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Abstract

Continuity and differentiability of quasiconvex functions are stud-
ied. The connection with the monotonicity of real functions of several
variables receives a special emphasis.

1 Introduction and notation

The properties of convex functions are well known. A convex function of
one real variable admits right and left derivatives at any point in the interior
of its domain, hence it is continuous at such a point. A convex function f
defined on a normed linear space E is continuous at x ∈ E if bounded in a
neighbourhood of x. If, in addition, E = Rn and x belongs to the interior of
the domain of f , then f is continuous at x, the directional derivatives f ′(x, d)
of f at x with respect to the directions d are well defined. Furthermore,
f ′(x, d) is convex in d, and the subgradient ∂f(x) of f at x is defined as the
closed convex set such that

∂f(x) = {x� : 〈d, x�〉 ≤ f ′(x, d) for all d }.
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It is important to notice that all these properties are due to the geomet-
rical structures induced by the convexity of f . Indeed, the strict epigraph of
f is convex in E × R. Let x ∈ int(domf), then

{(x, f(x))} ∩ {(y, λ) : f(y) < λ} = ∅.

Let us define the following set

T (a) = {(x�, λ�) : 〈x�, y − x〉+ λ�(λ− f(x)) ≤ 0 ∀ (y, λ) s.t. f(y) < λ} (1)

Then, in view of separation theorems on convex sets, T (a) is a nonempty
closed convex cone and ∂f(a) is obtained from T (a) as follows

x� ∈ ∂f(a)⇐⇒ (x�,−1) ∈ T (a).

The epigraph of a quasiconvex function is not convex, hence separation
theorems do not apply, thence it is not possible to deal in a similar way. Still,
convexity is present through the lower level sets of the function and it gives
birth to some interesting properties. The purpose of this lecture is to show
how to exploit this convexity.

Through the lecture, we use the following notation:
Let E be a normed linear real space and f : E → [−∞, +∞] (as usual

in convex analysis, we consider functions defined on the whole space; if it is
not the case set f(x) = +∞ for x not in the domain).

For λ ∈ (−∞,−∞) let us define

Sλ(f) = {x : f(x) ≤ λ},
and S̃λ(f) = {x : f(x) < λ}.

Clearly, for λ < µ,

S̃λ(f) ⊆ Sλ(f) ⊆ S̃µ(f) ⊆ Sµ(f).

It is also easily seen that

Sλ(f) = ∩µ>λS̃µ(f) = ∩µ>λSµ(f).

The function f can be recovered from its level sets, indeed:

f(x) = inf [ λ : x ∈ Sλ(f) ] = inf [ λ : x ∈ S̃λ(f) ].
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By definition, f is said to be quasiconvex on E if

x, y ∈ E, 0 < t < 1 =⇒ f(tx + (1− t)y) ≤ max[ f(x), f(y) ],

and strictly quasiconvex on C ⊆ E, C being convex, if

x, y ∈ C, x �= y, 0 < t < 1 =⇒ f(tx + (1− t)y) < max[ f(x), f(y) ].

Quasiconvexity has a geometrical interpretation, indeed

f quasiconvex ⇔ Sλ(f) convex ∀λ ∈ R ⇔ S̃λ(f) convex ∀λ ∈ R.

Recall that for a function f : E → [−∞, +∞],

f lower semi-continuous (lsc in short)⇔ Sλ(f) closed ∀λ ∈ R

and

f upper semi-continuous (usc in short)⇔ S̃λ(f) open ∀λ ∈ R.

A set C ⊆ E is said to be evenly convex if it is the intersection of open
half spaces. It results from separation theorems that open and closed convex
sets are evenly convex.

A function f is said to be evenly quasiconvex if all Sλ(f) are convex. Lower
semi-continuous quasiconvex functions and upper semi-continuous quasicon-
vex functions are evenly quasiconvex.

Sometimes, infinite values are not well praised when considering continu-
ity and differentiability. It is easy to avoid this problem:

Given g : E → [−∞, +∞], let us consider

f(x) = arctan g(x).

Then f : E → [−π
2
, +π

2
]. It is easy to see that f is (evenly) quasiconvex

if and only if g is (evenly) quasiconvex and f is lsc (usc) at a point a if
and only if g is so. In this spirit, we shall say that g is differentiable at a
if f is differentiable at this point. Thus, for continuity and differentiability
questions in quasiconvex analysis, it is sufficient to consider functions which
are finite on the whole space.
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2 Regularized quasi convex functions

Given a family {Tλ}λ∈R such that

∅ ⊆ Tλ ⊆ Tµ ⊆ E for all λ, µ ∈ R such that λ < µ,

we define a function g : E → [−∞, +∞] by

g(x) = inf [ λ : x ∈ Tλ].

