex, France
jean-paul.penot@univ-pau.fr

78. Tao Dinh Pham
National Institute for Applied Sciences-Rouen
LMI, INSA de Rouen Place Emile Blondel
BP 8 76 131 Mont Saint Aignan, France
pham@insa-rouen.fr

79. Hoang Xuan Phu
Institute of Mathematics
P.O. Box 631 - Bo Ho Hanoi, Vietnam
hxphu@thevinh.ncst.ac.vn

80. Nguyen Van Quy
Accounting and Financial University of Hanoi
Dong Ngac, Tu Liem, Hanoi, Vietnam
vquy@yahoo.com

81. Dao Ngoc Quynh
Ph. Student, Hanoi Institute of Mathematics
Box 631, Bo Ho, Hanoi, Vietnam
nquynh@yahoo.com

82. Matteo Rocca
University of Insubria (Varese)
via Ravasi, 2 - 21100 Varese, Italy
mrocca@eco.uninsubria.it

83. Pham Huu Sach
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, Hanoi, Vietnam
phsach@thevinh.ncst.ac.vn

84. Siegfried Schaible
A.G.Anderson Graduate School of Management
University of California, Riverside, CA 92521, USA
siegfried.schaible@ucr.edu
85. Arpana Sharma
Department of Mathematics
Keshav Mahavidyalaya, University of Delhi
Keshav Puram, Delhi 110035, India
arpana.sharma@yahoo.com

86. Claudio Sodini
Department of Statistics and Applied Mathematics
University of Pisa
Via Cosimo Ridolfi 10 56124 PISA (Italy)
csodini@ec.unipi.it

87. Doan Thai Son
University of Hanoi, K3 Mathematics
Lop Cu Nhan tai nang (K3) Dai hoc Quoc gia Hanoi, Vietnam
tson@yahoo.com

88. Alexander Strekalovsky
Head of the Laboratory of Global Optimization Methods
Institute of System Dynamics Control Theory of SB of RAS
134, Lermontov street, Irkutsk, Russia, 664033, Russia
strekal@icc.ru

89. Jie Sun
School of Business National University of Singapore
Singapore 119260, Singapore
jsun@nus.edu.sg

90. Nguyen Nang Tam
Department of Mathematics
Hanoi Pedagogical Institute No. 2
Xuan-Hoa, Me-Linh, Vinh-Phuc, Vietnam
grntam@yahoo.com

91. Bui The Tam
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam
bttam@thevinh.ncst.ac.vn

92. Nguyen Xuan Tan
Hanoi Institute of Mathematics
93. Tamaki Tanaka
Niigata University
Ikarashi 2-no-cho 8050, Niigata city, Japan
tamaki@math.sc.niigata-u.ac.jp

94. Phan Thien Thach
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam
hha@hn.vnn.vn

95. Nguyen Xuan Thanh
Khoa Triet hoc
Hoc Vien Chinh tri Quan su
Thi xa Ha Dong, Vietnam

96. Tran Vu Thieu
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam
tvthieu@thevinh.ncst.ac.vn

97. Nguyen Sy Thin
Khoa Toan, Dai hoc Thuong Mai
Hanoi, Vietnam

98. Nguyen Huu Tho
Hanoi Institute of Mathematics
P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam
nhtho67@yahoo.com

99. Nguyen Van Thoai
Department of Mathematics
University of Trier, D-54286 Trier, Germany
thoai@uni-trier.de

100. Mai Thi Thu
Truong Trung hoc Su Pham Tinh Ca Mau
maihoai_thu@yahoo.com
101. Nguyen Quang Thuan
 Faculty of Applied Mathematics
 Hanoi University of Technology, Vietnam

102. Le Minh Tung
 Institute of Air-Defense and Air Force
 Ministry of National Defense
 2 Pho Duc Chinh, Truc Bach, Ba Dinh
 Hanoi, Vietnam
 mtung@yahoo.com

103. Hoang Tuy
 Hanoi Institute of Mathematics
 P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam
 htuy@thevinh.ncst.ac.vn

104. Jeong Sheok Ume
 Department of Applied Mathematics
 Changwon National University
 Changwon 641-773, South Korea, South Korea
 jsume@changwon.ac.kr

105. Shou-Yang Wang
 Institute of Systems Science
 Chinese Academy of Sciences, Beijing, 100080, China
 sywang@iss02.iss.ac.cn; swang@iss04.iss.ac.cn

106. Xiaoqi Yang
 Department of Applied Mathematics
 The Hong Kong Polytechnic University
 Kowloon, Hong Kong
 mayangxq@polyu.edu.hk

107. Nguyen Dong Yen
 Hanoi Institute of Mathematics
 P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam
 ndyen@thevinh.ncst.ac.vn

108. Jafar Zafarani
 Department of Mathematics
University of Isfahan, Isfahan, 81745-163
Iranjzaf@sci.ui.ac.ir or jafzaf@hotmail.com
Index

Phan Thanh An, 16, 61
Pham Ngoc Anh, 16, 61
Qamrul Hassan Ansari, 17, 48, 61
Didier Aussel, 18, 61

