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1. SETS AND FUNCTIONS ON FINITE DIMENSIONAL LINEAR SPACES.

In this section we consider some basic properties of sets and functions on
finite dimensional real linear spaces. In the first subsection we discuss the
interplay between sets, hull operations on sets and their topological proper-
ties. Moreover in this section linear subspaces, affine and convex sets and
cones are introduced. In subsection 2 extended real valued functions on fi-
nite dimensional real linear spaces and their properties will be considered.
Finally in subsection 3 we will combine some of the results derived in sub-
section 1 and 2 and end up with an easy proof of the separation result of a
convex set and some point outside this convex set. This separation result
serves as the main tool within the field of convex and quasiconvex analysis.
Although we only deal with finite dimensional linear spaces the basic ideas
of the proofs can also be used to prove similar results in infinite dimensional
linear spaces. At the same time we have tried to make the proofs as transpar-
ent and as simple as possible. Observe most of the material in this section
can be found in Rockafellar (cf. [18]), Rudin (cf.[19]) and Hiriart-Urruty
and Lemarechal (cf.[8]). For proofs of similar results in infinite dimensional
linear (topological) spaces one should consult Chapter 2 and 3 of van Tiel
(cf.[21]).

1.1. Sets and hull operations. Before introducing some well-known topo-
logical concepts in finite dimensional linear spaces we observe that our uni-
verse is always given by the n-dimensional Euclidean set R™. In this set the
usual componentswise addition of elements and scalar multiplication of a
real number with an element is defined together with the Euclidean inprod-
uct (.,.) : R™ x R™ — R given by

n
xy) = xTy =Y o

for every x,y belonging to R™. The elements of R" are called vectors' or
points® and they are represented by boldfaced characters. The Euclidean
norm || x || of the vector x is given by the nonnegative value

| x|:=vxTx >0
and the set £ C R" defined by
E:={xeR":x|<1}.

is called the Euclidean unit ball. Moreover, for the sets A, B C R" and
«, B € R the Minkowsky sum oA + B is given by

aA+pBB:={ax+pfy:x€ A,y € B}.

To define a so-called topology on the Euclidean space R™ we introduce the
following definition taken from Rudin (cf.[19]).

Lvectors
Zpoints
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Definition 1.1. A point x € R" is called an interior point® of the set S C
R"™ if there exists some € > 0 such that

x+eb CS.

The set S C R™ is called open or an open set* if every element of S is an
interior point of S. Finally, the set S C R™ is called closed or a closed set® if
its complement S° given by

SC={xeR":x¢8}
1$ an open set.

By definition the empty set () is open and it is easy to verify that the
universe R is also an open set. The union U;c1S; of open sets S;, ¢ € I is
again an open set and for any finite index set I the intersection N;c1S; is also
open. Similar results hold for closed sets with union replaced by intersection
and intersection by union. Since the union of open sets is again open and
the empty set () is open it is easy to construct the biggest open set (possibly
empty) contained within the set S and this set is denoted by int(S). Clearly
it follows that

(1.1) int(S) =U{A: AC S and A open}.

By the definition of int(S) it is clear that S equals int(S) if and only if the
set S is open. Due to the intersection of closed sets is again closed and the
set R" is closed it follows that the so called closure® of S representing the
smallest closed set containing S and denoted by cl(S) is given by

(1.2) cl(S) =nN{A:S C A and A closed}.

By the definition of cl(S) it is clear that S equals cl(S) if and only if the set
S is closed. Both constructions are examples of a so-called hull operation”
applied to the set S and in these particular cases the first construction is
called the open hull operation® while the second one is called the closed hull

operation®. To relate the above hull constructions we observe by Definition
1.1 and relations (1.1) and (1.2) that

(1.3) cl(S) =U{B: B C S° and B open} = int(S°)

To give a more convenient representation of the closure of S we need to
introduce the next definition.

Definition 1.2. A wvector x € R" s called a limit point of the nonempty
set S C R™ if for every e > 0 the intersection of the set x + €E and S s

3interior point

4open set

Sclosed set

Sclosure

Thull operation

8open hull operation
9closed hull operation
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nonempty. Moreover, the nonempty set S C R™ has a limit point if there
erists some x € R™ such that x is a limit point of the set S.

For any x € R" it is is immediately clear by Definition 1.2 that
(1.4) x limit point of S & x € S + €F for every € > 0.

Observe a point x is a limit point of the set S does not imply that this point
also belongs to S. As an example we consider the set S = {1 : n € N}.
Clearly for this set it follows that 0 is a limit point of S while 0 does not
belong to this set. A more convenient characterization of the closure of a
set and a closed set is listed by the following result.

Lemma 1.1. For any nonempty set S C R™ it follows that
cl(S) = Neso{S + €E}.

Moreover, the nonempty set S C R™ is closed if and only if every limit point
of the set S belongs to S.

Proof. By relation (1.3) we obtain
y €cl(S) &y ¢ int(S°) < (y+eE)NS # 0 for every € > 0.
Hence it follows that
y €cl(S) &y € S+ €FE for every € > 0.

and this shows the first part. To check the second part we observe by relation
(1.4) and the representation of the closure of a set verified in the first part
of this lemma that

S closed & S =Neo{S + eE} < limitpoint of S belongs to S.

and this shows the second part. I

A property related to open sets and very useful within finite dimensional
optimization is given by compactness.

Definition 1.3. An open cover of the nonempty set S C R™ is a collection
of open sets S; C R™, i € I satisfying

S C UierS;.

A nonempty set S C R™ is called compact'® if every open cover of S contains
a finite subcover. Moreover, a nonempty set S C R"™ is said to be sequentially
compact'' if every infinite subset of S has a limit point and this limit point
belongs to S.

Without proof we mention (cf.[19]) that compact sets are closed and
bounded and closed subsets of compact sets are compact. To identify com-
pact sets within R"™ we mention the following important result (cf. [19]).

10cornpact
"sequentially compact
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Lemma 1.2. The nonempty set 117" ;[a;, b;] C R™ given by
I Jai, bl i={x € R" : x = (1, ..., %n), 0; < x; < b;}
1§ compact.

The most important consequence of Lemma 1.2 and the previous observa-
tions on compact sets is given by the following characterization of compact
sets in R"™ (cf.[19]).

Lemma 1.3. If S C R"™ is a nonempty set then it follows that
S closed and bounded < S compact & S sequentially compact.

In infinite dimensional metric linear spaces it does not hold in general
that any closed and bounded set is compact (cf.[2]). However, in these more
general linear spaces one can show by a similar proof as used in R" that
compactness is equivalent to sequential compactness. Since in optimization
we are dealing with sequences generated by algorithms sequential compact-
ness is very important while closeness and boundedness are the most easy
conditions to check for compactness. A useful and important observation of
Lemma 1.3 is given by the following result of which the proof is taken from
Kreyszig (cf.[2]). Before discussing this result we introduce the definition of
linear independence.

Definition 1.4. The vectors X1, ...,X;, are called linear independent'? if
k
Z. laixi:0:>ai:0,1§i§k.
1=
It is now possible to show the following result.

Lemma 1.4. If {x1,....,x,,} C R" is a set of linear independent vectors
then there exists some ¢ > 0 such that for every a; € R,1 <1 < m it follows

that
m m
DT IEDS Sl

Proof. We only need to show the above inequality for s := > 7", |as| > 0
and by normalizing we may assume without loss of generality that s =1 or
equivalently a € D with

m
D :={a € R™ Zizl lai| = 1}

Suppose by contradiction hat the above inequality does not hold. This
implies that we can find a sequence a™ € D,n € N satisfying

n n . m n
(1.5) a™ = (a\™, . al™) and lim | Zizlag )x; [|= 0.

2linear independent
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Clearly the set D is closed and bounded and hence by Lemma 1.3 the set D
is sequentially compact. This means that the set {a(”); n€ N} CD hasa
convergent subsequence {a(™ :n € Ny C N} with

lim a™ =al*®) ¢ D
neNy

and so it follows by relation (1.5) that
ST e oM - meo(00)
0= nelz{fr(ﬁoo I Zi:l o i [|=] Zz’:l o X |

By the independence of the set {x,...,X,,} we obtain that a(>) = 0 con-
tradicting () € D. Hence our initial assumption is incorrect and we have
shown the desired inequality. I

Until now we did not introduce sets with additional algebraic properties.
The first sets to be considered are the main topic of study within linear
algebra (cf.[18]).

Definition 1.5. A nonempty set L C R™ is called a linear subspace'® if
aL + BL C L for every real scalars a and . Moreover, a nonempty set
M C R" is called an affine set or affine '* if aM + (1 —a)M C M for every
real scalar a.

It is immediately clear that a linear subspace is an affine set. The next
result (cf.[18]) shows that linear subspaces and affine sets are closely related.

Lemma 1.5. It follows that the nonempty set M is affine and 0 € M if and
only if M is a nonempty linear subspace. Moreover, for each nonempty affine
set M there exists a unique linear subspace Ly satisfying M = Ly + x for
any giwen x € M.

Proof. To show the first part it is clear that any linear subspace contains
the zero element and is an affine set. To verify that any affine set containing
the zero element is a linear subspace we observe for every a € R that

(1.6) aM =aM + (1 —a)0 C M.
This implies for every «, 8 € R that aM + M C M + M and since by the
definition of an affine set and relation (1.6) we obtain

1 1
M+ M=2(3M +5M) C2M C M

it follows that aM + BM C M. To verify the second part we observe for
every x € M that the set M —x is an affine set containing the zero element
and hence by the first part a linear subspace. To prove the uniqueness let
M =L +xand M = Ly +y with x,y € M and Ly, Ly linear subspaces.

13linear subspace
HMaffine set
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This implies Ly = Ly +y — x and since the zero element belongs to L; we
obtain that x —y belongs to the linear subspace Ls. Hence it follows that

L1:L2+y—x§L2—L2:L2

By a similar proof one can prove the reverse inclusion and this verifies the
second part. I

Although in the next section we will study in detail vector valued map-
pings we mention in this section two classess of mappings which preserve
respectively linear subspaces and affine sets.

Definition 1.6. A mapping A : R™ — R™ is called linear or a linear map-
ping'if

Afax + By) = aA(x) + BA(y)
for every real scalars o, B and x,y € R"™. Moreover, the mapping A is called
affine or an affine mapping'® if

Alox + (1 — a)y) = aA(x) + (1 — a)Aly)
for every real scalar a and x,y € R"™.

It is easy to check that a linear mapping A : R" — R™ is completely
determined by Ae; with e; denoting the ith unit vector in R™ and so there
is a one-to-one correspondence with the set of n x m matrices. It is also
easy to check that

A:R" — R™ is affine & the mapping x — A(x) — A(0) is linear
Moreover, by the definition of a linear mapping the set A(L) given by
A(L) :={A(x):x € L}

is a linear subspace of R™ for L a linear subspace of R" while the same
holds for an affine mapping with linear replaced by affine.

To study hull operations on linear subspaces and affine sets we first ob-
serve that the intersection N;csL; is again a linear subspace for any collection
L;,7 € I of linear subspaces. Observe the same preservation result holds for
affine sets. Since the set R" is a linear subspace we can as before apply to
any nonempty set S C R" the so-called linear hull operation'” and construct
the set

(1.7) lin(S) :=N{L: S C L and L a linear subspace}.

By the preservation of linear subspaces under intersection the above set is
clearly the smallest linear subspace containing S and as one might expect
this set is called the linear hull generated by the set S'8. In case the set S
has a finite number of elements the linear hull is called finitely generated'®.

5linear mapping

affine mapping

linear hull operation
¥linear hull generated by S
Yfinitely generated linear hull
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Similarly one can construct by means of the so-called affine hull operation?°

the smallest affine set containing S. This set denoted by aff(S) is called the
affine hull generated by the set S?' and is given by

(1.8) aff(S) :=nN{M : S C M and M an affine set}.

Since any linear subspace is an affine set it is clear that aff(S) C lin(S) and
again if the set S has a finite number of elements the affine hull is called
finitely generated. To give an alternative representation of these sets we
introduce the next definition.

Definition 1.7. If S C R" is a nonempty set then a finite linear combi-
nation®? of elements of the set S is given by Yoim aix; with o real and
{X1, ', Xm } € S. Moreover, a finite affine combination®® of elements of the
set S is given by Y i cix; with Yo o =1 and {x1,....xn} C S.

It is now easy to give the following characterization of a linear subspace L
and an affine set M. This immediately yields a representation for the linear
and affine hull of a set S. Since the proof is trivial it is omitted.

Lemma 1.6. A nonempty set L C R"™ is a linear subspace if and only if it
contains all the finite linear combinations of elements of L. Moreover, the
set lin(S) equals all finite linear combinations of the nonempty set S C R™.
A similar observation holds for affine sets with linear combination replaced
by affine combination.

By Lemma 1.6 it is clear that a linear and affine hull generated by a set
S is given by

(1.9) lin(S) = Upo_ I{Z a;S : a; real}
and
(1.10) = U I{Z ;S : «; real and ZZI a; =1}

and the above formulas are examples of a so-called primal representation.
Using these formulas it is easy to show that there exists a close relation
between a linear and affine hull. This is also to be expected by the second
part of Lemma 1.5.

Lemma 1.7. For any nonempty set S C R™ and x¢ belonging to aff(S) it
follows that

aff(S) = x¢ + lin(S — xg).

2affine hull operation
Laffine hull generated by S
22finite linear combination
Zfinite affine combination
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Proof. For any x belonging to aff(S) and o, 1 <14 < m satisfying > /" | o =
1 it follows by relation (1.9) that

m m .
Zizl oS = Zi:l a;(S —x¢) + x¢ C lin(S — xg) + xo.
This implies by relation (1.10) that
aff(S) C xo + lin(S — xp).

Moreover, since aff(S) — x¢ is an affine set containing the zero element and
S—x¢ we obtain by Lemma 1.5 that aff(S)—xy is a linear subspace containing
S — x¢ and so

lin(S — x¢) C aff(S) — xp,

This implies lin(S — xg) + x¢ C lin(S) and so the desired representation is
verified. i

The next result shows that the affine hull of the cartesian product of the
sets S7 and Sy equals the cartesian product of the affine hulls.

Lemma 1.8. If S} C R" and Sy C R™ are nonempty sets then it follows
that

aﬁ(Sl X SQ) = aﬁ(Sl) X aﬁ(Sg)

Proof. By the representation for the affine hull of a set given by relation
(1.10) it follows that

aﬁ'(Sl X 8’2) - aﬁ'(Sl) X aﬁ(Sg)

Moreover, if (x,y) belongs to aff(S1) x Sy then again by relation (1.10) one
can find some points x; € S1,1 <1 < m satisfying

m m
X = E - o;x; and g oy =1,
=1 =1

This implies

<X> = Zm Q; (XZ> S aff(Sl X SQ)
y i=1 " \y

and so it follows that

(1.11) aff(Sl) X SQ C aff(Sl X SQ)

Similarly for (x,y) belonging to aff(S;)x aff(S2) one can find points y; €
So,1 < ¢ < m satisfying

m m
y = Zi:l o;y; and Zi:l o; = 1.
and this implies by relation (1.11) that

<X> - 211 i (X> < Zzl a;aff(S) x S2) = aff(Sy x S2).

y Yi
Hence we have shown that

aﬁ'(Sl) X aﬂ(Sg) - aﬂ'(Sl X SQ)
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and combining this with relation (1.11) the desired result follows. I

By Lemma 1.6 it is easy to show for any affine mapping A : R* — R™
that

(1.12) A(aff(S)) = aff(A(S))

and this relation in combination with Lemma 1.8 yields the following rule
for the affine hull for the affine hull of the sum of sets.