Then,
Sλ(g) = ∩µ>λTµ.

Given f : E → [−∞, +∞], we apply this process to the sets Tλ = cl(Sλ(f)),
Tλ = co(Sλ(f)), Tλ = eco(Sλ(f)), and Tλ = co(Sλ(f)) where cl(S), co(S),
eco(S) and co(S) denote the closure (i.e. the closed hull), the convex hull, the
evenly convex hull and the closed convex hull of S respectively. We denote
by f̄ , fq, fe and fq̄ respectively the different functions obtained with the
process. Because any intersection of closed (convex, evenly convex, closed
convex) sets is closed (convex, evenly convex, closed convex) , then f̄ , fq,
fe and fq̄ are respectively the greatest lower semi-continuous, quasiconvex,
evenly quasiconvex, and lsc quasiconvex functions bounded from above by f .
If is seen that f̄ = fq̄ when f is quasiconvex.

The proof of the following result is rather easy and left to the reader.

Proposition 2.1 Let f : E → [−∞, +∞]. Then

f is lsc at a⇐⇒ f̄(a) = f(a).

On the other hand, since

Sλ(f̄) = ∩µ>λcl(Sµ(f)) and Sλ(f) = ∩µ>λSµ(f),

it follows that for all λ ∈ R

cl(Sλ(f)) ⊆ Sλ(f̄).

The equality does not hold for a general function. However, for a quasiconvex
function, we have the following result:
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Proposition 2.2 Assume that f is quasiconvex and int(Sλ(f)) �= ∅. Then

cl(Sλ(f)) = Sλ(f̄).

Proof: Fix a ∈ int(Sλ(f)). Let x ∈ Sλ(f̄), then x ∈ cl(Sµ(f)) for all µ > λ
and xt = x+t(a−x) ∈ int(Sµ(f)) for all t ∈ (0, 1). It follows that xt ∈ Sλ(f)
and therefore x ∈ cl(Sλ(f)).

Furthermore, for quasiconvex functions, we have also the following result:

Proposition 2.3 Assume that f : Rn → [−∞, +∞] is quasiconvex. Then f
is continuous at x̄ if and only if f̄ is continuous at x̄.

Proof: Assume that f is continuous at x̄. Then f̄ is lsc by definition, it is also
usc at x̄ since fq̄(x̄) = f(x̄), fq̄ ≤ f and f is usc at x̄. Next, assume that f̄ is
continuous at x̄. Let λ > f(x̄). Then Sλ(f̄) = cl(Sλ(f)) is a neighbourhood
of x̄. Since int(cl(S)) = int(S) for a convex set S with int(S) �= ∅, then
Sλ(f) is a neighbourhood of x̄ as well. The conclusion follows.

Evenly convex sets have been introduced by Fenchel [10]. Evenly qua-
siconvex functions have been introduced by Passy and Prisman [13] and,
independently, by Martinez-Legaz [11]. The description of the process for
constructing regularized functions is given in Crouzeix [3, 6].

3 Quasiconvexity and monotonicity

Let θ : R → [−∞, +∞]. Then θ is quasiconvex if and only if there exists
t ∈ [−∞, +∞] so that:

• either θ is nonincreasing on (−∞, t] and nondecreasing on (t, +∞)∩ I,

• or θ is nonincreasing on (−∞, t) and nondecreasing on [t, +∞) ∩ I.

Thus, the simplest examples of quasiconvex functions are the nondecreasing
functions of one real variable. It results that, unlike convex functions, quasi-
convex functions are not continuous in the interior of their domain. A fortiori,
directional derivatives are not necessarily defined. Still, nondecreasing func-
tions of one real variable are almost everywhere continuous and differentiable,
hence quasiconvex functions of one real variable are also almost everywhere
continuous and differentiable on the interior of their domains.
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Quasiconvex functions of several variables have also connections with
monotonicity. Let E be a normed linear space, f : E → [−∞, +∞] and
K be a convex cone of E, f is said to be nondecreasing with respect to K if

x, y ∈ E, y − x ∈ K =⇒ f(x) ≤ f(y).

Theorem 3.1 Let f : E → (−∞, +∞), f quasiconvex, λ ∈ R and a ∈ E
such that int(Sλ(f)) �= ∅ and a /∈ cl(Sλ(f)). Then there exists an open convex
neighbourhood V of a and a nonempty open convex cone K so that

x, y ∈ V, y − x ∈ K =⇒ f(x) ≤ f(y).

