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Abstract

The purpose of this lecture is to present first and second order
characterizations of pseudoconvex and quasiconvex functions.

1 Convex, Quasiconvex and Pseudoconvex
Functions

Given C a convex subset of a linear space F and f : C — R, f is said to be:

convez on C if for every z,y € C and t € (0,1)

fltz+ (1 -t)y) <tf(z) + (1 -)f ()],
quasiconvez on C if for every z,y € C and ¢t € (0,1)

fltx + (1 - t)y) < maz(f(z), f(¥)],
and strictly quasiconvez on C if for every z,y € C,z # y and t € (0,1)

ftz + (1 - t)y) < maz{f(z), f(v)]-
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The starting point of characterizations of convexity and quasiconvexity
of functions of several variables is that they can be expressed in terms of
convexity and quasiconvexity of functions of one real variable. Namely, given
a € C and d € F, let us define

Lo ={teR:a+tdeC},

and for t € I, 4
fad(t) = f(a+td).
Then, f is convex (quasiconvex) on C if and only if fa,a is convex (quasicon-
vex) on Ip4foralla € C and d € E.
Assume that f is differentiable (twice differentiable) on C, then
fad(t) = (Vf(a+1td),d),
faa(t) = (V2f(a +td) d,d).

fa,d is convex if and only if [4.4 is nondecreasing and also if and only if £,
is nonnegative. Hence, first and second order characterizations of convexity
for f are straightforwardly derived: f is convex if and only if its gradient V f
is monotone and also if and only if its Hessian V2 () is positive semi-definite
for all z € C.

In the same spirit, the quest of criteria for quasiconvexity of a function
of several variables leads to consider quasiconvexity of functions of one real
variable.

Let I be an interval of ® and 8 : I — R. Then 9 is quasiconvex on [
if and only if there is ¢ € R so that (6 is nonincreasing on (—oo,t] N I and
nondecreasing on (¢,+00) N I) or (6 is nonincreasing on (—oo,t) N I and
nondecreasing on [t, +00) N I). When 8 is differentiable on I , each of the
following conditions:

t1,ta € I and 0(t1) < 0(t2) = 0’(t2)(t2 - tl) < 0,
t1,12 € I and G(tl) < 0(t2) = 0’(t2)(t2 — t]_) < 0,

ti,t; € I and 0’(t1)(t2 — tl) >0 = el(tz)(tg - tl) >0,

= 0(t2) < 0(ts).

t1,13 € I, t1 <ty < ts,
B(tl) < e(tg) and 9’(t2) =0



is a sufficient and necessary condition for 8 to be quasiconvex on I. Hence,
we straightforwardly derive the following criteria for quasiconvexity of differ-
entiable functions.

Proposition 1.1 Assume that f is differentiable on the conver set C. Each
of the following conditions:
z,y€Cand f(y) < f(z) = (Vf(z),y—1z)<0,

z,y € C and f(y) < f(z) = (Vf(z),y—z) <0,
z,y € C and (Vf(z),y~z) >0 = (Vf(y),y—z)>0,

z,z—h,z+theC,t>0

f(z —h) < f(z) =  f(z) < f(z +1th).
and (Vf(z),h) =0

is a sufficient and necessary condition for f to be quasiconvez on C.

Unfortunately, simple examples show that f quasiconvex and V f(zx) = 0
does not necessarily imply that f has a (even local) minimum at z (consider
for instance f(t) = 3, ¢t € R). In order to remedy this defect, pseudoconvex
functions are introduced via a slight modification of the first condition in the
proposition above: given a convex set C, a differentiable function f:C-R
is said to be pseudoconver |4 on C if

z,y € C and f(y) < f(z) imply (Vf(z),y - z) <0,

and strictly pseudoconvez on C if

7,y € C, z#yand f(y) < f(z) imply (Vf(z),y—z) < 0.

A differentiable convex function is pseudoconvex, a differentiable pseudo-
convex function is quasiconvex, a differentiable strictly pseudoconvex func-
tion is strictly quasiconvex.

Pseudoconvexity of functions of several variables are characterized via
pseudoconvexity of functions of one real variable as well. Indeed, f is (strictly)
pseudoconvex on C if and only if f, 4 is (strictly) pseudoconvex for all a € C
and d € E. Hence, we obtain the following characterizations which are
sometimes used as alternative definitions of pseudoconvexity and strict pseu-
doconvexity.