Lemma 1.9. If the set S1,S2 C R" are nonempty and o, 8 some scalars
then it follows that

aff(aS1 + BS2) = aaff(S1) + Baff(S2).

Proof. Introduce the linear mapping A : R?™ — R™ given by A(x,y) =
ax+fy. Applying this mapping to relation (1.12) with S replaced by S x So
it follows by Lemma 1.8 that

aﬁ'(aSl + ,382) = aff(A(S’l X Sg)) = A(aﬁ’(Sl X Sg))
= A(a,ff(Sl) X aff(Sg)) = aaff(Sl) + ,Baff(Sg)

and this shows the desired result. |

An improvement of Lemma 1.6 in finite dimensional linear spaces is given
by the observation that any linear subspace (affine set) can be represented by
the set of finite linear (affine) combinations of a finite and fized subset S C
R™. Due to this finite representation it can be shown that linear subspaces
and affine sets are closed. Before presenting this improvement we introduce
the following definition.

Definition 1.8. The vectors Xq,...,x; are called affinely independent®® if
the vectors X1 — Xg, ..., X — Xg are linear independent.

To explain the name linear and affine independent we observe that the
vectors X, ..., X, are linear independent if and only if any x belonging to
lin({x1,...,x;}) can be represented as a unique linear combination of the
vectors Xi,...,X;x. An immediate consequence of the next result shows that
a similar observation also holds for affinely independent vectors with unique
linear combination replaced by unique affine combination.

Lemma 1.10. The vectors xq, ..., X are affinely independent if and only if
the system

Zf:o a;x; = 0 and Zf:o a; = 0.

has a unique solution and this is given by a; = 0 for every 0 < i < k.

affinely independent
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Proof. For a given set of affine independent vectors xg, ..., x; we consider

the system
k k
Zi:o a;x; = 0 and Zi:(} a; = 0.

Clearly for «y, ..., ay satisfying the above system we obtain that

k k
Zz’:l a;j(x; —x0) = 0 and Zi:o a; = 0.

and this shows by Definition 1.8 applied to the first relation and ZLO a; =0
that a; = 0 for every 0 < ¢ < k. To verify the reverse inclusion we consider
for a given set of vectors xq, ..., X} the system

k
Z._ a;(x; —xq) = 0.
=1

or equivalently the system

k k
— E X + E o ax; =0
=1 =1

By our assumption the only solution of the above system is given by «; =
0,0 <17 < k and so the vectors x; — xg, ..., X — Xo are linear independent.

It is now possible to show the following improvement of Lemma 1.6.

Lemma 1.11. For any nonempty linear subspace L C R"™ there exists a set
of linear independent vectors x1,...,Xg, k < n such that

L = lin({x1, ..., X })

and for any nonempty affine set M C R"™ there exists a set of affinely inde-
pendent vectors Xq, ..., Xg, k < n satisfying

M = aff({x0, ..., X% })-

Proof. It is well known from linear algebra (cf.[17]) that any nonempty linear
subspace L C R" is generated by a finite set of at most n linear independent
vectors. Moreover, by Lemma 1.5 and the first part of this lemma it follows
for any affine set M C R™ and x¢y € M that

M —xy = lin({x; — %0, ..., Xt —X0})

with the set of vectors x; — xg,...,Xx — Xg,k < n linear independent or
equivalently x;,0 < i < k affine independent. Applying now Lemma 1.7
implies that

M = x¢ + lin({x1 — %0, ...,xx — X0 }) = aff({x0, ..., x¢ })
and this shows the desired result. I

In case the linear subspace L is represented by the linear hull of k£ linear
independent vectors the dimension dim(L) is given by k. By the definition
of linear independence any x belonging to L can be written as a unique
linear combination of the linear independent vectors x1, ..., X;, while at the
same time this implies that dim(L) is well defined. Moreover, the dimension
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dim(M) of an affine set M is by definition the dimension of the unique sub-
space Ljs parallel to M. By Lemma 1.10 it is also clear that any x belonging
to M can be written as a unique affine combination of affine independent
vectors Xxg, ..., Xx. Finally we observe for completeness that the dimension
dim(S) of an arbitrary set S?° is given by dim(aff(S)). An immediate and
important consequence of the finite representation of any affine set is given
by the next result.

Lemma 1.12. Any nonempty affine set M C R™ is closed.

Proof. Since any affine set is a translation of a linear subspace it is sufficient
to prove that a linear subspace is closed. By Lemma 1.11 it follows for a
given linear subspace L C R" that there exists a set of linear independent
vectors Xi, .., Xk, k < n satisfying L = lin({x1, .., xx}) and to prove that this
set is closed we consider some sequence {y, : n € N} C L given by

B P
(1.13) Yn = Zi:1 ain x; and satisfying 711%10 VY = Yoo-

By lemma 1.1 it is now sufficient to show that y,, belongs to L. Since the
set {x1,..,Xx} consists of linear independent vectors we can apply Lemma
1.4 and so by relation (1.13) there exist some ¢y > 0 and ¢ > 0 such that

k
o> yalz e ol

for every n € N. Hence by Lemma 1.3 the sequence a(™ is contained in a
compact set and has therefore a convergent subsequence with limit ().
This implies by relation (1.13) that

m
Yoo = Zi:l az(oo)xi
and this show that y., belongs to L. I

Since by Lemma 1.12 any affine or linear hull of a given nonempty set
S C R" is closed we obtain by the definition of the hull operation that

cl(S) C aff(S) C lin(S)
and this yields by the monotonicity of the hull operation that
(1.14) aff(cl((S)) = aff(S) and lin(cl(S)) = lin(S).

In contrast to the primal representation of a linear subspace or affine set
given by Lemma 1.11 we can also give a so-called dual representation®® of
these sets. From a geometrical point of view a primal representation is a
representation from “within” the set while a dual representation turns out
to be a representation from “outside” the set. Such a characterisation can

be seen as a “improvement ” of the hull operation given by relations (1.7)
and (1.8).

25 dimension of arbitrary set S
26 dual representation
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Definition 1.9. If S C R" is some nonempty set then the nonempty set
S+ C R™ given by

St ={x* € R":xTx* =0 for every x € S}
is called the orthogonal complement of the set S.

It is easy to verify that the orthogonal complement S+ of the set S is a
nonempty linear subspace. Moreover, a basic result (cf.[17]) in linear algebra
is given by the following.

Lemma 1.13. For any nonempty linear subspace L its so-called biorthogo-
nal complement (LY)* equals L. Moreover, every x € R" can be uniquely
decomposed as the sum of an element from L and L and these elements are
respectively the orthogonal projection of x on L and L*. Finally n = dim(L)
+ dim(L*).

By the above lemma a so-called dual representation of any linear hull
lin(S) can be given using the following procedure. It is easy to verify for
any S C Sy that 5’2L C 5’1L and so (Sll)J- C (Sj)J-. Since S C lin(S) this
yields by Lemma 1.13 that

(81t C (lin(S)1)* =1in(S).
Moreover, (S+)* is clearly a linear subspace containing S and hence by the
definition of a linear hull we obtain the dual representation
(1.15) (81t = lin(9).
For affine hulls it follows by Lemma 1.7 and relation (1.15) that
aff(S) = xo + ((S — x0) ") "

for every xg belonging to aff(S). Since it is easy to verify that A" (x; —x¢) = 0
for every A belonging to (S—xg)* and x; € aff(S) we obtain that (S—xq)* C
(S — x1)* for every xg,x; € aff(S) and by a similar argument the reverse
inclusion also holds. Hence it follows that

(S —x0)" = (S—x)"

for every xg,x1 belonging to aff(S) and so a dual representation of the affine
hull of a set S is given by

(1.16) aff(S) = xo + ((S — x1)H)*+
for every xg,x; € aff(S). For arbitrary affine sets a consequence of the dual

representation (1.16) is given by the following lemma and this shows again
that this characterization is a representation from “outside” the set.

Lemma 1.14. The set M C R™ is a nonempty affine set of dimension
n—m <n if and only if there exists some m X n matriz A of rank m and
some d € R™ such that

M ={x€eR": Ax =d}.

A similar result holds for any linear subspace L with d = 0.
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Proof. We only show that any linear subspace has the above representation.
The remaining parts can be easily verified. Clearly by Lemma 1.13 the linear
subspace L+ has dimension m and so by Lemma 1.11 the linear subspace
L+ equals lin({x1, ...,X;, }) with x1,...,X,, a set of m linearly independent
vectors. Taking the matrix A consisting of the columns x3, ..., x,, it follows
due to relation (1.15) that

L=(L"*={xeR": Ax =0}
and this shows the desired result. I

The above result concludes our discussion of linear subspaces and affine
sets and we continue now with sets which are the main topic of study within
the field of convex and quasiconvex analysis. These sets are introduced in
the next definition.

Definition 1.10. A nonempty set C C R™ is called a convex set’” or convex
if aC+(1—a)C C C for every 0 < a < 1. Moreover, a nonempty set K C R"™
is called a cone if aK C K for every a > 0.

Observe an affine set is clearly a convex set but not every convex set is an
affine set and hence convex analysis is an extension of linear algebra. Also
it is easy to verify for any affine mapping A : R™ — R™ that the set A(C)
is convex for any nonempty convex set C' C R™ and that the set A(K) is a
cone for K C R™ a nonempty cone and A : R" — R™ a linear mapping. By
a similar proof as used in Lemma 1.5 one can also show for every cone K
that

(1.17) K convex & K + K C K.

28

To relate convex sets to convex cones*® we observe for R, := [0, 00) and any

nonempty set S C R"™ that
R, (S x {1}) :={(ax,0) :a>0,x € S} C R""!

is a cone. This implies by relation (1.17) that the set R (C x {1}) is a
convex cone for any nonempty convex set C' C R"™ It is now clear for any
set S C R™ that

(1.18) R(Sx {1}) N (R x {1}) = § x {1}

and so any convex set C' can be seen as an intersection of the convex cone
R, (C x {1}) and the affine set R™ x {1}. This shows that convex sets are
closely related to convex cones and by relation (1.18) one can study convex
sets by only studying affine sets and convex cones containing 0. We will not
pursue this approach but only remark that the above relation is sometimes
useful. We also mention that it is easy to verify that the set A(C) is convex
for any convex set C' and A : R" — R™ an affine mapping, while the set
A(K) is a convex cone for K a convex cone and A a linear mapping. To

2T convex set
28 convex cone
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introduce an important class of convex sets we consider the affine mappings
A: R™ — R given by

Ax)=a'x+b
with a € R" and b € R. The set H<(a,b) represented by
(1.19) H<(a,b) ={x € R":aTx < b}

is called a halfspace?® and clearly this halfspace is an open convex set. More-
over, the set

(1.20) H<(a,b) = {x € R":aTx < b}

is also called a halfspace and this set is clearly a closed convex set. An

important subclass of convex sets is now given by the following definition
(cf.[22]).

Definition 1.11. A set C, C R"™ is called evenly convex or an evenly convex
set if Ce s the intersection of a collection of open halfspaces or C, = R".

Since any closed halfspace H<(a,b) can be obtained by intersecting the
open halfspaces H<(a,b + %),n > 1 it follows that any closed halfspace is
evenly convex. In Section 3 we will show that any closed and open convex
set is evenly convex. However, there exist convex sets which are not evenly
convex and an example of a convex set which is not evenly convex is shown
at page 10 of Gromicho (cf. [9]).

Since the intersection N;c;C; is again convex for any collection Cy, 1 € T
of convex sets and R" is a convex set we can apply to any nonempty set S
the so-called convez hull operation®® and this results in the set

(1.21) co(S) :=N{C : S C C and C convex }.

By the preservation of convexity under intersection the set co(S) is clearly
the smallest convex set containing S and as one might expect this set is
called the convex hull generated by S3'. Moreover, if S is a finite set then
the convex hull co(S) is called finitely generated. Since by definition evenly
convex sets are also closed under intersection we can similarly apply to any
nonempty set S the so-called evenly convex hull operation3? and this yields
the set

(1.22) eco(S):=N{C,: S C C, and C, evenly convex }.

This set is called the evenly convex hull generated by S®3 and by the above
observations it is the smallest evenly convex set containing S. Since any
evenly convex set is convex it follows that in general co(S) C eco(S). By
the so-called canonic hull operation3* one can also construct the smallest

halfspace

30convex hull operation

3!convex hull generated by S
32evenly convex hull operation
33evenly convex hull generated by S
34canonic hull operation
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convex cone containing S and the smallest convex cone containing S U {0}.
The last set is given by

(1.23) cone(S) :=N{K : SU{0} C K and K convex cone}.

and unfortunately this set is called the conver cone generated by S3° (cf.[18]).
Clearly the set cone(S) is in general not equal to the smallest cone containing
S unless the zero element belongs to S. To give an alternative characteriza-
tion of the above sets we introduce the next definition.

Definition 1.12. If S C R" is a nonempty set then a finite (strict) canon-
ical combination of elements of the set S is given by Y /" c;x; with o
(positive) nonnegative and {xi,...,x,} C S. Moreover, a finite convex com-
bination of elements of the set S is given by > " | a;x; with a; nonnegative
satisfying > iy o =1 and {x1,...,x,} C S.

It is now easy to give the following so-called primal representation of a
convex set C' and a convex cone K.

Lemma 1.15. A nonempty set C' C R" is convex if and only if it contains
all finite convex combinations of elements of C. Moreover, a cone K C R"
s convex if and only if it contains all finite strict canonical combinations of
the set K.

Proof. Clearly if S contains all finite convex combinations then in particular
aS + (1 —a)S C S for every 0 < a < 1 and so S is convex. To prove the
reverse implication let S be convex and assume any convex combination of
k elements of S belongs to S. We will now show that this also holds for any
convex combination of k£ + 1 elements of S. Introduce therefore the positive

scalars «;,1 = 1,..,k + 1 satisfying Zfill a; = 1. If B, = 173;“ > 0 for
1 =1, ...,k then clearly the identity

k+1 k
(1.24) Zi:l ;S = (1 — apq1) Zi:l BiS + ag41S.

holds. Since Zle B; = 1 this yields by our induction assumption that
Zle B;S C S and hence by the convexity of S and relation (1.24) we obtain
that any convex combination of k 4 1 elements belong to S. This shows the
first part and to verify the second part one can apply a similar proof. I

An immediate consequence of the above lemma is given by the next result.

Lemma 1.16. For any set S C R™ it follows that the set co(S) equals all
finite convex combinations of the set S. Moreover, the set cone(S) equals
all finite canonical combinations of the set S while the smallest convex cone
containing S equals aoll finite strict canonical combinations of the set S.

Proof. We only give a proof of the first part since the other parts can be
proved similarly. If V denotes the set of all finite convex combinations of
the set S then by Lemma 1.15 the set V' is a convex set containing S and

35convex cone generated by S
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hence co(S) C V. Since co(S) is convex we can apply again Lemma 1.15 and
so co(S) contains all its finite convex combinations. In particular it contains
all the finite convex combinations of the set S and hence V' C co(S). i

By Lemma 1.16 it is clear that
(1.25) cone(S) = UyX_ 1{2 ;S :a; >0}
while
m
(1.26) = UX_ 1{2 Z_:I a; = 1,05 > 0}

We observe that the above representatlons are the ”convex equivalences” of
the representation for lin(S) and aff(S) given by relations (1.9) and (1.10).
Moreover, to relate the above representations it is easy to see that

(1.27) cone(S) = Ry (co(S5)).