Futhermore, if f is strictly quasiconvex

x, y ∈ V, y − x ∈ K, x �= y =⇒ f(x) < f(y).

Proof: Let b ∈ int(Sλ(f)), r > 0 and R > 0 be such that B(b, r) ⊆ Sλ(f)
and Sλ(f) ∩B(a, R) = ∅. Let some t̄ > 0. Set c = a + t̄(a− b) and

K = {d : c− td ∈ B(b, r) for some t > 0}.

Then K is a nonempty open convex cone. Hence y − K ⊆ c − K for all
y ∈ c − K. Set V = (c − K) ∩ B(a, R). Assume that x, y ∈ V with
y − x ∈ K. Then there is t > 1 so that z = y + t(x − y) ∈ B(b, r). Notice
that f(z) ≤ λ < f(y). The results follows from the (strict) quasiconvexity of
f .

In the particular case where E = Rn, we derive the following result.

Corollary 3.1 Let f : Rn → (−∞, +∞), f quasiconvex, λ ∈ R and a ∈ Rn

such that int(Sλ(f)) �= ∅ and a /∈ cl(Sλ(f)). Then there exist an open convex
neighbourhood V of a and v1, v2, · · · , vn, n linearly independent vectors such
that

x, x +
∑

tivi ∈ V, t1, t2, · · · , tn ≥ 0 =⇒ f(x) ≤ f(x +
∑

tivi).

Futhermore, if f is strictly quasiconvex and
∑

ti > 0, then the inequality is
strict.
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Proof: Choose for vectors vi n linearly independent vectors in K.

In Rn, locally Lipschitz functions also are strongly connected to mono-
tonicity. Indeed, assume that f is locally Lipschitz in a neighbourhhod of a,
i.e., there is r > 0 and L > 0 such that

xi, yi ∈ [ai − r, ai + r] for all i =⇒ |f(y)− f(x)| ≤ L
∑
|yi − xi|.

Define g(x) = f(x) + L
∑

xi. Then ai − r ≤ xi ≤ yi ≤ ai + r for all i implies
g(x) ≤ g(y).

4 Continuity

Given f : E → [−∞, +∞], a ∈ E with −∞ < f(a) < +∞ and a direction
d ∈ E, we define the function of one real variable

fa,d(t) = f(a + td).

The first result concerns nondecreasing functions.

Proposition 4.1 Assume that f(a) is finite, K is a convex cone with nonempty
interior, f is nondecreasing with respect to K and d ∈ int(K). Then f is lsc
(usc) at a if and only if fa,d is lsc (usc) at 0.

Proof: Assume that fa,d is lsc (usc) at 0. Let λ− < f(a) (λ+ > f(a)). Then
there is t− < 0 (t+ > 0) such that λ− < f(a+td) for all t ≥ t− (λ+ > f(a+td)
for all t ≤ t+). Take V = (a + t−d) + K (V = (a + t+d) − K). V is a
neighbourhood of a and λ− < f(a + t−d) ≤ f(x) (λ+ > f(a + t+d) ≥ f(x))
for all x ∈ V .

We have seen (Theorem 3.1) that quasiconvex functions can be considered
locally nondecreasing with respect to some open convex cone K. Hence the
last proposition can be applied. However, a stronger result holds. Assume
that f is quasiconvex and f(a) is finite. Let us define

K̃(a) = {d : f(a + td) < f(a) for some t > 0} (2)

K̃(a) is a convex cone. Its interior is nonempty as soon as int(S̃f(a)(f)) �= ∅.
Notice that K̃(a) contains the cones K of Theorem 3.1. Then, we have:
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Proposition 4.2 Assume that f is quasiconvex, f(a) is finite and
d ∈ int(K̃(a)). Then f is lsc (usc) at a if and only if fa,d is lsc (usc) at 0.

Proof: Combine the proof of the last proposition with the proof of Theo-
rem 3.1.

In these two propositions, we have considered continuity in one direction
d belonging to a specific cone. The following result can appear weaker since
it involves continuity in all directions, but it deserves to be given in reason
of its very simple formulation.

Theorem 4.1 [3, 6] Assume that f is quasiconvex on Rn and f(a) is finite.
Then f is lsc (usc) at a if and only if, for all d ∈ Rn, the function fa,d is lsc
(usc) at 0.

Proof: Assume that, for all d, fa,d is lsc at 0 and prove that f is lsc at a.
If S̃f(a)(f) = ∅ there is nothing to prove. If not take some d in the relative

interior of K̃(a) and adapt the proof of the last proposition.
Next, assume that, for all d, fa,d is usc at 0 . Let λ > f(a). Take d = ei

be the i-th vector of the canonical basis of Rn. There is ti > 0 such that
f(a+ tdi) < λ for all t ∈ [−ti, ti]. Take for V the convex hull of the 2n points
a± tidi. Then V is a neigborhood of a and V ⊆ Sλ(f).