Proposition 1.2 Assume that f is differentiable on the convez set C. Then
[ 1is pseudoconvez on C if and only if

T,y € C and (Vf(z),y —z) > 0= (Vf(y),y — z) > 0,
or equivalently if
z,y € C and (Vf(z),y —z) > 0= (Vf(y),y ~ z) > 0.
Furthermore, f is strictly pseudoconvez on C if and only
7,y € Ciz#y and (Vf(z),y —2) > 0= (Vf(y),y — z) > 0.

If f is pseudoconvex on the convex set C, z € C and V f(z) = 0, then
f(z) < f(y) for all y € C as wished. If C is open, then this property
characterizes pseudoconvex functions among quasiconvex functions as seen
below.

Theorem 1.1 (/8]) Assume that f is differentiable on the open convez set
o

(i) If f is pseudoconver on C then it is quasiconvez on C and has a global
minimum at any T € C such that Vf(z) =0,
(ii) If f is quasiconvez on C and has a local minimum at any z € C such
that V f(z) = 0, then it is pseudoconvez on C.

The assumption “C is open” is needed: consider the function of two real
variables f(z,T2) = —z,z,, then f is pseudoconvex on the positive orthant,
quasiconvex but not pseudoconvex on the nonnegative orthant.

An immediate consequence is as follows.

Corollary 1.1 Assume that C is an open conver set C, f:C—->®Ris
differentiable and Vf(z) # 0 for all z € C. Then f 1is pseudoconvez on C if
and only if it is quasiconvex on this set.

Checking if a twice differentiable function of one real variable is pseudo-
convex or quasiconvex leads to consider only the points where the derivative
vanishes. For functions of several variables, this consideration leads to intro-
duce the following conditions:



(C1) z€C, heE, (Vf(z),h)=0 = (V2f(z)hh) >0

(C2) t>0, flz—h)< f(z),
0=(Vf(z), h) = (V>f(z)h, h)

heE, z—hz+theC,
=  f(z) < f(z +th)

heE, z,z+heC, } = f(z) < f(z+h)

() (i), ) = (V2F(x)h, By = 0

(C)

ze€C, heeE, h;éO,} = (V3f(z)h,h) >0

(Vi(z),h) =0

Then, obvious second order characterizations of quasiconvex and pseudo-
convex functions of one real variable conduct to the following characteriza-
tions for functions of several variables.

Proposition 1.3 Assume that f is twice differentiable on the conver set C.
Then,

i) f is quasiconvez on C if and only if conditions (C1) and (Cs) hold,

1) f is pseudoconvez on C if and only if conditions (C,) and (Cs) hold.

In the same way, the following sufficient condition for strict pseudocon-
vexity is easily obtained.

Proposition 1.4 Assume that C is convez, f is twice differentiable on C
and condition (Cy) holds, then f is strictly pseudoconvez on C.

Thus, if convexity requires positive semi-definiteness of the Hessian, pseu-
doconvexity and quasiconvexity require also positive semi-definiteness but on
the subspace orthogonal to the gradient. Still, Conditions (C) or (C3) in
Proposition1=% need to be checked at every z where the Hessian is not pos-
itive definite on the subspace orthogonal to the gradient. It is not possible
to go further with considerations based only on functions of real variable.

The following conditions involve only the points where the gradient van-
ishes:



there exists ¢ € (0, )

heE, z—-hz+theC,
) é; (35 =f0(,x (—vgj)f(;){z% =0 } { so that f(z) < f(z + th)

(C3) zeC, Vf(z)=0 = f has a local minimum at z

The following theorem (Crouzeix 6], see also Crouzeix-Ferland [2)) shows
that Conditions (C;) and (Cj) can be replaced by Conditions (C3) and (C}).
The proof, based on the implicit function theorem, involves functions of two
real variables.

Theorem 1.2 Assume that C is an open convez set and f is twice differen-
tiable on C . Then,

i) f is quasiconvez on C if and only if conditions (C1) and (C5) hold,

1) f is pseudoconvez on C if and only if conditions (C1) and (C}) hold.

The following corollary is an immediate consequence of the theorem.

Corollary 1.2 Assume that C is open and convez, f is twice differentiable
on C and Vf(z) # 0 for allz € C. Then,
f s pseudoconvez on C if and only if condition (C1) holds.

In the theorem and its corollary, it is assumed that C is open. It is easily
seen that if f : C — R is lower semicontinuous on C, int(C) # 0 and f is
quasiconvex on int(C), then f is also quasiconvex on C. This does not work
for pseudoconvexity.