The above characterizations can also be seen as primal representations.
Starting with the study of convex sets and cones and reconsidering the finite
representation discussed in Lemma 1.11 of affine sets and linear subspaces
we might now wonder whether a convex cone K containing 0 can always
be seen as a set of finite canonical combinations of a finite and fixed set
SCR".

Example 1.1. Contrary to linear subspaces it is not true that any convez
cone containing 0 is generated by a finite set. An example is given by the
so-called ice-cream (convex and closed) cone K represented by

K :={(xt):| x|<t} S R

A similar observation holds for convex sets as shown by the Euclidean unit

ball E.

Despite this negative result it is possible in finite dimensional linear spaces
to improve for convex cones and convex sets the representation given by
relations (1.25) and (1.26). In the next result it is shown that any element
belonging to cone(S) can be written as a canonical combination of at most
n linear independent vectors belonging to S. This is called Caratheodory’s
theorem for convex cones. Using this result and relation (1.18) a related
result holds for convex sets and in this case linear independent is replaced
by affine independent and at most n is replaced by at most n + 1. Clearly
this result is weaker than the corresponding result for affine sets and linear
subspaces since for affine sets and linear subspaces we can take for any
element belonging to these sets the same finite set.

Lemma 1.17. For any nonempty set S C R™ and any x € cone(S) there
erists a set of linear independent vectors xi,...,Xg, k < n belonging to S
such that x can be written as o finite canonical combination of these vectors
or equivalently

k
XZZ- | i, > 0.
1=
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Moreover, for any x € co(S) there exists a set of affinely independent vectors
X0y s Xy k < n4 1 belonging to S such that x can be written as a finite
convex combination of these vectors or equivalently

k k
x:E X4, a; > 0 and g o= 1.
=1 =1

Proof. To show the first part we consider an arbitrary x belonging to cone(.S).
Clearly for x = 0 the result holds and so x should be nonzero. Applying
now relation (1.25) one can find a finite set {xy,...,xn} C S such that

m ., .
y = Zi:l a;X;, a; posltive
If the set of vectors x1, ..., X,, are linear independent then clearly m < n and
we are done. Therefore let the set of vectors x1, ..., x,, be linear dependent

and by this assumption one can find some nonzero sequence {3, : 1 <1i < m}
satisfying

m
(1.28) Zz’:l Bix;=0.
If some of the scalars 3; are positive introduce

€:= min{% :3; >0} and i* := arg min{% 1 B; > 0}

) 7

and this implies by relation (1.28) that
(1.29) y = Zizl’i#*(ai — €f;)%;.

For all 3; negative we replace the minus sign by a plus sign in the above
relation. By relation (1.29) we obtain that y can be written as a canonical
combination of at most m — 1 vectors and by applying the same procedure
until all the vectors in the canonical sum are linearly independent we obtain
the desired result. Observe this can only happen for m < n. To show the
second part it follows for any x € co(S) that

(x,1) € co(S) x {1} C R (co(S) x {1}).

Applying now relation (1.18) and observing that R, (co(S) x {1}) C R"™!is
the convex cone generated by S x {1} we obtain by the first part that there
exists a set (xp, 1), ...(xg, 1) € R""1 k <n+1 of linear independent vectors
such that

k k

X = Zi:(} a;Xi, a; > 0and 1 = Zi:(} Q;.

Since the set (xg,1),...(xx,1) € R""1 k < n are linear independent this
implies that the system

k .
;Ai (}?) =0

has the unique solution A; = 0 and so by Lemma 1.10 we obtain that the
vectors xg, ..., X are affinely independent. I
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By the above result it seems that convex cones (convex sets) are gener-
alizations of linear subspaces (affine sets). Unfortunately opposed to linear
subspaces it is not true that any convex cone is closed. The same holds
for convex sets. It will be shown for closed convex sets and closed convex
cones that it is relatively easy to give a dual representation of those sets and
this is the main reason why we like to identify which classes of convex sets
and convex cones are closed. Since affine sets can always be generated by a
finite set of affine independent vectors (and this guarantees that affine sets
are closed) and we know by Example 1.1 that this is not true for convex
sets one might now wonder which property replacing finiteness should be
imposed on S to guarantee that co(S) is closed. Looking at the following
counterexample it is not sufficient to impose that the generator S is a closed
set and this implies that we need a stronger property.

Example 1.2. If the set S C R? is given by the closed set
S=0U{(z,1):2>0}
then it follows by Lemma 1.16 that
co(S) ={(z1,22) : 0 <22 < 1,21 > 0} U {0}
and this convex set is clearly not closed.

In the above counterexample the closed set S is unbounded and this
prevents co(S) to be closed. Imposing now the additional property that the
closed set .S is bounded or equivalently by Lemma 1.3 compact one can show
that co(S) is indeed closed and even compact. At the same time this yields
a way to identify for which sets S the set cone(S) is closed. So finiteness of
the generator S for affine sets should be replaced by compactness of .S for
convex hulls. To prove the next result we first introduce the so-called unit
simplez3% A, 41 in R™T! defined by

n+1
(1.30) Api1 i ={a: Zj o; =1 and o; > 0} C R"TL,
By Lemma 1.17 it follows that
(1.31) co(S) = f(Apyr x 8™

with S™ denoting the m-fold Cartesian product of the set S C R"™ and the
function f is given by
n+1
fla,xi, . xp41) = Zi:l QiXi.
A related observation holds for convex cones and using the above observa-

tions one can now show the following result.

Lemma 1.18. If the nonempty set S C R"™ is compact then the set co(S)
is compact. Moreover, if S is compact and O does not belong to co(S) then
the set cone(S) is closed.

36ynit simplex
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Proof. The unit simplex A,, ;1 is closed and bounded and hence by Lemma
1.3 compact. Since S is compact it is easy to show again by Lemma 1.3
that the Cartesian product A,; x S"T! is compact. Since it is well-known
(cf.[19]) that h(A) is compact for A is compact and h : R™ — RP a continu-
ous vector valued function we obtain by the continuity of the function f and
relation () that co(S) is compact. This proves the first part and to verify
the second part we first observe by relation (1.27) that cone(S)=Ry(co(S))
and so it is sufficient to show that the set R4 (co(S5)) is closed. Consider now
an arbitrary sequence ¢,x,,n € N belonging to R, (co(S)) and satisfying

(1.32) lim t,x, =y.
ntoo

By the continuity of the Euclidean norm relation (1.32) implies that
(1.33) lim ¢, || x, ||= lim || t,x, [|=| ¥ || -
ntoo ntoo
Moreover, by the first part the set co(S) is compact and so we can find by
Lemma 1.3 a subsequence Ny C N satisfying

1.34 li n = Xoo .
(1.34) pim X = X € co(S)

Since the zero element does not belong to co(S) this implies

i = > 0.
ne]{{ﬁoo Han “xooH

and hence by (1.33) we obtain

t
i b=t vl
n€Notoo neNotoo || Xyl Il oo ||

< o0
This means that the sequence t,,n € Ny is convergent to a finite number
ts and this implies by relations (1.32) and (1.34) that
Y = tooXoo € Ri(co(95))
showing the desired result. I

One may wonder whether for S compact and 0 € co(S) the set cone(S) is
still closed. As shown by the following counterexample this does not hold.

Example 1.3. If the set S C R? is given by the compact set
S ={(x1,22) : (w1 —1)* + 23 <1}

then clearly 0 € S and by relation (1.27) it follows that
cone(S) = {(z1,22) : z1 > 0} U {0}

Observe now that the set cone(S) is not closed. This shows that the condition
0 ¢ S is necessary in Lemma 1.18.

An immediate consequence of Caratheodory’s theorem and Lemma 1.18
is given by the next result for convex cones generated by some nonempty
set S.



CONVEX AND QUASICONVEX ANALYSIS. 21

Lemma 1.19. If the set S C R™ contains a finite number of elements then
the set cone(S) is closed.

Proof. For any finite set S we consider the finite set V' given by
V ={S;:85; CS and S; consists of linear independent vectors}

By the first part of Lemma 1.17 it follows for any x belonging to cone(.S)
that there exists some S; € V such that x € cone(S;) and this yields

(1.35) cone(S) = Ug,evcone(S;)

Since S; consists of a finite set of linear independent vectors it follows that
S; is compact and 0 does not belong to co(S) and so by the second part of
Lemma 1.18 we obtain that cone(sS;) is closed for every S; belonging to the
finite set V. Hence it follows by relation (1.35) that the set cone(S) is closed
and this shows the desired result. |

A generalization of the orthogonality relation for linear subspaces is given
by the polarity relation for convex cones.

Definition 1.13. If K C R" is a nonempty convex cone then the set K°
given by

KY%:={x* € R": xTx* <0 for every x € K}
is called the polar cone’” of K.

In case L is a linear subspace it is easy to verify that L = L' and so
the polar operator applied to a linear subspace reduces to the orthogonal
operator. Moreover, it is also easy to verify that the nonempty set K° is a
closed convex cone. Without proof we now mention for K a closed convex
cone that (K°)? = K and this so-called bipolar result enables us to give a
dual representation for closed convex sets and closed convex cones. We only
mention this result to make clear that in convex analysis we are actually
trying to generalize the orthogonality relation applied to linear subspaces
and this enables us to obtain also for closed convex sets and closed convex
cones dual representations. Due to this it is hopefully clear that in convex
analysis one is interested in closed convex cones and closed convex sets. We
will continue with these dual representations in Section 1.3 after a proof
of the bipolar result. To be able to prove the strongest possible results
for convex sets in finite dimensional spaces we also need to introduce the
definition of a relative interior point. This generalizes the notion of an
interior point given by Definition 1.1.

Definition 1.14. A vector x € R" is called a relative interior point>® of
the set S C R™ if x belongs to aff(S) and there exists some € > 0 such that

(x+eE)Naff(S) CS.

3Tpolar cone
38relative interior point
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A set S C R™ is called regular or a regular set® if the set ri(S) with
ri(S) := {x € R" : the vector x is a relative interior point of S}

is nonempty. Moreover, the set S C R™ is called relatively open or a relatively
open set’® if S equals ri(S).

As shown by the next example it is quite natural to assume that x belongs
to aff(S). This assumption implies by the second part of the definition of a
relative interior point that x belongs to S.

Example 1.4. Consider the set S C R? given by
S ={0} x[1,-1]

and let x = (1,0). Clearly the set aff(S) is given by {0} x R and for e =1
it follows that

(x+ E) N aff(S) C S

If in the definition of a relative interior point one would delete the condition
that x must belong to aff(S) then according to this the vector (1,0) would
be a relative interior point of the set S. However, the vector (1,0) is not an
element of S and so this definition would not be natural.

By the above definition it is clear for S C R"™ full dimensional or equiv-
alently aff(S) = R" that relative interior means interior and hence relative
refers to relative with respect to aff(S). By the same definition we also ob-
tain that every affine manifold is relatively open. Moreover, since by Lemma,
1.12 the set aff(S) is closed it follows that cl(S) C aff(S) and so it is useless
to introduce closure relative to the affine hull of a given set S. Contrary to
the different hull operations the relative interior operator is not a monotone
operator. This means that S; C Sy does not imply that ri(S1) C ri(S2).

Example 1.5. Consider the convex sets C; = {0} and Cy = [0,1]. For
these sets it follows that ri(Cy) = {0} and ri(Cs) = (0,1) and so ri(Cy) &
ri(Cy). Moreover, it follows that aff(C1) # aff(Cs).

To guarantee that the relative interior operator is monotone when applied
to the sets S7 C Sy C R"™ we need to impose the additional condition that
aff(S1) = aff(S2). If this holds it is easy to check

(136) Sl - 82 = I‘I(Sl) - I“I(Sg)

By the above observation it is important to known which different sets can-
not be distinguished by the affine operator. The next result shows that this
holds for the sets .S, cl(S), co(S) and cl(co(S5)).

Lemma 1.20. It follows for every nonempty set S C R™ that
aff(:S) = aff(cl(S)) = aff(co(S)) = aff(cl(co(S))).

regular set
40relatively open set
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Proof. Since the affine operator is monotone and S C co(S) C cl(co(S5)) and
S C cl(S) C cl(co(S)) for any nonempty set S it is sufficient to verify that
aff(S) = aff(cl(co(S))). By Lemma 1.12 the set aff(S) containing S is closed
and since aff(S) is also convex and cl(co(S)) is the smallest closed convex
set containing S it follows that

cl(co(S)) C aff(S).
This yields by the monotonicity of the affine operator that
aff(cl(co(S))) C aff(aff(S)) = aff(.5)

Again by the monotonicity of the affine operator it follows that aff(S) C
aff(cl(co(S))) and this verifies the desired result. I

By relation (1.36) and Lemma 1.20 it follows immediately that
(1.37) ri(S) Cri(cl(S)) C ri(cl(co(S))) and ri(S) C ri(co(S5))
for arbitrary sets § C R™. Moreover, since in Lemma 1.8 it is shown that
aff(S1 x S2) = aff(S1) x aff(Ss)
for any nonempty sets S; C R™ and S; C R™and E,,+, C E,, X E, with
E,, denoting the n-dimensional Euclidean unit ball it is easy to verify that
(1.38) ri(S1 x S2) =ri(S7) x ri(Ss).

An alternative definition of a relative interior point which is needed to show
that the relative interior operator is invariant when applied to a relatively
open set is given by the next lemma.

Lemma 1.21. If the set S C R" is regular then the vector x is a relative
interior point of the set S if and only x belongs to aff(S) and there exists
some € > 0 such that

(x + eE) N aff(S) C ri(S).
Proof. Since by assumption

(x + eE) Naff(S) C ri(S)
with ri(S) nonempty and x belongs to aff(.S) it follows immediately that
x € ri(S). To verify the reverse implication let x be a relative interior point

of the set S. This means that the point x belongs to aff(S) and there exists
some € > (0 such that

(1.39) (x+eE)Naff(S) C S.

Since x belongs to aff(S) we obtain that the intersection (x+ dE)N aff(S) is
nonempty for every § > 0. Consider now some arbitrary point y belonging
to (x + SE)N aff(S). For this point y it follows that

y-l—%E - x+§E + %E =x+el
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and applying relation (1.39) it is clear that
(1.40) (y+§E) Naff(S) C (x + eE) Naff(S) C S

Due to y also belongs to aff(S) we obtain by relation (1.40) that y is a
relative interior point of S and since y is arbitrary chosen this implies

(x + %E) N aff(S) C ri(S)
and we have shown the desired result.

In case we consider the rational numbers () it is clear that the set () is not
regular and so there exist sets which are not regular. The next result shows
that for regular sets S C R™ the affine hull operation cannot distinguish the
sets ri(S) and S and so this lemma can be seen as an extension of Lemma
1.20.

Lemma 1.22. If the set S C R" is reqular then it follows that
aff(ri(S)) = aff(S).

Proof. By the monotonicity of the affine hull operator it is clear that
aff(ri(5)) C aff(s5).

To show the converse inclusion we consider some x € S. Since the set S is
regular one can find some y € ri(S) C S and so by Lemma 1.21 there exists
some € > (0 satisfying

(1.41) (y + ) N aff(S) C ri(S).

Clearly the set [y,x] := {(1 — @)y + ax : 0 < a < 1} belongs to co(S) C
aff(S) and this implies by relation (1.41) that

(y + €E) N[y, x] Cri(S).

This means that the halfline starting in y and passing through x; € (y +
eE) N [y, x] is contained in aff(ri(S)) and contains x. Hence x belongs to
aff(ri(S)) and we have shown that S C aff(ri(S)) This yields that aff(S) C
aff(ri(S)) and the lemma has been verified. I

An immediate consequence of Lemma 1.22 and 1.21 is given by the ob-
servation that for any regular set S C R" it follows that x relative interior
point of S if and only if x belongs to aff(ri(5)) and there exists some € > 0
satisfying (x + eE)N aff(ri(S)) C ri(S). This implies for every regular set
S C R" that

ri(ri(S)) = ri(S).

and since by definition ri(()) = @) implying that the above result is also correct
for any nonregular set we obtain for any set S that

(1.42) ri(ri(9)) = ri(S).