This result says that, in Rn, a quasiconvex function is continuous at a
if it is continuous along the lines at this point. Such a result does not hold
for nondecreasing functions as it can be seen from easily obtained examples.
Also, it does not hold for an infinite dimensional linear space: take a linear
but not continuous function.

5 Differentiability: notation and first results

We start with the notation. Assume that f(a) is finite and h ∈ E. Then the
upper and the lower Dini-derivative of f at a with respect to the direction h
are respectively defined by

f ′+(a, h) = lim sup
t→0+

f(a + th)− f(a)

t
,

f ′−(a, h) = lim inf
t→0+

f(a + th)− f(a)

t
.
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If −∞ < f ′−(a, h) = f ′+(a, h) < ∞ then the directional derivative of f
with respect to the direction h exists and is defined by

f ′(a, h) = f ′−(a, h) = f ′−(a, h).

If for all h ∈ E

f ′(a, h) and f ′(a,−h) exist and f ′(a, h) + f ′(a,−h) = 0

then f is said to be differentiable at a along the lines or again weakly Gateaux-
differentiable at a.

If there is a vector c ∈ E ′ such that

f ′(a, h) = 〈c, h〉 ∀h ∈ E

then f is said to be Gateaux-differentiable at a. Such a c is uniquely defined.
It is called the (Gateaux-) gradient of f at a and denoted by ∇f(a).

If f is Gateaux-differentiable at a and

f(a + h)− f(a)− 〈∇f(a), h〉
‖h‖ → 0 when h→ 0

then f is said to be Fréchet-differentiable at a.
Although Fréchet- and Gateaux-differentiability do not coincide for a gen-

eral function, they coincide when the function is monotone on Rn.

Theorem 5.1 (Chabrillac-Crouzeix [2]) Let f : Rn → [−∞,∞], K be a
nonempty open convex cone. Assume that f is nondecreasing with respect to
K and f is Gateaux-differentiable at a. Then f is Fréchet-differentiable at
a.

Proof: Assume that f is Gateaux- but not Fréchet-differentiable at a. Then
there exist ε > 0 and a sequence {hn}n converging to 0 such that for all n

7ε <
|f(a + hn)− f(a)− 〈∇f(a), hn〉|

‖hn‖
. (3)

Set dn = 1
‖hn‖hn. Without loss of generality, we can assume that all the

sequence {dn}n converges to some d̄. Let e ∈ int(K) . Then µ > 0 exists so
that

|〈∇f(a), d− d̄〉| < ε for all d ∈ V (4)
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where
V = {d : d̄− µe = d− ≤ d ≤ d+ = d̄ + µe }.

Then V is a neighbourhood of d̄. For n large enough, dn ∈ V and therefore

f(a + ‖hn‖d−)− f(a) ≤ f(a + hn)− f(a) ≤ f(a + ‖hn‖d+)− f(a). (5)

Since f is Gateaux-differentiable at a, for n large enough

|f(a + ‖hn‖d−)− f(a)− 〈∇f(a), ‖hn‖d−〉|
‖hn‖

< ε, (6)

and
|f(a + ‖hn‖d+)− f(a)− 〈∇f(a), ‖hn‖d+〉|

‖hn‖
< ε. (7)

The contradiction follows from Equations (3), (4), (5), (6) and (7).

As an immediate corollary, we see that Gateaux- and Fréchet-differentiability
coincide for locally Lipschitz functions on Rn. Also, Theorem 5.1 can be ap-
plied to quasiconvex functions.

Theorem 5.2 Assume that f : Rn → [−∞,∞] is quasiconvex. If f is
Gateaux-differentiable at a, then f is Fréchet-differentiable at a as well.

Proof: Let S = {x : f(x) < f(a)}.
If int(S) �= ∅, there is λ ∈ R such that int(Sλ(f)) �= ∅ and a /∈ cl(Sλ(f)).

The result follows from Theorems 3.1 and 5.1.
If S = ∅. Then f(x) ≥ f(a) for all x and therefore ∇f(a) = 0. Let

(e1, e2, · · · , en) be the canonical basis of Rn. Set ei+n = −ei for i = 1, · · · , n.
For h ∈ Rn take ti = max[0, hi] and ti+n = max[0,−hi]. Then

a + h = a +
i=2n∑

i=1

tiei =
i=2n∑

i=1

(a +
ti
‖h‖‖h‖ei)

where ‖h‖ =
∑i=n

i=1 |hi| =
∑i=2n

i=1 ti. Then, since f is quasiconvex

0 ≤ f(a + th)− f(a)

‖h‖ ≤ max
i=1,···,2n

f(a + ‖h‖ei)− f(a)

‖h‖ ,

and the result follows again.
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We are left with the case where int(S) = ∅ but S �= ∅. Here again
∇f(a) = 0. The proof is obtained in working on the affine set generated by
S and using the same proof as above.