Condition (C}) was early recognized as a necessary condition for qua-
siconvexity (Arrow-Enthoven [4]). It is easily seen that it is also sufficient
for quadratic functions since Conditions (C,) and (Cs) do not give problems
in this case. Katzner §j proved that, for a twice differentiable function,
it is also sufficient when the gradient stays strictly negative on the domain.
Theorem?. extends the result of Katzner to more general situations.

2 Convexity and generalized convexity on
an affine subspace

In applications, one can often encounter problems of optimization of type
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minimize f(z) subject toz € DN L
where D is a convex set of R" with a nonempty interior and
L = {z: Mz=m},

with m € R? and M is a p X n matrix of rank p.

These problems are convex (pseudoconvex, quasiconvex) as soon as the
restriction of f to the affine subspace L is convex (pseudoconvex, quasicon-
vex) on DN L. Second order conditions are easily obtained.

Theorem 2.1 Assume that f is twice differentiable on DN L. Then f s
convex on D N L if and only if

t€DNL, Mh=0= (V3f(z)h, h) > 0.
Furthermore, if
re€DNL, Mh=0, h#0= (Vif(z)h,h) > 0.
then f is strictly convex on DN L.

For simplicity, we give only below the transposition of Corrolary 1.2,
Transpositions of Theorem®+2 can also be easily derived, they are left to
the reader.

Theorem 2.2 Assume that f is twice differentiable on DN L
and V f(z) ¢ M*(R®) for all z € int(D)N L.

Then f is pseudoconvez on int(D)N L (and quasiconver on DN L ) if and
only if

z € int(D)NL, Mh=0 and (Vf(z),h) = 0= (Vf(z)h, h) > 0.
Furthermore, if
z€int(D)NL, Mh=0, h#0 and (Vf(z),h) =0 = (V3f(z)h,h) > 0
then f is strictly pseudoconvez on int(D) N L.

In this theorem, the condition Vf(z) ¢ M*(RP) corresponds to the con-
dition V f(z) # 0 of Corrolary A.2, .



3 Testing convexity and pseudoconvexity

Condition (C1) in Theorems A2 and 13 Theorems 24 and 2.3 require to
check the positive (semi-)definiteness of the restriction of a quadratic form to
a linear subspace. Because this problem appears in many situations: second
order optimality conditions, augmented Lagrangean methods, ...., it has been
well analysed, see for instance [4], [5], [I0], [] and [i3. A good way to deal
with consists to look at the inertia of a bordered matrix associated to the
problem. We explain how to do below.

Given a n X n symmetric matrix H and a n x P matrix B with rank p,
1 <p < n -1, we introduce the bordered matrix:

H B
M—(Bto).

M is symmetric, we denote by In(M) = (v, (M), v_(M), vo(M)) the inertia

of M where vy (M), v_(M), vo(M) are the numbers of positive, negative and

null eigenvalues respectively of M. We have v, (M) +v_(M)+vy(M ) =n+p.
On the other hand, let us consider the conditions:

(PSD) Bz =0 = (z,Hz) >0
(PD) z#0, B'z=0 => (z,Hz)>0

The following theorem relates the inertia of M to conditions (PSD) and
(PD). :

Theorem 3.1
1. vi,(M)>pandv_(M) > p,
2. +f (PSD) holds, then H has at most p negative eigenvalues,

3. (PD) holds if and only if there is r > 0 such that H +rBBt is positive
definite,

4. (PSD) holds if and only if v_(M) = p,
5. (PD) holds if and only if v, (M) = n.



This theorem needs to compute the inertia of a symmetric matrix, this
can be efficiently done using Shur’s complements (see for instance Cottle [9)).
Let us consider the partitionned matrix

_ (P Q
M‘(Q‘R)

with P and R symmetric, P nonsingular. Then
In(M) = In(P) + In(R — Q'P71Q).

R — Q*P~1Q is called the Shur’s complement of M by P. When specialized
to the particular case where B is a column matrix, i.e., B = b with b € R"
b # 0, Theorem 33 becomes:

Theorem 3.2

~

(M) >1andv_(M) > 1,
2. if (PSD) holds, then H has at most one negative eigenvalue,

3. (PD) holds if and only if there is r > O such that H + rbbt is positive
definite,

4. (PSD) holds if and only if one of the two following conditions hold:
(a) v_(H) =0, i.e., H is positive semi-definite,
(b) v-.(H) =1, b€ H(R") and (H'b,b) < 0.