Keeping in mind the close relationship between affine hulls and convex sets
and the observation that affine manifolds are regular (in fact ri(M) = M!)
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we might wonder whether convex sets are regular. This result indeed holds
and to show this we introduce the class of convex hulls generated by a finite
set of affinely independent vectors. Clearly these sets mostly “resemble”
affine hulls.

Definition 1.15. A k-simplex S C R" is the convex hull of k + 1 affinely
independent vectors Xg, ..., Xy or equivalently S = co({xg, ..., Xk }).

Since by Lemma 1.20 it follows that
aff(co({xo,...,x¢})) = aff({xo, ..., X% })

we obtain by the definition of the dimension of a set and Lemma 1.7 that
for any k-simplex S C R™ the dimension dim(S) is given by

(1.43) dim(S) = dim(lin({x; — %9, ..., xx —X0})) =k < n.

If we do not want to stress the dimension we also refer to a k-simplex as a
simplex. Observe the already encountered unit simplex A, ;1 C R"*! given
by relation (1.30) has the representation

A1 =co({er,...,en11})

with e; € R"*! denoting the ith unit vector,1 < ¢ < n + 1 and so this set is
actually a n-simplex in R"*!. For simplices the next result is geometrically
obvious and so we will not give a proof of this result.

Lemma 1.23. Any k-simplex S C R™ given by S = co({xq, ..., X} }) is reg-
ular and the set ri(S) has the representation

k k
ri(S) = {Zizo QX Zi:(} a; = 1,05 > 0}.

To show that any convex set C' is regular we need to prove the following
result.

Lemma 1.24. For every nonempty convex set C' C R™ it follows that there
exist a simplex Smax such that Smax C C and aff(C) = aff(Smax)-

Proof. Since C' C R™ is nonempty it clearly contains the 0-simplex co({x})
for any x € C and by relation (1.43) it will never contain a (n + 1)-simplex.
Hence it follows that

kmax := max{k : there exists a k-simplex S C C'}
is well defined. For the selected kmax-simplex Spmax € C given by
Smax = cO({X0, -, Xpar })
it clearly follows that aff(Smax) C aff(C'). To show that the inclusion
aff(C) C aft(Smax)

holds it is sufficient to verify that C C aff(Syax). To prove this we assume
by contradiction that there exists some x € C with the property that

(1.44) x ¢ aff(Smax) = aff({x0, ..., Xk,.. })-
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If additionally the vectors x¢ — x, ..., Xj,,,, — X are linear dependent it must
follow by definition that the vectors x,xy, ..., X,,,, are affinely dependent
and this implies by Lemma 1.10 that the system

kmax kmax
(1.45) Bx + Zi:o o;x; =0 and 5+ Zi:o a; = 0.

has a nonzero solution (8%, aj,...,a; ). Since by asssumption the vectors
X0, .-y Xk, are affinely independent it follows by contradiction and relation
(1.45) that the scalar 8* is nonzero and hence we obtain that

k max

1 klllax 1
X = 5 Zizo a;x; and P o; = 1.

Therefore the vector x belongs to aff({xq,...,x,_,. }) and this contradicts
relation (1.44). Hence it must follow that the vectors xg — x, ..., x5, — X
are linear independent and this yields that the simplex

S =co({x,x0, ..., Xp.. ) CC

has dimension kp,x + 1. Again we obtain a contradiction and so it follows
that C' C aff(Spmax) showing the desired result. &

The next important existence result is an immediate consequence of Lemma,
1.23 and 1.24.

Lemma 1.25. Every nonempty convex set C' C R™ is regular.

We will now list some important properties of relative interiors. To start
with this we first verify the following technical result.

Lemma 1.26. If S1,52 C R" are nonempty sets then it follows for every
0<a<l that

(aS1 + (1 — @)S2) Naff(S1) C @Sy + (1 — a)(S2 N aff(S1)).
Proof. Consider for 0 < a < 1 the vector
y =ax; + (1 —a)xe

with x; € S;, ¢ = 1,2 and y € aff(S;). It is now necessary to verify that xo
belongs to SoN aff(S;). By the definition of y and 0 < a < 1 we obtain that

1 1
y—lfaxle aff(Sy) — @

S

X2

- 1l -« l—«o 11—«
and so it follows that x5 belongs to aff(S7). Hence the vector x5 belongs to

SoN aff(S7) and this shows the desired result. I

Applying now Lemma 1.26 the next important result for convex sets can
be shown. This result will play an important role in the proof of the subse-
quent results.

Lemma 1.27. IfC' C R" is a nonempty convex set then it follows for every
0<a<1 that

acl(C) + (1 — a)ri(C) C ri(C).
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Proof. To prove the above result it is sufficient to show that
acl(C) + (1 — a)x2 Cri(C)
for any fixed x3 € ri(C) and 0 < a < 1. Clearly this set belongs to aff(C)
and since x2 belongs to ri(C) C C there exists some € > 0 satisfying
1
(14 a)e B

(1.46) (%2 +

) N aff(C) C C.

Moreover, by Lemma 1.1 we know that
cl(C) CC +e€E.
and this implies

1+«

acl(C) + (1 —a)xo+ £ C aC + (1 — a)(x2 + 1_ QEE)

Hence by Lemma 1.26 it follows that
(acl(C) + (1 — a)x2 + €E) Naff(C)
1+«
-«
and this yields by relation (1.46) and the convexity of the set C' that
(acl(C)+ (1 —a)x2+eE)Naff(C) CalC + (1 —a)C CC.

C oC+(1-a) <(x2 + ¢E) ﬂaff(C))

Hence we have verified that
acl(C) + (1 — a)xy Cri(C)
and this shows the result. |

By Lemma 1.25 and 1.27 it follows immediately for any nonempty convex
set C that the set ri(C') is nonempty and convex. Also by Lemma 1.1 it is
easy to verify that cl(C) is a convex set. An easy and important consequence
of Lemma 1.27 is given by the observation that the relative interior operator
cannot distinguish the convex sets C and cl(C). A similar observation applies
to the closure operator applied to the convex sets ri(C') and C.

Lemma 1.28. If C' C R" is a nonempty convex set then it follows that
cl(ri(C)) = cl(C) and ri(C) = ri(cl(C))

Proof. 'To prove the first relation we only need to check that cl(C) C cl(ri(C)).
To verify this we consider some x € cl(C) and since ri(C) is nonempty we
select some y belonging to ri(C). By Lemma 1.27 the half-open line segment
[y, x) belongs to ri(C') and this implies that the vector x belongs to cl(ri(C).
Hence we have shown that

cl(C) C cl(xi(C))

and the first equality is verified. To prove the second relation it follows
immediately by relation (1.36) that ri(C') C ri(cl(C)). To verify the inclusion
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ri(cl(C)) C ri(C) consider some arbitrary x belonging to ri(cl(C)) and so
one can find some € > 0 satisfying

(1.47) (x + eE) Nnaff(cl(C)) C cl(O).

Moreover, due to ri(C) is nonempty one can find some y belonging to ri(C)
and for this specific y construct the line M := {(1—t)x+ty : t € R} through
the points x and y. Since x belongs to ri(cl(C)) C cl(C) and y belongs to
ri(C) C cl(C) it follows that M C aff(cl(C)) and so by relation (1.47) there
exists some ;1 < 0 satisfying
y1:= (1 —p)x+ py € cl(C).
By the definition of y; it follows that
1 P

IR -y

and since y; belongs to cl(C) and y belongs to ri(C') this yields by Lemma 1.27
and relation (1.48) that x € ri(C'). Hence we have shown that

ri(cl(C)) C ri(C)

(1.48) X

Yy

and this proves the second equality. I

In the above lemma one might wonder whether the convexity of the set
C is necessary. In the following example we present a nonconvex regular
set S with ri(S) and cl(S) convex and this set does not satisfy the result of
Lemma, 1.28.

Example 1.6. Let S C R be given by the set S :=1[0,1]U ((1,2] N Q). This
set is clearly not convez and ri(S) = (0,1) while cl(S) = [0,2]. Moreover, by
this observation we obtain immediately that ri(cl(S)) # ri(S) and cl(ri(S)) #
cl(S).

Looking at Example 1.6 it is possible to slightly weaken the assumption
in Lemma, 1.28 that C' is a nonempty convex set.

Definition 1.16. A nonempty set S C R"™ is called almost convez™ if the
set cl(S) is convex and ri(cl(S)) C S.

It is now possible to prove the following version of Lemma, 1.28 for almost
convex sets. This result also serves as an alternative definition of an almost
convex set.

Lemma 1.29. For any nonempty set S C R" it follows that
S is almost convex << cl(S) convex and ri(cl(S)) = ri(S)

< 1i(S) convex and cl(ri(S)) = cl(S).

41almost convex set
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Proof. If the nonempty set S is almost convex it follows by Lemma 1.25 that
cl(S) is a regular set and so by Lemma 1.22 we obtain
aff(ri(cl(S))) = aff(cl(S)) = aff(S).

Since by definition ri(cl(S)) € S this implies by relations (1.42) and (1.36)
that

ri(cl(S)) = ri(ri(cl(S))) C ri(S)
and using relation (1.37) we obtain ri(cl(S)) = ri(S). To verify the second
if-implication we observe that cl(S) convex implies ri(cl(S)) is convex and
since ri(cl(S)) = ri(S) this yields that the set ri(.S) is convex. Applying now
Lemma 1.28 to the convex set cl(S) it follows

cl(cl(S)) = cl(ri(cl(S))).
and using ri(cl(S)) = ri(S) we obtain
cl(S) = cl(cl(S)) = cl(ri(cl(S)) = cl(ri(5)).

To complete the proof we still need to show that ri(.S) convex and cl(ri(S)) =
cl(S) implies that the set S is almost convex. Since ri(.S) is convex we obtain
that cl(ri(S)) is convex and this yields using cl(ri(S)) = cl(S) that cl(S) is
convex. Moreover, applying first Lemma 1.28 to the convex set ri(S) and
relation (1.42) it follows that

ri(cl(ri(S))) = ri(ri(S)) = ri(S).
This implies using cl(S) =cl(ri(S)) that
ri(cl(S)) = ri(cl(ri(S))) =ri(S) C S
and hence we have verified that the set S is almost convex. I

By Lemma 1.28 and 1.29 a convex set is almost convex and any nonempty
almost convex set is regular. The following example presents a nonconvex
set which is almost convex.

Example 1.7. Let S denote a hypercube with some of the edges partly
deleted. As an ezample we take S = [0,1] x [0,1]\{(1,2z2) : 3 < 2o < 1}.
Clearly this set is not convex but it is certainly almost convez.

Applying now Lemma 1.29 and relation (1.42) it is possible to show the
following improvement of Lemma 1.27.

Lemma 1.30. If S C R" is a nonempty almost convez set then it follows
for every 0 < a < 1 that

acl(S) + (1 — a)ri(S) C ri(S).

Proof. Since S is a nonempty almost convex set we obtain by Lemma 1.29
and relation (1.42) that

(1.49) acl(S) + (1 — a)ri(S) = acl(ri(S)) + (1 — a)ri(ri(S))
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for every 0 < a < 1. Due to ri(S) is a nonempty convex set we may apply
Lemma 1.27 to relation (1.49) and this implies

acl(S) + (1 — a)ri(S) € ri(ri(S))
Using now relation (1.42) yields the desired result. I

Since for an almost convex set S it follows that ri(cl(S)) = ri(S) it is pos-
sible to give an equivalent definition of a relative interior point of an almost
convex set. This result is very useful in the proof of the weak separation
theorem.

Lemma 1.31. If the nonempty set S C R" is almost convex then if follows
that x € ri(S) if and only if x € aff(S) and there exists some € > 0 such
that

(x + eE) N aff(S) C cl(S).

An easy and important consequence of Lemma 1.29 is given by the fol-
lowing result.

Lemma 1.32. If 51,52 C R" are nonempty almost convex sets then it fol-
lows that

Cl(Sl) = Cl(SQ) = Ti(Sl) = ri(Sg) <~ m’(Sl) - SQ C Cl(Sl).
Proof. Since cl(S7) =cl(S3) we obtain by Lemma 1.29 that
ri(S1) = ri(cl(S1)) = ri(cl(S2)) = ri(Sa).

Moreover, if ri(S;) =ri(S2) it follows immediately that ri(S;) C Se. Again
by Lemma 1.29 we obtain

SQ g CI(SQ) = cl(ri(Sg)) = Cl(ri(Sl)) = Cl(Sl).

To verify the last implication we observe in case ri(S;) C Sz C cl(S7) that
again by Lemma 1.29

Cl(Sl) = Cl(I‘l(Sl)) g CI(SQ) g Cl(Sl)
and this shows the desired result. |

We will now give a primal representation of the relative interior of an
almost convex set S. This result will be used in the proof of the behaviour
of the relative interior operator under affine mappings.

Lemma 1.33. If S C R" is a nonempty almost convex set then it follows
that

ri(S) = {x€8:Vyeus) Iu<o such that (1 — p)x + py € S}
= {x € R": Vyces) Ju<o such that (1 — p)x + py € S}.
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Proof. We first verify the inclusion
ri(S) C {x € S : Vyea(s) Ju<o such that (1 — p)x + py € S}.

Let x € ri(S) C cl(S) and consider an arbitrary y €cl(S). Clearly for any
scalar ¢ the vector (1 —t)x+ty belongs to aff(S). Also, since x € ri(S) there
exists some € > 0 satisfying

(1.50) (x +eE)Naff(S) C S
and so one can find some p < 0 such that
(1 —p)x+py € x+ €k

Applying now relation (1.50) we obtain that (1 — p)x + py belongs to S
and this shows the desired inclusion. To verify the desired result it is now
sufficient to prove the inclusion

{x € R" : Vyca(s) u<o such that (1 — p)x + py € S} Cri(9).

Consider now an arbitrary x belonging to the first set. By Lemma 1.29 we

know that the set ri(S) is nonempty and so by our assumption there exists

for a given y € ri(S) Ccl(S) some p < 0 satisfying
yr:=(1—-px+py€s.

This yields by the definition of y; that

1 P

IR A ey

and since y € ri(S) and y; € S it follows by Lemma 1.30 that x € ri(S)

showing the desired result. I

X

Yy

The above result is equivalent to the geometrically obvious fact that for
S an almost convex set and any x € ri(S) and y € S the line segment [y, x|
can be extended beyond x without leaving S. Also, by relation (1.42) and
Lemma 1.29 another primal representation of ri(S) with S an almost convex
set is given by
ri(S) = {x € R" : Vyca(s) Ju<o such that (1 — p)x + py € ri(S)}.
Since affine mappings preserve convexity it is also of interest to know how the

relative interior operator behaves under affine mappings. This is discussed
in the next result.