A previous proof by Crouzeix [8] of that theorem does not make use of
Theorem 5.1.

It is well known that a nondecreasing function of one real variable is
almost everywhere differentiable. The result still holds in Rn.

Theorem 5.3 (Chabrillac-Crouzeix [2]) Let f : Rn → [−∞,∞], K be a
nonempty open convex cone. Assume that f is nondecreasing with respect to
K. Then f is almost everywhere Fréchet-differentiable.

The celebrated Rademacher’s theorem on locally Lipschitz functions can
be viewed as a corollary of this theorem. Another consequence is that quasi-
convex functions on Rn are also almost everywhere Fréchet-differentiable, a
previous and direct proof of this result was given in Crouzeix [7].

6 Directional derivatives

It is clear that, for a general function, the Dini-derivatives f ′−(a, h) and
f ′+(a, h) are positively homogeneous of degree 1 with respect to the direction
h. This is also the case for the directional derivative f ′(a, h) when defined.
The following proposition is a direct consequence of quasiconvexity.

Proposition 6.1 Assume that f : E → [−∞,∞], f is quasiconvex and f(a)
is finite. Then h :→ f ′+(a, h) is quasiconvex.

There are counter-examples (Crouzeix [5]) where the function f is qua-
siconvex, but the lower Dini-derivative is not. The fact that, for a convex
function, the directional derivative f ′(a, h) is convex and positively homoge-
neous in h has strong implications. Indeed, the indicator function of ∂f(a),
the Fenchel-subgradient of f at a, is nothing else that the Fenchel-conjugate
of the function f ′(a, .). Quasiconvex positively homogeneous functions also
will play a fundamental role as seen below.

Theorem 6.1 (Newman [12], Crouzeix [4]) Assume that C ⊆ E is convex
and θ : C → (−∞, +∞] is quasiconvex and positively homogeneous of degree
one.
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1. If θ(x) < 0 for all x ∈ C, then θ is convex on C,

2. If f θ(x) ≥ 0 for all x ∈ C, then θ is convex on C.

Proof: Several types of proofs can be given. The following one is based on
the geometrical aspect of convexity. Consider in case 1)

S = S−1(θ)× {−1} ⊆ E × R,

and in case 2)
S = S1(θ)× {1} ⊆ E × R.

Next, let us consider the consider the cone T in E×R generated by S. Both
S and T are convex. In case 1) T corresponds to the epigraph of θ. In case
2) take T̃ = T ∪ (S∞ × {0}) where S∞ is the recession cone of S1(θ). Then,
T̃ corresponds to the the epigraph of θ as well.

Now, assume that θ : Rn → (−∞, +∞] is quasiconvex and positively
homogeneous of degree 1. Define θ− and θ+ by

if θ(x) < 0 then θ−(x) = θ(x) and θ+(x) = 0,
if θ(x) ≥ 0 then θ−(x) = +∞ and θ+(x) = θ(x)

(8)

Then θ(x) = min[ θ−(x), θ+(x) ]. Hence θ is the minimum of two convex
functions. This decomposition will be useful for the directional derivatives
and the upper Dini-derivatives of quasiconvex functions, indeed they are
quasiconvex in the direction.

Theorem 6.2 (Crouzeix [8]) Assume that f : E → [−∞,∞] is quasiconvex,
f(a) is finite and f is weakly Gateaux-differentiable at a. Then f is Gateaux-
differentiable at a as well.

Proof: By assumption, f ′(a, h) + f ′(a,−h) = 0 for all h. If f ′(a, h) = 0
for all h, take ∇f(a) = 0. Next, assume that f ′(a, h) �= 0 for some h. Set
θ(h) = f ′(a, h), S− = {h ∈ E : f ′(a, h) < 0}, S0 = {h ∈ E : f ′(a, h) ≤ 0}
and S+ = {h ∈ E : f ′(a, h) > 0}. Then, S+ = −S−. The sets S−, S0 and
S+ are convex. S0 and S+ are two complementarity sets. Hence the closure
of S0 is an half space. The functions θ− and θ+ are convex on S− and S+

respectively, furthermore θ−(h) = −θ+(−h) for all h ∈ S− = −S+. Hence θ−
is linear on S−. Finally, it is seen that θ is linear on the whole space.
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It follows that, for quasiconvex functions on Rn, Fréchet-, Gateaux- and
weakly Gateaux-differentiability coincide. For nondecreasing functions on
Rn, Gateaux- and weakly Gateaux-differentiability do not coincide in general.