5. (PD) holds if and only if one of the three following conditions hold:
(a) vi(H) =n, i.e, H is positive definite,
(%) vi(H)=n—1,v_(H)=0 and b ¢ H(R"),
(c) v-(H) =1, be H(R") and (H'b,b) < 0.

In this theorem, H' denotes the pseudoinverse of H. To get Theorem 0.2/
from Theorem 34, consider matrices P and D with D diagonal, P'P = I,
H = P*DP. Take also ¢ € " so that b = Ptc. Then use the Lagrange-
Sylvester law on inertia and the result on Shur’s complements.



It straightforwardly follows that if f is twice differentiable and quasi-
convex on an open convex set C, then its Hessian has at most one negative
eigenvalue. If, in addition, f is additively separable, i.e., if f has the following
form

i=p

f(x)=2f,-(x,~) for = (71,25, ---,2,) € C = C; x Cy x o+, Cp,
i=1

where, for all 4, C; C R™ is open and convex and f; is not constant on G,
then all f; are convex except perhaps one.

4 A few examples

4.1 Quasiconvex quadratic functions

Quasiconvex quadratic functions have been investigated by Martos [I¥], Fer-
land §f] and Schaible [3]. We show how the above characterizations apply.
Let us consider the function:

f(z) = -;—(Ax, z) — (a, 1) + «

where A is a n x n symmetric matrix, e € R" and a € R. Let C be a convex
set with nonempty interior. Thanks to Theorems A.4 and 3.2, we see that f
is quasiconvex on C' (and pseudoconvex on int(C)) if and only if one of the
following conditions holds:

1. A is positive semi-definite, or

2. v_(A) = 1and for all z € int(C) one has Az—a € A(R") and (At(Az—
a),(Az —-a)) <0.

In the first case f is convex on the whole space ®*. In the second case %
exists so that AT = a and ((z — Z), A(z - Z)) < 0 for all z € int(C). It can
be shown that

{u : (Au,u) <0} = TN-T,

where T is a closed convex cone with nonempty interior. To summarize, we
have
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Proposition 4.1 f is quasiconver on C (and pseudoconver on int(C) ) if
and only if one of the following conditions holds:

1. A is positive semi-definite,

2. v_(A) = 1, there is T so that AT = a and either C C Z4+T orC C T—T.

4.2 Cobb-Douglas functions
Cobb-Douglas functions are defined on the positive orthant of R* by

f@) =[]z
with a; #0 for i = 1,2,---,n. We are interested in the concavity or pseudo-
concavity of f on the orthant. We have
1 1
V@) =X""4e, —<Vf(z) = X1A(ee — ATHAX,
oy V@) 7o V@ ( )

where X = diag(z), A = diag(a), and e = (1,1,---,1)!. In view of the
Lagrange-Sylvester’s law on inertia, we have to consider the inertia of the
matrices

et 0
respectively. Indeed, f is concave if v_(P) = 0 and pseudoconcave if v_ Q) =1-
To compute these inertia, we consider the matrices:

1 e 1 e O
Mz(et A‘l)’ and N=| ¢ Al e |.
0 e 0
Using Shur’s complements, we have on the first hand
In(M)=(1,0,0)+In(P) and In(N)=(1,0,0)+ In(Q).

and on the second hand

In(M) = In(A™')+In(1 - (a,€)),

In(N) = "In(A™") + In(~(a,e)) + In(1)»

It follows that f is concave on the positive orthant if and only if all a;s are

positive and 3" a; < 1 and quasi concave on the positive orthant if and only if

either all a;s are positive or all a;s are positive except one and - Yae; <0
Convexity and pseudoconvexity of f can be treated in the same way.

-1. .t
P=A"1—¢et and Q=(A See e)’
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5 Selected references

A lot of papers have been published on these questions. For the help of the
readers we have retained only a few among them.

In the present paper no proofs are given. They can be found in [#] which
contains also historical comments and a more complete bibliography. First
order characterizations of generalized monotonicity of maps are also consid-
ered in this reference.

References 3, Z.O_J are two textbooks on generalized convexity.

References [I}, i§ B3] are concerned mainly with quadratic generalized
convex functions.

References [4, 5, 10,13 12] are concerned with positive (semi-)definiteness
of a quadratic form on a linear subspace.

Other references are concerned with second order conditions for general-
ized convexity.
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