Lemma 1.34. If A : R® — R™ is an affine mapping and C C R"™ is a
nonempty convez set then it follows that

A(ri(C)) = ri(A(C)).
Moreover, if C C R™ is a convex set satisfying
A7Yri(C)) ;== {x € R" : A(x) € ri(C)}
is nonempty then

ri(A-1(C)) = A1 (1i(C)).
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Proof. To verify the first equality we first observe by the continuity of the
mapping A that for any set S C R™ it must follow that

A(A(8)) C cA(A(S)).
This shows in combination with Lemma 1.28 that
A(C) C A(E(C)) = A((1i(C))) C cA(A(E(C))) C el(A(C)
and taking the closure at both sides implies
(1.51) cl(A(C)) = cl(A(ri(C)))
Since ri(C) is a convex set it follows that the set A(ri(C)) is convex and this
implies by Lemma 1.32 with S; := A(C) and S := A(ri(C)) and relation
(1.51) that also
ri(A(C)) = ri(A(ri(C)) C A(ri(C)).
To prove the reverse inclusion
A(ri(C)) € ri(A(C))

consider an arbitrary A(y) with y € ri(C). Since by Lemma 1.25 the set
ri(A(C)) C A(C) is nonempty one can find some y; € C satisfying A(y1) €
ri(A(C)) and using this point y; construct the line connecting y and y;.
Since y € ri(C) and y; € C there exists by Lemma 1.33 some p < 0
satisfying

y2:=(L—p)y+py1€C

Hence it follows that

and so

1 7
Aly) =—A -—A
(¥) 1—p (y2) 1—p (y1)
with A(y2) € A(C) and A(y;) € ri(A(C)). This implies by Lemma 1.27
that A(y) € ri(A(C)) and this shows the first result. The other result can

be proved similarly and so we omit it. |

Before showing the next result for almost convex sets we observe it is easy
to verify that

A(cl(5)) € cl(A(S))

for any affine mapping A : R” — R™ and S C R" an arbitrary nonempty
set. Taking now closures at both sides it follows by the monotonicity of
the closure operator that cl(A(cl(S)) C cl(cl(A(S))) =cl(A(S)) and since
trivially cl(A(S)) C cl(A(cl(S)) we obtain the equality

(1.52) cl(A(cl(S))) = cl(A(S)).

Using lemma, 1.34 it is now possible to prove the following composition result
for almost convex sets.
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Lemma 1.35. If A : R® — R™ is an affine mapping and S C R"™ is a
nonempty almost convez set then it follows that the set A(S) is almost convex
and

A(ri(S)) = ri(A(S)).

Proof. To show that the set A(S) is almost convex for S a nonempty almost
convex set we observe that cl(S) is convex and hence by relation (1.52) the
set cl(A(S)) is convex. Moreover, by the same relation and Lemma 1.28
applied to the set A(cl(S)) it follows that

ri(cl(A(S))) = ri(cl(A(cl(S)))) = ri(A(cl(S))).
Since by Lemma 1.34 and cl(S) is a convex set we know that ri(A(cl(S))) =
A(ri(cl(S))) this implies in combination with Lemma 1.29 that
(1.53) ri(cl(A(S))) = A(ri(cl(S))) = ri(A(cl(S))) = A(xi(S5)).

Applying now Lemma 1.29 shows that the set A(S) is almost convex. To
check the second part we observe by Lemma 1.29 and relation (1.53) that
ri(A(S)) = ri(cl(A(S)) = A(ri(S5))

and this shows the desired result. |

By Lemma 1.35 we obtain for any nonempty almost convex cone K C R"
and every « > 0 that
(1.54) ari(K) =ri(aK) C ri(K)

and this implies by Lemma 1.27 that ri(K) is a nonempty convex cone for
K an almost convex cone. Applying relation (1.54) and Lemma 1.30 we also
obtain for any nonempty almost convex cone K that

1 1
(1.55) cl(K) +1i(K) = 2(5el(K) + 5ri(K)) € 2ri(K) C ri(K).
An immediate consequence of Lemma 1.35 and relation (1.38) is given by

the following result.

Lemma 1.36. If the nonempty sets S; C R"™,i = 1,2 are almost convex and
«, B some scalars then it follows that

ri(aS1 + 8S2) = ari(St) + Bri(S2).

Proof. Introduce the linear mapping A : R?" — R" given by A(x,y) =
ax + fy. Applying this mapping to Lemma 1.35 with S replaced by 57 x S
and using relation (1.38) it follows that
ri(aS) + BS2) = ri(A(S1 x S2)) = A(ri(S1 x S2))
= A(ri(S1) x ri(S2)) = ari(S1) + Pri(S2)
and this shows the desired result. I
We might now wonder whether the nonempty intersection of almost con-

vex sets is again almost convex. In the next example we show that in general
this is not the case.
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Example 1.8. Let the sets S1 and Sy C R? be given by

Sy = 1[1,2] x [0,1] and Ss := [0,1] x [0, \{(L, 22) : i <z < %}.

Both sets are almost convex and their nonempty intersection s given by the
set

S1NSy={(lL,z2):0< 29 < — or — <zy <1}

> =
>~ w

which is not almost convex.

In the next lemma we introduce an additional condition which guarantees
that the intersection of almost convex sets is again almost convex. At the
same time it shows how almost convex sets and their closures and relative
interiors behave under intersections.

Lemma 1.37. If the sets S1,S2 C R™ are almost convex and ri(S1)N ri(S2)
s nonempty then the set S1 NSy is almost convex. Moreover, it follows that

Cl(Sl N S2) = Cl(Sl) N Cl(Sg) and T‘i(Sl N 8’2) = T‘Z(Sl) N T"L(Sg)
Proof. We first show that cl(S; N S2) =cl(S1)N cl(S2). Since it is clear that
cl(S1 N S2) C cl(S;) for every ¢ = 1,2 we obtain
Cl(Sl N SQ) - Cl(Sl) N CI(CQ)
To verify the other inclusion let x € cl(S1)N cl(S2) and consider some y €
ri(S1)N ri(S2). For every i = 1,2 it follows by Lemma 1.30 that the half-open

linesegment [y, x) belongs to ri(S;) for i = 1,2 and hence [y, x) belongs to
ri(S1)N ri(S2).This implies

X € Cl(ri(SI) N I'i(SQ)) C Cl(Sl N SQ)
and the first equality is proved. To verify that the intersection Sy N S
is almost convex we observe by the previous part and cl(S;) convex that
cl(S1 N S2) is a nonempty convex set. Moreover, since ri(S;),7 = 1,2 is

also a nonempty convex set and ri(ri(S;)) = ri(S;) it follows by the previous
equality and Lemma 1.29 that

(1.56) cl(S1NSy) = cl(S1) Nel(Se) = cl(ri(Sy)) Ncl(ri(S2))
= cl(ri(S1) Nri(S2))

Since the intersection ri(S7)N ri(S3) is convex for S;, 7 = 1,2 almost convex
this implies by Lemma 1.28 that

ri(cl(S1 NS2)) = ri(cl(ri(S1) Nri(Se))) = ri(ri(S1) Nri(S2))

and so this set is contained in S1NS5. This shows by Lemma 1.29 that the set
S1 NSy is nonempty and almost convex. To verify that ri(S; N .Sy) =ri(S1)N
ri(S2) we obtain by relation (1.56) and Lemma 1.32 with S; replaced by
S1N Sy and Se by ri(Sl)ﬂ I‘i(Sg) that

I“i(Sl N 8’2) g I“I(Sl) N I“I(Sg)
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To verify the reverse inclusion let x belong to ri(S1)N ri(S2). Since we know
that S1 NSy is a nonempty almost convex set it follows by Lemma 1.31 that
the set ri(S1N.S3) is nonempty. Consider now an arbitrary y € ri(S1NS3) C
S1NS;y. Using this vector y and x € ri(S;),7 = 1,2 it follows by Lemma 1.33
that there exists some p < 0 such that

yi1:= (1 _N)X+Ny € SZ7Z = 1727
and so y; belongs to S1 N S3. By the definition of the vector y; we obtain
that
1 P
YA
and since y € ri(S1 N S3) and y; € S1 N Sy it follows by Lemma 1.32 that
the point x belongs to ri(S; N S2). Hence we have shown that

ri(Sl) N I'i(SQ) - I'i(Sl N SQ)

and this proves the desired result. I

X

y.

Observe by a similar proof as in Lemma 1.37 one can verify for S;, 1 € I
almost convex and N;c ri(S;) is nonempty that

Cl(ﬂiE[Si) = ﬂiE[CI(SZ').
Moreover, if the set I is finite, it also follows that
ri (ﬂieISi) = ﬂiE[ri(Si).

Moreover, the proof breaks down for the last case if I is not finite. Similarly
it is necessary to assume that ri(S;)N ri(S2).is nonempty and all this is
shown by means of the following counterexample for convex sets C;.

Example 1.9.
1. As a counterexample we mention for C,, C R given by
Co=100,1+0a],a>0
that
ri(Na>0Ca) = ri([0,1]) = (0,1)

Moreover, since for each o > 0 it follows that ri(C,) = (0,1 4+ a) we
obtain that Ne>07i(Cy) = (0, 1].

2. To show that ri(C1)N ri(C2) should be nonempty in Lemma 1.37 we
consider the following example. Let

Cr={x€R?:2,>0,z,>0}U{0}
and
Cy={x€R?: 2y =0}
Clearly we obtain that
ri(Cy) = {x:z1 > 0,29 > 0} and ri(Cy) = Cy
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and for these two sets
ri(Ch) Nri(Cs) = @ and ri(C N Cs) # ri(Cy) Nri(Cy).

Also it is easy to see that cl(Cy N Cy) # cl(Cy)N cl(Cy).

This last example concludes our discussion of sets and hull operations. In
the next section we will discuss in detail functions, their relations with sets
and hull operations.

1.2. Functions and Hull operations. In this section we will discuss the
interplay between extended real valued functions and sets. To start with
this discussion let f : R" — [—00,00] be an extended real valued function
and associate with f its so-called epigraph®? epi(f) given by

epi(f) == {(x,r) € R*™': f(x) <r} C R
A related set is given by the strict epigraph epis(f) given by
epis(f) := {{(x,7) € R""!: f(x) <r} C R"L.

Since in the previous section we considered sets and their properties it would
be advantageous to relate functions to sets and use the properties of sets
to derive properties of functions. Within convex and quasiconvex analysis
there are essentially two ways to do this. The first way to achieve this is to
observe that another primal representation of the function f is given by the
obvious relation (cf.[18])

(1.57) f(x) = inf{r: (x,r) € epi(f)}.

Observe by definition we set inf{@} = oo and this does only happen if the
vector x does not belong to the so-called effective domain*3 dom(f) of the
function f given by

dom(f) :={x € R": f(x) < o0}

Moreover, for dom(f) nonempty we obtain that dom(f) = A(epi(f)) with
A the projection of R"*! onto R" given by A(x,7) = x. The representation
of the function f given by relation (1.57) is especially useful in the study
of convex functions since convexity of a function f means by definition that
the epigraph epi(f) of f is a convex set. In quasiconvex analysis another
representation is useful. To introduce this we define the so-called lower-level
set**L(f,r),r € R of a function f given by

L(f,r):={xeR": f(x) <r}.
A related set is given by the strict lower-level set*> Ls(f,r) given by
Ls(f,r):={x € R": f(x) <r}.
*2apigraph of a function
“effective domain of a function f

“4lower-level set of a function f
YBgtrict lower-level set of a function f
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As observed by Crouzeix (cf.[11]) another primal represention of the function
f is given by

(1.58) f(x) =inf{r:x € L(f,r)}.

This representation is useful in the study of quasiconvex functions since
quasiconvexity of a function f means by definition that the lower-level sets
are convex. It is easy to verify (make a picture!) for every r € R that

(1.59) epi(f) N (R"™ x {r}) = L(f,r) x {r}.

and this relation immediately shows that a convex function is also a quasi-
convex function. Before discussing hull operations on functions we introduce
the class of lower semicontinuous functions.

Definition 1.17. Let f : R" — [—00,00]| be some extended real valued
function. The function f is called lower semicontinuous at x € R™ if

lim inf f(y) = f(x)
with liminf y_x f(y) given by

(1.60) l€i>no1inf{f(y) 'y Ex+eb} = su%)inf{f(y) (y €x+eb}
€>

Moreover, the function f : R™ — [—00,00] is called upper semicontinuous
at x € R™ if the function —f is lower semicontinuous at x and it is called
continuous at X if it is both lower and upper semicontinuous at x. Finally
the function f : R™ — [—o00,00] is called lower semicontinuous*® (upper
semicontinuous)” if f is lower semicontinuous (upper semicontinuous) at
every x € R™ and it is called continuous *8 if it is both upper semicontinuous
and lower semicontinuous.

Observe we sometimes abbrevate lower semicontinuous to l.s.c. To relate
the above definition of liminf to the liminf of a sequence we observe that the
familiar liminf of a sequence is defined by

lim inf := lim inf
im inf f(yx) := lim fof f(ys)
and using this definition one can easily show the following result.

Lemma 1.38. The function f : R" — [—o00,00] is lower semicontinuous
at x € R™ if and only if for every sequence {yy : k € N} with limit x € R"
it follows that

lim inf f(y) > f(x).
kToo
46)ower semicontinuous function

4Tupper semicontinuous function
48 continuous function
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Proof. Clearly for every sequence {yy : k € N} with limit x and f lower
semicontinuous at x we obtain that

f(x) =lim inf f(y) <lim inf f(y).
y—Xx kToo

To show the reverse implication it follows by the definition of liminf as given
by relation (1.60) that there exists some sequence {yy : k € N} with limit
x € R" satisfying

y—x

lim inf f(y) = lim inf f(yx)
kToo
and this yields by our assumption that
lim inf f(y) > /().
y—x
By relation (1.60) it is clear that
lim inf f(y) < f(x)

y—x

and this shows the result. |

The following result gives an important characterisation of lower semicon-
tinuity using the lower-level set or the epigraph of a function (cf.[18]),([1])).

Theorem 1.39. If f : R" — [—o0,0] is an extended real valued function
then it follows that

f l.s.c. & epi(f) closed < L(f,r) closed for every r € R.

Proof. Clearly the above conditions are equivalent if the function f is identi-
cally oo and so we assume that there exists some x € R" satisfying f(x) < oo
or equivalently dom(f) is nonempty. To prove that f is lower semicontin-
uous implies epi(f) is closed we need to check that the set epi(f) satisfies
the second part of Lemma 1.1. Consider therefore an arbitrary sequence
{(xk,7k) : k € N} C epi(f) converging to (x,7) € R"". Since by definition
f(xx) < ri this implies by the lower semicontinuity of the function f and
Lemma 1.38 that

=1 > lim inf >
00> 1 = limry > lmkl%loof(Xk)_f(X)

and this shows that (x,r) belongs to epi(f). By Lemma 1.1 it follows now
that epi(f) is closed. To verify epi(f) closed implies that L(f,r) is closed
for every r € R we obtain by relation (1.59) and R™ x {r} is a closed subset
of R that the set L(f,r) x {r} is closed and this implies that L(f,r)
is closed. Finally we need to check that L(f,r) closed for every r € R
implies that f is lower semicontinuous. By the definition of liminf as given
by relation (1.60) it follows with

(1.61) B :=lim inf f(y)

y—x

that < f(x) and so we need to prove that 8 > f(x). Without loss of
generality we may now assume that f(x) > —oo and —oo < 8 < 0o. Suppose
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now by contradiction that 8 < f(x). Since by assumption f(x) > —oo and
—o00 < 8 < oo there exists some finite constant ¢ satisfying

(1.62) B <c< f(x)

This implies by relation (1.61) that one can find a sequence yg, k € N with
limit x € R"™ and f(yg) < c. Hence it follows that y; belongs to L(f,c) and
since by assumption L(f, ¢) is closed we obtain by Lemma 1.1 that x € L(c)
or equivalently f(x) < ¢. This contradicts relation (1.62) and so it follows
that f is lower semicontinuous at x for any x € R". I

Since lower semicontinuity is an important property to solve minimization
problems it is useful to know under which operations lower semicontinuity
is preserved. It is easy to verify for a collection of functions f;,7 € I that

(1.63) epi(supier fi) = Nicrepi(fi)

and since the intersection of closed sets is again a closed set this implies
by Theorem 1.39 that the function sup;csf; is lower semicontinuous if each
function f; is lower semicontinuous. It is also easy to see that

(1.64) I finite = epi(min;erf;) = Ujerepi(fi)

and this shows since the finite union of closed sets is closed again that the
function min;eyf; is lower semicontinuous if each f; is lower semicontinuous.
Finally we observe for functions f;, = 1,2 with liminfy, ,xfi(yx) > —o0
that

lim inf (afi + Bf2)(yr) > alim inf fi(yx) + Slim inf fo(yy)
Ye—X Yie—X Vie—X

for every «, 8 > 0. This shows by Lemma 1.38 that every strict canonical
combination of the lower semicontinuous functions f;,7 = 1,2 with f; > —oo
is again lower semicontinuous. Observe the assumption f; > —oo is included
to avoid undefined expressions like co — co. We will now show by means
of the next result known as the Weierstrass-Lebesque Theorem why lower
semicontinuity in combination with compactness is a useful property for
minimization problems.