The next theorem is to be compared with Proposition 4.2. The proof
being not immediate, the reader is directed to Crouzeix [5]. As in Proposi-
tion 4.2, it involves the convex cone

K̃(a) = {d : f(a + td) < f(a) for some t > 0}.

If f is differentiable at a and ∇f(a) �= 0, then the closure of K̃(a) is an
half-space. The theorem corresponds to a converse implication.

Theorem 6.3 Assume that f is quasiconvex on �n, f(a) is finite, the closure
of K̃(a) is an half space and d ∈ int(K̃(a)). Then f is Gateaux-differentiable
at a if and only if the function of one real variable fa,d is differentiable at 0.

7 More on the Dini-derivatives

The first result concerns nondecreasing functions. The proof is easy and left
to the reader.

Proposition 7.1 Assume that K is a convex cone with int(K) �= ∅ and f is
nondecreasing with respect to K. Then f ′−(a, .) and f ′+(a, .) are nondecreasing
with respect to K. Hence they are continuous on K ∪ −K.

If f is quasiconvex, the result still holds with K̃(a) instead of K.

Proposition 7.2 Assume f quasiconvex and f(a) is finite. Then

• f ′−(a, .) and f ′+(a, .) are nondecreasing with respect to K̃(a),

• f ′−(a, .) and f ′+(a, .) are continuous on int(K̃(a)) and −int(K̃(a)).

The following result [5] makes more clear the connection between the Dini-
derivatives and the cone K̃(a).

Proposition 7.3 Assume f quasiconvex and f(a) is finite. Then

• h ∈ K̃(a)⇒ −∞ ≤ f ′−(a, h) ≤ f ′+(a, h) ≤ 0,
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• h /∈ K̃(a)⇒ 0 ≤ f ′−(a, h) ≤ f ′+(a, h) ≤ +∞,

• If ∃h such that f ′−(a, h) < 0 then f ′−(a, d) < 0 for all d ∈ int(K̃(a)),

• If ∃h ∈ int(K̃(a)) such that f ′−(a, h) > −∞ then f ′−(a, d) > −∞ for
all d,

• If ∃h such that f ′+(a, h) < 0 then f ′+(a, d) < 0 for all d ∈ int(K̃(a)),

• If ∃h ∈ int(K̃(a)) such that f ′+(a, h) > −∞ then f ′+(a, d) > −∞ for
all d.

Let C be a convex set and f : C → R be differentiable at a ∈ C. The
fonction f is said to be pseudoconvex at a on C if

y ∈ C and f(y) < f(a) ⇒ 〈∇f(a), y − a〉 < 0.

If f is pseudoconvex at any a ∈ C then it is quasiconvex on C. Pseudocon-
vexity can be relaxed thanks to Dini-derivatives.

A function f defined on a convex set C finite at a ∈ C is said to be
D+ pseudoconvex at a on C if

y ∈ C and f(y) < f(a) ⇒ f ′+(a, y − a) < 0,

and D− pseudoconvex at a on C if

y ∈ C and f(y) < f(a) ⇒ f ′−(a, y − a) < 0.

Proposition 7.3 says that a quasiconvex function is D+ pseudoconvex and
D− pseudoconvex at a as soon as f ′+(a, h) and f ′+(a, h) respectively are neg-
ative for some h. Then, according to the case

K̃(a) = {h : f ′+(a, h) < 0},

or
K̃(a) = {h : f ′−(a, h) < 0}.

If S̃(a) = {x : f(x) < f(a)} �= ∅ and f is pseudoconvex at a in one of
the senses above, then a ∈ cl(S̃(a)). That motivates another relaxation of
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pseudoconvexity, still weaker than the previous ones: a quasiconvex function
is said to be S pseudoconvex if

S̃(a) �= ∅ ⇒ a ∈ cl(S̃(a))

The Dini-derivatives of a quasiconvex functions are not finite in general.
Assume that f is quasiconvex, D+ pseudoconvex at a and |f ′+(a, h)| < ∞
for all h. Since f ′+(a, .) is quasiconvex and positively homogeneous of order
1, then the decomposition (8) can be applied. It follows that f ′+(a, .) is
the minimum of two finite convex functions, hence it is continuous except
perhaps on the boundary of K̃(a). Furthermore, it is convex on K̃(a). The
same conclusions do not hold for f ′−(a, .) because not quasiconvex.