Nguyen Luong Bach, 61
Truong Quang Bao, 18
C.R. Bector, 19
Chhajju Bector, 61
D. Bhatia, 19, 32
S.K. Bhatt, 19
Monica Bianchi, 20
Albert Ferrer Biosca, 20, 62
Hans Georg Bock, 62
Bui The Tam, 72
R.S. Burachik, 21
Rainer Burkard, 21, 62

Alberto Cambini, 22, 62
Riccardo Cambini, 23, 62
Laura Carosi, 22, 23, 62
Suresh Chandra, 24, 62
Vuong Ngoc Chau, 63
Nguyen Ngoc Chu, 63
Nguyen Dinh Cong, 63
Bruce Craven, 24, 63
Giovanni P. Crespi, 25, 26

Vu Van Dat, 63
Nguyen Huu Dien, 63
Pham Huy Dien, 63
Hong-Bin Dong, 29
Theo S. H. Driessen, 29

L.M. Grana Drummond, 21
Luis Drummond, 63
Pham Ngoc Duc, 64
Vo Van Tuan Dung, 64

Andrew Eberhard, 30, 64
Rosalind Elster, 31, 64
Yan Gao, 64
Xun-hua Gong, 29
Misha G. Govil, 32, 64
Angelo Guerraggio, 25, 64
Pankaj Gupta, 32, 33, 65

Nguyen Xuan Ha, 33, 65
Nicolas Hadjisavvas, 20, 34
Nguyen Ngoc Hai, 34, 65
Zhifeng Hao, 35, 65
Nguyen Khanh Hoa, 65
Le Van Hot, 65
Nan-Jing Huang, 35, 65
Le Thanh Hue, 65
Hoang Mai Huong, 66
Nguyen Quang Huy, 36, 66

Kiyoshi Ikeda, 36, 66
A. N. Iusem, 37
Alfredo Iusem, 66

Jean-Paul Penot, 53
Jin-Bao Jian, 66
Jong Soo Jung, 38, 66

Mee-Kwang Kang, 39, 67
Abdul Khaliq, 41, 67
Phan Quoc Khanh, 18, 41, 67
Bui Trong Kien, 67
Pham Trung Kien, 42, 67
Do Sang Kim, 38, 43, 67
Nguyen Thi Bach Kim, 67
Sandor Komlosi, 43, 67
Daishi Kuroiwa, 44, 68
C.S. Lalitha, 50, 68
Le Thi Hoai An, 45, 68
Cuong Le Van, 47, 68
Heung Wing Joseph Lee, 48
Byung-Soo Lee, 39, 68
Gue Myung Lee, 43, 47, 68
Duan Li, 48, 68
Lai-Jiu Lin, 48, 69
Nguyen Manh Linh, 69
Zhen-Hai Liu, 69
Phan Phuoc Long, 69
Dinh The Luc, 49, 69
Do Van Luu, 33, 42, 69
Le Minh Luu, 41

Anna Marchi, 49, 69
Laura Martein, 22, 70
Juan Enrique Martinez-Legaz, 50
Aparna Mehran, 32, 33, 70
Monika Mehta, 50
Nguyen Ba Minh, 70
Shashi Kant Mishra, 70
Boris Mordukhovich, 50, 70
Le Dung Muu, 16, 70

Phan Ba Nam, 70
Huynh Van Ngai, 51, 70
Luong Van Nguyen, 70
Shogo Nishizawa, 51

T. Pennanen, 37
Jean-Paul Penot, 71
Pham Dinh Tao, 45
Tao Dinh Pham, 71
Hoang Xuan Phu, 16, 34, 55, 71
Nguyen Van Quy, 71
Dao Ngoc Quynh, 71
Matteo Rocca, 25, 26, 71
Alexander M. Rubinov, 50
Pham Huu Sach, 43, 71
H. Cagri Saglam, 47
Siegfried Schaible, 17, 20, 22, 50, 57, 71
S. Scheimberg, 21
Arpana Sharma, 19, 72
V.N. Sharma, 19
Claudio Sodini, 23, 72
Doan Thai Son, 72
Alexander Strekalovsky, 72
Jie Sun, 72
B. F. Svaiter, 37
Nguyen Nang Tam, 57, 72
Nguyen Xuan Tan, 73
Tamaki Tanaka, 51, 73
Phan Thien Thach, 58, 73
Tran Vu Thieu, 73
Nguyen Huu Thu, 73
Nguyen Van Thoai, 58, 73
Mai Thi Thu, 73
Nguyen Quang Thuan, 74
Le Minh Tung, 74
Hoang Tuy, 58, 74
Jeong Sheok Ume, 59, 74
Shou-Yang Wang, 29, 74
Jai-Yen Wu, 48
Zhiyou Wu, 48

Xiaogi Yang, 59, 74
Xin-Min Yang, 48
Jen-Chih Yao, 17
Nguyen Dong Yen, 60, 74
Shiraishi K. Yokoyama, 33

Jafar Zafarani, 60, 75
Bingjiang Zhang, 51
Liansheng Zhang, 48