Theorem 1.40. If the function f : R" — [—o0, 00] is lower semicontinuous
and S C R" is a nonempty compact set then it follows that the optimization
problem

(P) inf{f(x) : x € S}
has an optimal solution.

Proof. 1f we denote the optimal objective value of optimization problem (P)
by v(P) then clearly the result holds whenever there exists some x € S
satisfying f(x) = —oo and so without loss of generality we may assume that
f(x) > —oo for every x € S. By Theorem 1.39 the decreasing sequence of
upper-level sets

Up:={xeR": f(x) >n},neZ
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are open and since f > —oo on S the collection {U,, : n € Z} forms an
open cover of S. By the compactness of S there exists a finite subcover
and since Uy,11 C U, for every n € Z this implies that one can find some
m € Z satisfying S C U,,. Hence the function f is uniformly bounded from
below on S and therefore v(P) > —oo. If we assume by contradiction that
f(x) > v(P) for every x € S then clearly the collection {U,p),1 :n € N}
of open sets is an open cover of S and again by the compactnessnof S there
exists a finite subcover. Since Uv(P)-l—% C UU(P)_l_#lfor every n € N this

implies that there exists some m € N satisfying S C Uv( P+t and so we

obtain a contradiction with the definition of v(P). Hence it must follow that
there exists some x € S with f(x) = v(P) and this shows the result. I

An application of Theorems 1.39 and 1.40 is given by the next useful
preservation property for lower semicontinuous functions.

Lemma 1.41. If the function F : R™" — [—o0, 00] is lower semicontinu-
ous and S C R™ s a nonempty compact set that it follows that the function
p: R" — [—00, 0] given by

p(y) = inf{F(x,y) : x € S}

s a lower semicontinuous function.

Proof. Let r € R and consider a sequence {y, : n € N } C L(p,r) satisfying
limy,, s00¥n = Yoo. By Theorem 1.40 there exist for every y, some x, € S
satisfying

F(xp,yn) =p(yn) <
Since S is compact one can find by Lemma 1.3 a subsequence x,,n € Ny
converging to X, € S and this implies by the lower semicontinuity of F' and
Lemma 1.38 that

r>lim inf p(yn) =lim inf F(xp,¥yn) > F(Xeos ¥oo)-
neNpToo n€NpToo

Hence it follows that 7 > p(yoo) and this shows that L(p,r) is closed. Ap-
plying now Theorem 1.39 yields the desired result. I

This concludes our discussion of lower semicontinuous functions. We will
now introduce the definition of a convex and almost convex function.

Definition 1.18. The function f :R" — [—00,00] is called convezr or a
convex function®® if epi(f) is a convex set and it is called almost convex or
an almost convex function if epi(f) is an almost convex set. Moreover, the
function f: R" — [—00,00] is called positively homogeneous or a positively
homogeneous function®® if epi(f) is a cone.

Using the definition of a cone and an epigraph it is easy to prove the
following result.

19convex function
30positively homogeneous function
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Lemma 1.42. The function f : R" — [—00,00] is positively homogeneous
if and only if f(ax) = af(x) for every x € R™ and a > 0.

Proof. Since epi(f) is a cone we obtain for every x belonging to R™ and sat-
isfying f(x) = —oo that (ax,ar) belongs to epi(f) for every r € R and this
implies by the definition of an epigraph that f(ax) = —oo = af(x). More-
over, if x belongs to dom(f) and f(x) > —oo we obtain that (ax, af(x))
belongs to epi(f) and hence we obtain f(ax) < af(x) < co. At the same
time it follows using (ax, f(ax) belongs to epi(f) that also (x,a ! f(ax))
belongs to epi(f) and so f(x) < a ! f(ax) or equivalently f(ax) > af(x).
This verifies f(ax) = af(x) for f(x) finite and since it is easy to show for
f(x) = oo that f(ax) = oo we have verified the above equality. To prove
the reverse implication is trivial and so we omit it.

Again by the special structure of an epigraph an equivalent definition of
a convex function is given in the next result.

Lemma 1.43. A function f : R" — [—o0,00] is conver < epis(f) is a
convezx set.

Proof. To show that epig(f) is a convex set whenever f is a convex function
let (x;,73),i = 1,2 belong to epis(f). This implies that there exists some
constants (3, satisfying

(1.65) f(xi) < B; <rii=1,2.
Since epi(f) is a convex set we obtain by relation (1.65) that
(axy + (1 — a)xz, 08, + (1 — a)B,) € epi(f)
for every 0 < a < 1 and so by applying again relation (1.65) it follows that
floxi + (1 —a)x2) <afy + (1 —a)fy < ari + (1 —a)rz

Hence epig(f) is a convex set and to prove the reverse implication consider
(x3,7;) € epi(f). Clearly for every e > 0 it follows that (x;,7; +¢€) € epis(f).
Hence by the convexity of the set epig(f) we obtain that

flaxi + (1 —a)x) < ar;+ (1 —a)rp +¢€
for every 0 < a < 1 and letting € | 0 yields
flaxy + (1 — a)xg) < ar; + (1 —a)ry
Hence epi(f) is a convex set and the result is verified. I

An equivalent representation of Lemma 1.43 is given by the observation
(cf.[18]) that a function f :R™ — [—o00, 00] is convex if and only if

(1.66) flax) + (1 — a)x2) < ap; + (1 — a)usy

whenever f(x;) < p; € R. In case we know additionally that f > —oo we
obtain by relation (1.57) that f is convex if and only if

(1.67) flax; + (1 — a)x2) < af(x1) + (1 —a)f(x2)



42 J.B.G.FRENK

and so we recover the more familiar definition of a convex function. In case
we are considering a function f > —oo and in relation (1.67) the inequality
sign can be replaced by a strict inequality sign for every x; # x, then the
function f is called strictly convex or a strictly convex function®'. Neces-
sarily this function must have a nonempty effective domain dom(f) and a
function with f > co and dom(f) nonempty is called proper52.

As for lower semicontinuous functions one is interested under which op-
erations convexity is preserved. Applying relation (1.63) and using that the
intersection of convex sets preserves convexity it follows immediately that
the function sup;c;f; is convex if f; is convex for every ¢ € I. Moreover, by
relation (1.66) we obtain that any strict canonical combination of the convex
functions f;,i = 1,2 with f; proper is again convex. Finally we consider the
function p : R™ — [—00, 00| defined by

(1.68) p(y) = inf{F(x,y) :x € C}

with F: R"™™ — [—00, 00] an extended real valued function and C' C R" a
nonempty convex set. For this function it follows that

epis(p) = {(y,r) € R™' : 34cc satisfying (x,y,r) € epis(F)}.

This implies with A : R+ — R™+1 denoting the projection of R*T™+!
onto R™*! represented by A(x,y,r) := (y,r) that

(1.69) epis(p) = A(epis(F) N (C x R™™)).

By the preservation of convexity under linear transformations it follows im-
mediately using relation (1.69) and Lemma 1.43 that the function p is convex
if the function F' is convex and C' is a nonempty convex set. Clearly this
condition is sufficient. As shown by the following example the above func-
tion p plays a prominent pole within finite dimensional optimization theory
in the construction of the so-called Lagrangian dual problem.

Example 1.10. In optimization theory one studies the following continuous
or discrete optimization problem (P) given by

(P) inf{fo(x) : f(x) € —K,x € D}.

with fo : R — R some function and £ : R™ — R™ some vector-valued func-
tion. Moreover, the set K C R™ 1is a nonempty convex cone and D C R"
some continuous or discrete set. The above optimization problem covers a
lot of special and well studied cases. First of all we mention nonlinear pro-
gramming problems®® with equality and inequality constraints (cf.[14]) given

by
inf{fo(x) : fi(x) <0,1 <i<pand fi(x) =0, p+1<i<m}
Slstrictly convex function

2proper function
33nonlinear programming problems
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with p < m. Special cases of nonlinear programmaing problems are fractional
programming problems® (cf.[13]) where the objective function fy is given
by the ration of two functions and geometric programming problems. Other
special cases are linear programming problems® (cf. [15]) given by

inf{c™x:x—be L,x >0}

and replacing the cone RY by the convexr cone K we obtain the so-called
conic convex programming problems®® (cf.[24]) given by

inf{c™x:x—beL,xe—-K}.

In both linear and conic convex programming problems the function f is
represented by the affine mapping £ : R™ — R"™ with f(x) = x — b, while by
Lemma 1.5 and 1.14 a more familiar representation of linear programming
problems is given by

inf{c™x: Ax =d,x > 0}
Another important class of optimization problems are integer linear program-
ming problems °7 (cf.[5]) given by
inf{c"™x:x—beLxecZ}.
In the construction of so-called primal dual algorithms to solve some of the
above optimization problems the so-called Lagrangian dual characterisation

of the primal problem (P) plays an important role. To construct the La-
grangian dual of (P) a perturbed optimization problem

p(y) = inf{F(x,y) : x € R"}
is introduced with the perturbation function®® F : R"™™ — [—o0, 0] given
by
F(x,y) = fo(x) forx e D and f(x) € —K +y

and oo otherwise. It is easy to check that

epis(F) = {(x,y,r) € R .y € f(x) + K,x € D and r > fo(x)}.
and this implies with A denoting the projection of R*T™+1 onto R™+! that
the set A(epig(F)) is given by
{ly,r) : Ixep y € f(x) + K and r > fo(x)} = F(D) + K x (0,00)
with F : R* — R™*! denoting the vector valued function

F(x) := (f(x), fo(x)).

fractional programming problems
®5linear programming problems

%6 conic convex programming problems
"integer linear programming problems
%8 perturbation function
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By relation (1.69) this yields

(1.70) epis(p) = F(D) + (K x [0, 00)).
and applying now Lemma (1.43) it follows that
(1.71) p conver & the set F(D) + (K x (0,00)) is convez.

In case we use the primal representation of an arbitrary function f given
by relation (1.57) and the different hull operations on a set it is easy to
introduce the different so-called hull functions of f. This is achieved by
applying one of the hull operations to the set epi(f) and then define the
associated hull function by means of relation (1.57) with epi(f) replaced by
its hull operation. The first hull function constructed this way is given in
the next definition.

Definition 1.19. For any function f : R® — [—00,00] the function f :
R"™ — [—o00, 0] given by

(1.72) f(x) =inf{r: (x,r) € cl(epi(f))}
is called the lower semicontinuous hull function’® of the function f.

For the lower semicontinuous hull f of an arbitrary function f with
dom(f) nonempty the following result holds for its effective domain.

Lemma 1.44. For any function f : R™ — [—o0, 00] with dom(f) nonempty
we obtain

dom(f) C dom(f) C cl(dom(f)).

Moreover, if additionally f is almost convex then it follows

ri(dom(f)) = ri(dom(f))
Proof. To prove the first inclusion we observe for any x belonging to dom(f)
and dom(f) = A(epi(f)) with A denoting the projection of R"*! onto R"
that there exists some r; € R with (x,71) belonging to epi(f) C cl(epi(f))
and this shows by relation (1.72) that f(x) < r; or equivalently x belongs to
dom(f). Moreover, if x belongs to dom(f) there exists some r; € R satisfying
f(x) < 71 and this implies by relation (1.72) that (x,r; + 1) € cl(epi(f)).
Hence the point x belongs to A(cl(epi(f))) C cl(A(epi(f))) and this shows
the desired result. To verify the second result we observe by Lemma 1.37
that the set dom(f) = A(epi(f)) is almost convex and this implies by the

first part and Lemma 1.29 that ri(dom(f)) = ri(dom(f)). I

The next result is the “function equivalence” of the construction of the
closure of a nonempty set by means of the closed hull operation.

Lemma 1.45. For any function f : R" — [—00, 00] the lower semicontin-
uous hull function f given by relation (1.72) is the greatest lower semicon-
tinuous function majorized by f and the epigraph of this function equals

cllepi(f)).

*]ower semicontinuous hull function of f
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Proof. Since clearly cl(cl(epi(f))) = cl(epi(f)) we obtain by relation (1.72)
that

(x,7) € epi(f) & Veso (x,7 4 €) € clepi(f)) & (x,7) € clepi(f))

and so its epigraph equals cl(epi(f)). Hence by Theorem 1.39 we obtain that
f is lower semicontinous. To show for any lower semicontinuous function
h < f that h < f we observe for h < f that epi(f) C epi(h) and by Theorem
1.39 this yields

cl(epi(f)) € cl(epi(h)) = epi(h).

Using now the definition of f as presented by relation (1.72) it follows that
h < f and this shows the desired result. I

By Lemma 1.45 and the definition of an almost convex function it follows
immediately that

(1.73) f almost convex < f is convex and ri(epi(f)) C epi(f).

Moreover, by the preservation of lower semicontinuity under the sup opera-
tion it is also immediately clear by Lemma 1.45 that

(1.74) f=sup{h:h < fand h:R" — [~o00,00] Ls.c.}.

The next result relates f to f and this result is nothing else than a “function
value translation” of the original definition of f.

Lemma 1.46. For any function f : R" — [—o00,00] and x € R" it follows
that

f(x) =lim inf f(y).

y—x
Proof. Since f < f and f lower semicontinuous we obtain that
f(x) =lim inf f(y) < lim inf f(y).
y—Xx y—X

Suppose now by contradiction that

f(x) <lim inf f(y)

If this holds then clearly f(x) < oo and by the definition of liminf there
exists some finite 7 and € > 0 satisfying

fx+y)>r> f(x)

for every y € eE. This implies that the open set (x+€E)x (—o0, ) containing
the point (x, f(x)) has a nonempty intersection with epi(f). However, by
Lemma 1.45 it follows that (x, f(x)) belongs to cl(epi(f)) and so by Lemma

1.1 every open set containing (x, f(x)) must have a nonempty intersection
with epi(f). Hence we obtain a contradiction and so the result is proved. &
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By Lemma 1.46 and Definition 1.17. it is now clear that
(1.75) f lower semicontinuous at x < f(x) = f(x).

To improve the above result for almost convex functions f we need to give
a representation of the relative interior of the epigraph of an almost convex
function.