Generalized derivatives have been made popular with the Clarke ap-
proach. A good situation is when the function is locally Lipschitz. Unlike
convex functions, quasiconvex functions are not locally Lipschitz on the in-
terior of their domain: Lipschitz properties do not belong to the essence of
quasiconvexity. Henceforth, our intimate opinion is that generalized deriva-
tives for locally Lipschitz functions are quite inappropriate in quasiconvex
analysis. However, because so many people have tried to adapt these gener-
alized derivatives, we indicate that for quasiconvex functions, the Lipschitz
condition holds if it holds in one direction. The result is as follows:

Theorem 7.1 (Crouzeix [9]) Assume that f is quasiconvex on an open con-
vex set C. Asume in addition that there exist a convex cone K, h ∈ int(K)
and a constant L such that

• K ⊆ K̃(x) for all x ∈ C,

• |f(x + th)− f(x)| ≤ L|t| for all t and x such that both x and x + th lie
in C.

Then there exists a constant L̂ such that

|f(x)− f(y)| ≤ L̂‖x− y‖ for all x, y ∈ C.

Theorem 3.1 gives conditions for the existence of such a cone K.
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8 The normal cone

Quasiconvex analysis finds its main applications in optimization. A general
formulation of an optimisation problem is

minimize f(x) subject to x ∈ C.

If C is convex and f is quasiconvex then we are faced with a quasiconvex
optimization problem. A point a ∈ C is an optimal solution if

{x : f(x) < f(a)} ∩ C = ∅.

Both sets are convex. Hence we are concerned with vectors a� �= 0 such that

〈a�, x− a〉 ≤ 0 ≤ 〈a�, z − a〉 ∀x, z so that z ∈ C, f(x) < f(a).

Such vectors belong to the closed convex cone

Ñ(a) = { a� : 〈a�, x− a〉 ≤ 0 for all x so that f(x) < f(a)}

which is nothing else that the polar cone of K̃(a), i.e.

Ñ(a) = { a� : 〈a�, d〉 ≤ 0 for all d ∈ K̃(a)}.

If f is convex and a belongs to the interior of the domain of f , then
Ñ(a) is the projection on E of the set T (a) in Equation (1). Hence, Ñ(a)
is the closed convex cone generated by ∂f(a), the Fenchel subgradient of f
at a. T (a) is the normal cone at point (a, f(a)) to the epigraph of f . When
point a moves, then (a, f(a)) moves on the boundary of the epigraph which is
convex. Hence the map T has continuity properties which afterwards implies
continuity properties on the map ∂f . These properties are the tools used to
analyse sensibility in convex programming.

The epigraph of a quasiconvex function is not convex and T (a) cannot be
used. However, the level sets are convex and therefore continuity should be
considered not on the map T but on the map Ñ .

Recall that a point-to-set map M : E → F is said to be closed at a point
a if given a sequence {(an, bn)}n converging to (a, b) with bn ∈ M(an) we
have b ∈M(a).
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The map is said to be closed on E if closed at any point a ∈ E. It is known
that a map is closed on E if and only if its graph G(M) = {(x, y) : y ∈M(x)}
is a closed subset of E × F .

The map M is said to be USC at a point a if for all open set Ω ⊇ M(a)
there is a neighbourhood V of a such that Ω ⊇M(x) for all x ∈ V . We shall
use the following well known characterization.

Proposition 8.1 Let M : E → K be a point-to-set map where E is a metric
space and K is a compact set. Assume that, for all x in a neighbourhood of
a, the set M(x) is compact and nonempty and the map M is closed at x.
Then M is USC at a.

Proposition 8.2 Let f : E → [−∞, +∞] be quasiconvex. Assume that f is
finite and lsc at a. Then Ñ is closed at a.

Proof. Let {(an, bn)}n be sequence converging to (a, b) with bn ∈ Ñ(an).
Let x be such that f(x) < f(a). Then there is a neighbourhood V of a such
that f(x) < f(y) for all y ∈ V . For n large enough, an ∈ V and therefore,
because bn ∈ Ñ(an),

〈bn, x− an〉 ≤ 0.

Hence, passing to the limit

〈b, x− a〉 ≤ 0.

Because the inequality holds for all x with f(x) < f(a), it results that
b ∈ Ñ(a).

The normal cone Ñ is, of course, unbounded. Continuity with unbounded
maps is sometimes difficult to handle. It is one of the reasons why the sub-
gradient is used in sensibility in convex programming instead of the normal
cone T at the epigraph.

We shall say that a point-to-set map M : E → F is C-USC at a (Borde-
Crouzeix [1]) if there is a compact-valued map C such that C is USC at a
and, for all x, M(x) is the cone generated by C(x), i.e.

M(x) = { y = λd : λ ≥ 0 and d ∈ C(x) }.

Theorem 8.1 Let f : E → (−∞, +∞), f quasiconvex, λ ∈ R and a ∈ E
such that int(Sλ(f)) �= ∅ and a /∈ cl(Sλ(f)). Then Ñ is C-USC at a.

17



Proof: By Theorem 3.1, there is K an open nonempty convex cone such
that K ⊆ K̃(x) for x close to a. Let d̄ ∈ K be fixed. We define a map C by

C(x) = {x� ∈ Ñ(x) : 〈x�, d̄〉 = 1}.

Then, for x close to a, M(x) is generated by C(x). Hence C is closed at x.
Furthermore

C(x) ⊆ C̄ = {x� ∈ Ko : 〈x�, d̄〉 = 1}
where Ko is the polar cone of K. The set C̄ is compact and the result
follows.

If a convex function is differentiable, then its gradient is continuous. Now,
assume that we are faced with a function f which is differentiable and qua-
siconvex. Let a be such ∇f(a) �= 0. Then

Ñ(a) = {λ∇f(a) : λ ≥ 0}.

It results from Theorem 8.1 that the map

x→ 1

‖∇f(x)‖∇f(x)

is continuous at any x where the gradient does not vanishes. Recall that,
for a convex function, the gradient itself is continuous, for a quasi convex
function it is only the direction given by the gradient which is continuous.

Some people prefer to consider the normal cone

N(a) = { a� : 〈a�, x− a〉 ≤ 0 for all x so that f(x) ≤ f(a)}

instead of Ñ(a). When f is pseudoconvex in one of the different senses we
have given, the two cones coincide.

9 Are the generalized derivatives useful in
quasiconvex analysis?

Assume that f is finite in a. A general formulation of a generalized derivative
of f at a with respect to a direction d is as follows

f !(a, d) = “some kind of limit” 1
t

[f(x + th)− f(y)]
when t→ 0+, x, y → a and h→ d.

(9)
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The different ways by which the arguments x, y converge to a, h converges
to d, the different orders to take the limits with respect to the arguments,
the different types of limit (sup, inf, ...) give birth to many combinations
quite appropriate to exercice the skills of a mathematician. For instance,
the upper (lower) Dini-derivative corresponds to the case where x = y = a,
h = d and the limit is the limit sup (limit inf).

Once a generalized derivative is defined, a generalized subgradient is built
as the closed convex set ∂!f(a) such that

∂!f(a) = {x� : 〈d, x�〉 ≤ f !(a, d) for all d }.

Now, it is time to look at the uses of such a generalized derivative and
such a subgradient. Because we deal with optimization problems, the first
use concerns optimality conditions. We have seen that, in the quasicon-
vex setting, the normal cone Ñ(a) plays a fundamental role.Hence, the first
property to be asked to generalized derivatives and/or generalized subgra-
dients is that they allow to recover the cone Ñ(a). The second important
use concerns sensibility. For that, a standard approach consists to consider
some continuity on the subgradient, this continuity is provided in general
by considering the convergences of the arguments x, y and h to a, a and d
respectively in definition (9). Is it really necessary to consider generalized
derivatives and the associated subgradient and not to consider directly the
normal cone Ñ(a)? We have seen, in the last section, that the normal cone
has the wished continuity property.

Anyway, if we want to consider some generalized derivatives and their
associate generalized subgradients, the simplest ones seem the best. Since,
unlike in the convex case, directional derivatives cannot be considered, the
best candidates are the Dini-derivatives. If f is pseudoconvex then Propo-
sition 7.3 shows that Ñ(a) can be recovered from the Dini-derivatives. For
simplicity we assume that these Dini-derivatives are finite. Let us define

∂uf(a) = {x� : f ′+(a, d) ≥ 〈x�, d〉 for all d ∈ K̃(a)}.

and
∂lf(a) = {x� : f ′−(a, d) ≥ 〈x�, d〉 for all d ∈ K̃(a)}.

Then, Ñ(a) is the cone generated by ∂uf(a) and/or ∂lf(a), hence it is
thoroughly defined from the knowledge of these sets. Furthermore, because
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f ′+(a, .) is quasiconvex, for all h ∈ int(K̃(a))

f ′+(a, h) = sup[〈x�, h〉 : x� ∈ ∂uf(a)].

An exhaustive bibliography on generalized derivatives and generalized
subgradients in quasiconvex programming is reference [14].
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