Lemma 1.47. If f : R — [—00,0] is an almost convex function with
dom(f) nonempty then the set ri(epi(f)) is nonempty and

ri(epi(f)) = {(x,r) : f(x) <r,x € ri(dom(f))} C Rt

Proof. Since dom(f) is nonempty it follows that the convex set epi(f) is
nonempty and hence by Lemma 1.29 the set ri(epi(f)) is nonempty. If
A : R"t! — R™ is given by A((x,7)) = x then we obtain by Lemma 1.35
that

(1.76) ri(dom(f)) = ri(A(epi(f)) = A(ri(epi(f))

Consider now an arbitrary (x,r) satisfying x € ri(dom(f)) and f(x) < r.
By relation (1.76) it must follow that

({x} x R) Nri(epi(f)) # &

and since the affine manifold {x} x R is relatively open we may apply Lemma
1.37. Hence the intersection ({x} x R)N ri(epi(f)) equals

(1.77) ri(({x} x R) Nepi(f)) = ri([f(x),00)) = (f(x),0).

and so we obtain that (x,r) € ri(epi(f)). To show the reverse inclusion
consider some (x,r) € ri(epi(f)). By relation (1.76) clearly x € ri(dom(f))
and so by relation (1.77) it must follow that f(x) <. I

In case f is a almost convex function with dom(f) nonempty the result
of Lemma 1.46 can be improved as follows.

Lemma 1.48. If f : R" — [—o00,00] is an almost convez function with
dom(f) nonempty then it follows for every x1 € ri(dom(f)) that

7o) = lim fx + (301 = ).

Moreover, if x € ri(dom(f)) then it follows that the function f is lower
semicontinuous at X or equivalently

Fx) = lim inf f(y) = ).

Proof. By Lemma 1.46 we obtain that

(1.78) f(x) =lim inf f(y) < liminf f(x + t(x; — x)).
y—x £10

If f(x) = oo then the result holds by the previous inequality and so we
assume that f(x) < oo. Since by assumption x; € ri(dom(f)) we obtain by
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Lemma 1.47 that (x;,71) belongs to ri(epi(f)) for every r > f(x1) and due

to (x, f(x) € epi(f) = cl(epi(f)) this implies by Lemma 1.30 that

(tx1 + (1 — t)x,tr1 + (1 — t) f(x)) € epi(f)
for every 0 < t < 1. Hence it follows that
fx+tx1 —x)) = f(txy + (1 —t)x) <try + (1 — ) f(x)
and by this inequality we obtain

limsup f(x + t(x1 — x)) < f(x).
£10

Combining this inequality with relation (1.78) yields the first equality. To
prove the second equality we observe by Lemma 1.44 that ri(dom(f)) =
ri(dom(f)) and this implies by Lemma 1.47 applied to f and Lemma 1.29
that

{(x,7) 17> f(x), x € ri(dom(f))} = ri(epi(f)) C epi(f).

Consider now an arbitrary x belonging to ri(dom(f)). By the above inclusion
we obtain for every e > 0 that (x, f(x) +¢) belongs to epi(f) and this shows
f(x) + € > f(x). Hence by letting € | 0 it follows that f(x) > f(x) and
since by Lemma 1.45 we know that f(x) < f(x) the second part using also
Lemma 1.46 is proved. 1

Finally we observe for any function f : R" — [—o0, 00| that
epi(p) = cl(epi(f)) = cl(epis(f))
and this shows for the function p presented in Example 1.10 that
(1.79) P convex < cl(F(D) + (K x (0,00))) is convex.

Another important hull function related to the representation (1.57) is
given in the the following definition.

Definition 1.20. For any function f : R" — [—00,00] the function co(f) :
R"™ — [—o00, 0] given by

(1.80) co(f)(x) :=1inf{r: (x,7) € co(epi(f))}
is called the convex hull function®® of the function f.

For the convex hull co(f) of an arbitrary function f with dom(f) nonempty
it follows that its effective domain has the following representation.

Lemma 1.49. For any function f : R™ — [—o0, 00] with dom(f) nonempty
it follows that

dom(co(f)) = co(dom(f)).

60convex hull function of f
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Proof. If the point x belongs to the set co(dom(f)) then by relation (1.26)
there exists some points x; € dom(f),1 <4 < m such that x = Y /" | a;x;
with @; > 0 and > ", @; = 1. Hence it follows that for every 1 < i < m
that the vectors (x;, f(x;)) belong to epi(f) and this shows that the vec-
tor (D70, auixy, » vy i f(x;)) belongs to co(epi(f)). Since f(x;) < oo we
obtain that ", a;f(x;) < oo and hence by relation (1.80) it follows
that co(f)(x) < /", aif(x;). By this observation we know that x be-
longs to dom(co(f)) and to verify the reverse inclusion we only need to
observe for x belonging to dom(co(f)) that by relation (1.80) it follows
that (x,co(f)(x) + 1) belongs to co(epi(f)). Hence we obtain that x €
A(co(epi(f)) =co(A(epi(f)) = co(dom(f)) with A denoting the projection
of R"*! onto R™ and this shows the desired result. I

The following result is also easy to prove.

Lemma 1.50. For any function f : R™ — [—o0,00] the convez hull function
co(f) given by relation (1.80) is the greatest convex function majorized by f
and the strict epigraph of this function is given by co(epi(f)).

Proof. By relation (1.80) it follows that

(x,7) € epis(co(f)) & (x,r) € co(epi(f)).

This verifies the representation for the strict epigraph and by Lemma 1.43
the function co(f) is convex. Moreover, by a similar proof as used in the
second part of Lemma 1.45 it is easy to show for any convex function h < f
that h < co(f) and this shows the result. I

Again by the preservation of convexity under the sup operation and
Lemma 1.50 it follows that
(1.81) co(f) =sup{h:h < fand h: R" — [—00,00] is convex}.

Combining the closure and convex hull operation by observing that the
intersection of closed convex sets is again a closed convex set we finally
obtain the most important hull function within the field of convex functions.

Definition 1.21. For any function f : R" — [—o00, 0] the function co(f) :
R™ — [—00, 0] given by

(1.82) co(f)(x) = {r: (x,r) € cl(co(epi(f)))}

is called the lower semicontinuous convex hull function®' of the function f.

By a similar proof as Lemma 1.45 and 1.44 it is easy to verify the following
result.

Lemma 1.51. For any function f : R" — [—o00,00] the lower semicon-
tinuous convez hull function co(f) given by relation (1.82) is the greatest
lower semicontinuous convex function majorized by f and the epigraph of

61lower semicontinuous convex hull function of f
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this function is given by cl(co(epi(f))). Moreover, for dom (f) nonempty it
follows that

dom(co(f)) C dom(co(f)) C cl(dom(co(f))).

By the preservation of closed convex sets under intersection and Lemma
1.51 we obtain the representation

(1.83) co(f) =sup{h:h < fand h: R — [—00,00] convex and Ls.c.}

To relate the different hull functions based on relation (1.57) it follows by
relations (1.74), (1.81) and (1.82) that

(1.84) co(f) < co(f) < fand co(f) < f < f.

One might now wonder under which conditions the different hull functions
coincide.Clearly for any function f : R"™ — [—o00,00] it follows by Lemma
1.50 that f is convex if and only if co(f) = f. Also it is easy to verify that
f is lower semicontinuous if and only if f = f. Some other cases are now
considered in the next lemma.

Lemma 1.52. For any function f : R" — [—o0,00] it follows f is con-
vex if and only if co(f) = f. Moreover, the function f conver and lower
semicontinuous if and only if co(f) = f.

Proof. For any function f it follows by relation (1.84) that co(f) < f. Since
by our assumption f is convex and by Lemma 1.45 lower semicontinuous and
majorized by f we obtain by Lemma 1.51 that f < co(f). and this yields
co(f) = f. Due to to co(f) is a convex function the reverse implication
follows immediately. To prove the second equivalence relation we observe
since f is convex that f is convex and so by the first part we obtain co(f) =
f. Due to f lower semicontinuous we know f = f and this shows co(f) = f.
The proof of the reverse implication is trivial and so we omit it. J

This concludes our discussion of hull functions based on relation (1.57).
We will now consider hull functions based on relation (1.58). However, before
discussing these hull functions it is necessary to introduce a quasiconvex
function.

Definition 1.22. The function f :R"™ — [—o00,00] is called quasiconvez if
the lower-level sets L(f,r) for every r € R are convex. Moreover, the func-
tion f is called evenly quasiconvex if the lower level sets L(f,r) are evenly
quasiconvex.

By a similar proof as in Lemma 1.43 one can show that
(1.85) f quasiconvex < Lg(f,r) is convex for every r € R.

Also it is easy to verify (cf.[13]) that a function f :R" — [—00,00] is quasi-
convex if and only if

(1.86) flaxy + (1 — a)x2) < max{f(x1), f(x2)}.
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As for lower semicontinuous and convex functions one is interested un-
der which operations quasiconvexity is preserved. It is easy to verify for a
collection of functions f;,7 € I that

(1.87) L(supicr fi,r) = NierL(fi,r)

and this shows immediately that the function sup;erf; is quasiconvex if f;
is quasiconvex for every ¢ € I. Unfortunately it is not true that a strict
canonical combination of quasiconvex functions is quasiconvex as shown by
the following example.

Example 1.11. Consider the functions f; : R — R,i = 1,2 given by
Hlz) =
and
fao(z) = 22 for |z| < 1 and fy(z) = 1 otherwise.

Both functions are quasiconvez but it is easy to verify by means of a picture
that the sum of both functions is not quasiconver.

If we consider as before the function p : R™ — [—00, 00| given by relation
(1.68) then it follows that

Ls(p,r) ={y € R™ : Ixecc satistying (x,y) € L(F,r)}.

This implies with A : R*"™™ — R™ denoting the projection of R*™™ onto
R™ represented by A(x,y) =y that

(1.88) Ls(p,r) = A(L(F,r) N (C x R™)).

By relation (1.88) it follows immediately that the function p is quasiconvex
if the function F' is quasiconvex and C C R" is a nonempty convex set.

Example 1.12. Considering the same function p and F' as in Example 1.10
it follows that

Ls(F,r) ={(x,y): fo(x) <r,x€D andy € f(x) + K}

This implies with A : R*™™ — R™ denoting the projection of R"™™ onto
R™ that the set A(Ls(F,r)) equals

{y:yef(x)+ K and fo(x) <r,x € D} =f(Ls(fo,r)N D)+ K
and so by relation (1.88) we obtain
LS(paT) :f(LS(fUaT)mD)+K

By this observation we obtain that the function p is quasiconvex if and only
if the set £(Lg(fo,7) N D)+ K is convex for every r € R.

We will now introduce the differerent hull functions based on relation
(1.58).
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Definition 1.23. For any function f : R® — [—00,00] the function f :
R"™ — [—o00, 0] given by

(1.89) f(x) =inf{r:x € cl(L(f,r))}

is called the lower semicontinuous hull function of the function f.

Observe the above function is denoted similarly as the function introduced
in Definition 1.19. Moreover, it has the same name since we did not specify
with respect to which representation (relation 1.57 or relation(1.58)!) the
closed hull operation is taken. However, this does not make any difference
due to the following result (cf.[11]).

Lemma 1.53. For any function f : R" — [—00,00] the lower semicontin-
wous hull function f given by relation (1.89) is the greatest lower semicon-
tinuous function majorized by f. Moreover, it follows that

L(77 T) = |r]/6>7“CZ(L(fa /6))
Proof. 1t is easy to verify by relation 1.89 that
(1.90) L(f,r) = Ng>r{x € B : f(x) < B} = Ng>rcl(L(f, B))

Since the intersection of closed sets is again closed this yields by Theorem
1.39 that the function f is lower semicontinuous. To show that f is the
greatest lower semicontinuous function majorized by f consider some lower
semicontinuous function h < f. This implies that L(f,r) C L(h,r) for every
r € R and by the lower semicontinuity of h and Theorem 1.39 we obtain

(1.91) cl(L(f,r)) € cl(L(h,r)) = L(h,7)
Applying now relations (1.90) and (1.91) it follows
L(f,r) = Ngsrel(L(f, B)) € Ng>rL(h, B) = L(h,r)

for every r € R and this shows h < f. Hence the function f is the greatest
lower semicontinuous function majorized by f and so the desired result is
verified. 1

Another hull function to be considered is given by the next definition (cf.
[11]).

Definition 1.24. For any function f : R" — [—o00,00] the function qc(f) :
R™ — [—00, 0] given by

(1.92) ge(f)(x) = inf{r : x € co(L(f,r))}
is called the quasiconvex hull function®? of the function f.

The next result (cf.[11]) can be checked similarly as Lemma 1.53.

62 quasiconvex hull function of f
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Lemma 1.54. For any function f : R" — [—o00, 00| the quasiconvex hull
function qc(f) given by relation (1.92) is the greatest quasiconvex function
majorized by f. Moreover, it follows that

L(qe(f),r) = Ng>rco(L(f, B))-
As before it is clear that
qc(f) =sup{h: h < f and h : R" — [—00, 00] quasiconvex}.

We now consider a hull function based on closed convex sets.(cf.[11]).

Definition 1.25. For any function f : R" — [—o00,00] the function qc(f) :
R™ — [—00,00] given by

(1.93) qc(f)(x) = inf{r : x € cl(co(L(f,7)))}

is called the lower semicontinuous quasiconvex hull function %3 of the func-
tion f.

Similarly as Lemma 1.53 one can show the following result.

Lemma 1.55. For any function f : R™ — [—o00,00]| the lower semicontin-

uous quasiconvex hull function qc(f) given by relation (1.93) is the greatest
lower semicontinuous quasiconvex function majorized by f. Moreover, it fol-
lows that

L(ge(f), ) = Ng>rel(co(L(f, B))).-
As before it follows that

qc(f) =sup{h: h < f and h: R" — [—00, 00] quasiconvex and l.s.c}.

Finally we consider a hull function based on evenly convex sets. It will turn
out that this function plays an important role in quasiconvex duality.

Definition 1.26. For any function f : R" — [—o0, 00| the function eqe(f) :
R"™ — [—o00, 0] given by

(1.94) eqe(f)(x) = inf{r : x € eco(L(f,7))}
is called the evenly quasiconvez hull function 5% of the function f.
Again one can verify the following result.

Lemma 1.56. For any function f : R"™ — [—00, 0] the evenly quasiconvex
hull function eqc(f) given by relation (1.94) is the greatest evenly quasicon-
vex function majorized by f. Moreover, it follows that

L(ege(f),r) = Np>reco(L(f, £)))

53lower semicontinuous quasiconvex hull function of f
64evenly quasiconvex hull function
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As before we obtain that

eqc(f) =sup{h: h < fand h: R" — [—o00, 0] evenly quasiconvex}.

Since we will prove in the next section that every closed convex set is evenly
convex we finally remark that

qc(f) < eqe(f) < ae(f) < f

The above representations of the hull functions do not depend on the fact
that the domain is finite dimensional and so we can also introduce the same
hull functions in linear topological vector spaces. Penot and Volle (cf.[16])
discusses these hull operations and the relations with quasiconvex duality in
linear topological vector spaces and actually in these notes their approach
is translated to finite dimensional spaces thereby slightly generalizing the
mile-stone papers of Crouzeix (cf.[11]). Observe in finite dimensional spaces
one can show stronger results than in infinite dimensional spaces (think of
relative interior and separation results to be discussed!) and so in finite di-
mensional spaces one has an additional structure which needs to be used. To
be able to improve some of the representations of hull functions by means of
a so-called dual representation and use these improved dual representation
to define duality in optimization problems we first need to derive a (weak)
and strong separation result between a (closed) convex set and a point out-
side this set. These separation results are the most important results within
convex and quasiconvex analysis and the next section will be completely
devoted to this topic.

1.3. First order conditions and separation. Since the well known sep-
aration result between a closed convex set and a point outside this set is
a direct consequence of the first order conditions of the so-called minimum
norm problem we first need to introduce the definition of a directional de-
rivative. Although for convex functions directional derivatives always exist
this is not the case for more general functions like quasiconvex functions.
Therefore, in order to be as complete as possible, we need to introduce a gen-
eral notion of a directional derivative which exists for any arbitrary proper
function f : R™ — (—o00,00]. This means that we have to introduce the
so-called upper and lower directional Dini derivatives (cf.[4]) and to avoid
undefined combinations like co — oo we only assume in the next definition
that x belongs to dom (f) or equivalently f(x) < oc.

Definition 1.27. If f : R" — (—o00, 00] is an arbitrary proper function with
x belonging to dom(f) then the upper directional Dini derivative’® of f at x
in the direction d is given by

D" f(x,d) := limsup fx+td) - f(X)’
tl0 t

55upper directional Dini derivative
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while the lower directional Dini derivative®® of f at x in this direction is
given by
fx+td) - f(x)

t

Moreover, if DV f(x,d) equals D, f(x,d) then the directional derivativeS?
Df(x,d) of f at x in the direction d exists and this directional derivative
s given by

D d) := liminf
+f(x,d) im inf

td) —
Df(x,d) := lim flxttd) - fx)
t}0 t
Finally, if the directional derivative of f at x in every direction d ezists
and for every d it follows that Df(x,d) = ¢'d for some vector ¢ then
the function f is said to be Gateauz differentiable®® at x. Moreover, if there
exists some vector ¢ such that
h) — —cTh
 fcth) -~ f(x) —cTh _
[ bl

then the function is called Fréchet differentiable’® at x.

As already observed the directional derivative might not exist for arbitrary
functions. As an example we consider the function f : R — R satisfying
f(z)=1for z € Q and f(z) =0 for x ¢ Q. On the other hand, the upper
and lower directional Dini derivative of f at x in the direction d with f(x)
finite always exist and these directional derivatives satisfy

—o00 < Dy f(x,d) < DT f(x,d) < 00
Also it is easy to show that
D, f(x,ad) = aD, f(x,d) and D" f(x,ad) = aD™ f(x,d)

for every @ > 0 and so by Lemma 1.42 both functions are positively ho-
mogeneous’’. Finally we observe that any Fréchet differentiable function at
x is Gateaux differentiable at x and in both cases the vector ¢ equals the
gradient V f(x). For convex functions the following important result is easy
to prove.

Lemma 1.57. If f : R" — (—o0,0] is a proper convex function with x
belonging to dom(f) then it follows that the directional derivative of f at x
in every direction d exists and

56]ower directional Dini derivative
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Moreover, the function d — D f(x,d) is positively homogeneous and con-
Vex.

Proof. In case f(x) = —oo it follows immediately that Df(x,d) = oo and
the above representation trivially holds. Therefore we only consider f(x)
finite and for any direction d € R" introduce the function h : [0,00) —
(—o0, 0] given by

h(t) := f(x +td) — f(x).

Since the function f is a proper convex function and f(x) finite we obtain
that h > —oo and convex. This implies by relation (1.67) and A(0) = 0 that
h(at) < ah(t) for every 0 < o < 1 and ¢t > 0 and so the function

fx+1td) - f(x)

t— fi(d) == ;

is nondecreasing. This implies that
Df(x,d) = ltlfglft(d) = inf fi(d)

and this shows the first part. To verify the second part we only need to
prove that the function d — Df(x,d) is convex. Observe now for fixed
t >0 and 0 < a < 1 that by the convexity of f we obtain

filad) + (1 — a)ds) = fla(x +tdy) + (1 —ta)(x +tdy)) — f(x)

< afi(d) + (1 —a)fi(de)

and since f;(d) belongs to (—oo, co] this shows by relation (1.67) that epi(f:)
is a convex set. Since f; < fs for every s > t it follows that epi(f;) C epi(fs)
and so we obtain that the set

epi(Df(x,.)) = U, oepi(fr)

is a convex set. 1

For quasiconvex functions f with f(x) finite the directional derivative
might not exist. However, as shown by Crouzeix (cf.[11]) one can show the
following result for this class of functions.

Lemma 1.58. If f : R™ — (—o00,00] is a quasiconvez function with f(x)
finite then it follows that the function d — DT f(x,d) is quasiconvez and
positively homogeneous.

Proof. We only need to verify that the function d — D™ f(x, d) is quasicon-
vex since it is already shown that this function is positively homogeneous.
By definition we know that

D* f(x,d) = limsup £,(d)
t10
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Since f is quasiconvex it follows for fixed £ > 0 that

flabx+td1) + (1= a)(x + tdy) — £(x)
t
maxc{ £ (x + 1), £ (x + tdy)} — £(x)
t

filady + (1 —a)dy) =

for every 0 < a < 1 and this shows for every ¢ > 0 that
(1.95) fr(ad; + (1 — a)d2) < max{fi(d1), fi(d2)}

By relation (1.95) and using contradiction it is easy to verify that

DT f(x,ad; + (1 — a@)dy) = limsup fi(ad; + (1 — a)dy)
tl0

< max{limsup f;(d1),limsup f(d2)}
0 0

and this shows by relation (1.86) that the upper directional Dini derivative
of f at x is quasiconvex. [

In case it is also known that a positively homogeneous quasiconvex func-
tion is nonnegative and lower semicontinuous then it is possible to show
by means of a duality representation that this function is convex (cf.[10]).
For the moment we only mention this result which will be proved in the
next section. An easy and well-known consequence of Lemma 1.57 are the
so-called first order conditions for a convex program.

Definition 1.28. A wvector X,y is called an optimal solution™ of an opti-
mization problem

inf{f(x):x € S}

if and only if Xop belongs op S and f(xept) < f(x) for every x € S. More-
over, the above optimization problem is called a convex program™ if the
function f : R" — [—o00,00] is convex and S C R" a nonempty convex set.

In case f(x) = —oo for some x € S or dom(f) NS is empty then the
optimization problem is not well behaving since an optimal solution can be
found immediately. Therefore it is only interesting to study optimization
problems with f > —oo and dom(f) NS nonempty. Observe the above
optimization problem is the same as the optimization problem

inf{fi(x) : x € R"}

with fi(x) = f(x) whenever x € S and oo otherwise and for this problem

the above assumptions hold if and only if the function f; is proper. Such

optimization problems are therefore called for simplicity proper™.

" optimal solution of optimization problem
"2convex program
"Sproper optimization problem
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Lemma 1.59. If the optimization problem inf{f(x) : x € C} is a proper
convex program then it follows that

Xopt optimal < Vxeco D f(Xopt, X — Xopt) > 0 and xop € C.

Proof. If xopt belonging to C' satisfies D f (Xqpt, X —Xopt) > 0 for every x € C
then necessarily f(Xpt) < 0o and hence by Lemma 1.57 we obtain for every
x € C that

f(x) - f(xopt) > Df(xoptax - Xopt) >0

and this proves that x,; is an optimal solution. To show the reverse im-
plication it follows since we are dealing with a proper convex program and
Xopt Optimal that f(xop;) < oo. Moreover, by the convexity of the set C
and x,p; optimal we obtain for every x € C and 0 < ¢ < 1 that the vector
Xopt + t(Xx — Xopt) belongs to C and f(xopt + t(x — Xopt)) > f(xopt). This
shows by Lemma 1.57 the desired result. I

Clearly for an arbitrary proper optimization problem with C C R" a
nonempty convex set we obtain by a similar argument that

(1.96) Xopt Optimal = Vyco Dy f(Xopt, X — Xopt) > 0 and xqp € C.

Clearly if the objective function is Gateaux differentiable we can replace in
the above statements

D f(xopt, X — Xopt) > 0 for every x € C
by

V f (%opt) T(x — Xopt) > 0 for every x € C.
Therefore from a computational point of view the above condition seems to
be easier to check if additionally f is Gateaux differentiable. Observe that
the reverse implication in relation (1.96) does not hold in general and so

one has introduced in the literature (cf.[23],[3]) the class of pseudoconvex
functions. The next definition is taken from Diewert (cf.[23]).

Definition 1.29. A proper function f : R" — (—o0,00] is called pseudo-
convez on the convexr set C' C R" if and only if
f(x1) < f(x2) for x; € C = D, f(x9,%x1 —x2) < 0.

In optimization theory the direction x; —xg satisfying D f(x2,x; —x2) <
0 is called a strict descent direction™. An immediate consequence of the
above definition is given by the following result (cf.[3]).

Lemma 1.60. If the optimization problem inf{f(x) : x € C} is a proper
optimization problem and f is pseudoconvex on the convex set C then it
follows that

Xopt optimal < Vyco Dy f(Xopt, X — Xopt) > 0 and xqp € C.

Tstrict descent direction
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Proof. The implication = is obvious by relation (1.96). To show the reverse
implication suppose by contradiction that x,,; is not optimal and so there
exists some x € C satisfying f(x) < f(xopt) Since f is pseudoconvex on C
this yields that D f(Xopt, X — Xopt) < 0 and hence our assumption does not
hold. &

A nice characterisation of arbitrary proper pseudoconvex functions seems
not to be possible (cf.[3]). Moreover, generalizing convexity and still knowing
that the statement of Lemma 1.60 holds was the main reason to introduce
the set of pseudoconvex functions on the convex set C. In case these functions
are also Gateaux differentiable the class of pseudoconvex functions is studied
in detail by Komlosi (cf.[20]) and Crouzeix.(cf.[12]) To start with the most
simplest proper convex optimization problem we observe that the function
x —|| x || is positively homogeneous. Moreover, for every real valued ¢ it
follows that

(1.97) 0<|lx—ty [>=] x|* +¢ ||y |I” —2txTy

This implies limyoo || x — ty ||?= oo for every y # 0 and hence by the
Weierstrass-Lesbesgue theorem (Theorem 1.40) an optimal solution of the
optimization problem

inf{|| x — ty ||*: t € R}

exist. This implies by relation (1.96) and the Gateaux differentiability that
an optimal solution must be equal to xTy || y |2 and substituting this into

relation (1.97) we obtain the well-known Cauchy-Schwartz inequality given
by

(1.98) (xTy)* <l x [Pl y I

for every x,y € R". By relation (1.98) it is easy to verify that the triangle
inequality

(1.99) Ix+yl<l=l+yl

holds and since the function x —|| x || is positively homogeneous it follows
by relation (1.99) that this function is finite valued and convex. Since for
any increasing convex function g : [0,00) — R it is easy to check by the
definition of convexity that the function x — g(|| x ||) is also convex we also
obtain that the function x —|| x ||? is convex. One can now consider the
so-called minimum norm problem™ given by

el
(Pminnorm) dC(y) = 1Df{§ “ y—X “2: X € C}

with C C R" a proper closed nonempty convex set and this is one of the
most simplest proper convex programming problems. The vector y in opti-
mization problem (Ppinnorm) S€rves as a perturbation parameter since it is

"Smminimum norm problem
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easy to check that
|
do(y) = inf{5 || x [ x € C —y} = doy(0).

By a standard application of the Weierstrass-Lebesgue theorem (Theorem
1.40) the minimum norm problem (Ppinnorm) has an optimal solution. To
show that this optimal solution is unique we observe for any y, y2 belonging
to R™ that

1 1
(1.100) 5 Iy +ye I +5 lyi=ys =y P+ Ty |7

For every x; # x» belonging to C' it follows by relation (1.100) with y;
replaced by y — x; for ¢ = 1,2 that

1 1 1 1
Slly = 560+ 3l < 7lly = xil12 + 7lly — el

and so for x;,¢ = 1,2 different optimal solutions of the optimization problem
(Ppinnorm) We obtain

1 1
Slly = 5061+ %) < de(y).

Since the set C is convex and hence %(xl + x2) belongs to C' the objective
function evaluated at this point has a lower objective value as the objective
value d¢(y) of the optimal solution and so it cannot happen that there are
two different optimal solutions. Therefore the optimal solution is unique and
for simplicity this unique optimal solution is denoted by pc(y). Moreover,

if the function f : R® — R is given by

1
Flx) = 2y —x?
then it follows that the directional derivative D f (pc(y), d) in every direction

d exists and this directional derivative equals

L.y —x+td)]? -y —x|? T
~ lim = — d
5 i " (pcly) —vy)

The next result is one of the most important results within convex analysis
and is an easy consequence of Lemma 1.59 and relation (1.101).

(1.101)

Lemma 1.61. For anyy € R" and C' C R" a closed convex set it follows
that

z=7pc(y) ©Vxec (z—y)"(x—2)>0andz e C.
Proof. Since pc(y) € C denotes the unique optimal solution of the mini-
mum norm problem and by relation (1.101) the directional derivative of the
function f(x) = 3 || y —x ||? at pc(y) in the feasible direction x—p¢(y) for
any x € (' is given by

Df(pc(y),x —pc(y)) = (pely) —y)"(x = pc(y))

we obtain by Lemma 1.59 the desired result. To prove the reverse implication
we consider some z € C satisfying (z—y)T(x—z) > 0 for every x € C. Again
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by Lemma 1.59 the vector z must be an optimal solution of the proper convex
minimum norm problem and since we know that this problem has a unique
optimal solution it must follow that z =pc(y). 1

By the above first order conditions one can also verify that the vector
valued function y —pc(y) is a so-called contraction mapping”®

Lemma 1.62. For C' C R"™ a proper closed nonempty convex set it follows
that

Ipc(y1) — eyl < lly1 = yel
for every y1 and ys belonging to R™.
Proof. By elementary calculations we obtain that

1> = (pc(y1) —pely2) (i —y2) — o — L

Ipc(y1) — pe(y2)
with
Iy := (pe(y1) — y1) | (pe(y2) — pe(yr))
and

I == (pe(y2) — y2) | (Pe(y1) — pely2))

Since pe(y1) and pe(y2) belong to C' we obtain by the first order conditions
of Lemma 1.61 applied to pc(y1), respectively pc(y2) that the values Iy and
I, are nonnegative and so the inequality

(1.102) Ipc(y1) — pe(y2)|? < (pe(y1) — pe(y2)) ' (y1 — y2)

holds. Applying now the Cauchy-Schwartz inequality given by relation
(1.98) to the last part of relation (1.102) yields

Ipc(y1) — pe(y2)lI* < lIpc(y1) = pe(y2)llllyr — v

and this shows the desired result. I

In case K C R"is a closed convex cone we can improve the result of the
previous lemma. Remember that the polar cone K is given by

K° = {x*: xTx* <0 for every x € K}.
and x; L x5 if and only if x{x2 = 0. The next result is due to Moreau.

Lemma 1.63. For anyy € R" and K C R" a closed convex cone it follows
that

z=pg(y)e y—2€K’, zc K andy —z lz.

Scontraction mapping
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Proof. If z = pg(y) we obtain by Lemma 1.61 that
(1.103) (Pe(y) =¥)"(x —px(y)) 20

for every x € K. Since pg(y) belongs to K also apg(y) belongs to K for
every o > 0 and this implies by relation (1.103) that

(=) (px(y) —¥)Px(y) 20
for every a > 0. Hence it follows that
(1.104) (P& (y) —y)Tpr(y) =0
and substituting relation (1.104) into relation (1.103) we obtain that
(Px(y) —y)Tx 20

for every x € K or equivalently y — px(y) belongs to K°. To prove the
reverse implication we observe for z € K satisfyingy —z€ K’ andy —z L
z that

(z—y)T(x—2) >0

for every x € K. This implies by Lemma 1.61 that z = pg(y) and this
proves the desired result. I

Specializing Lemma 1.61 for an affine set it is easy to show the following
result.

Lemma 1.64. For anyy € R" and M C R" an affine set it follows that
z=pyu(y) ©Vxen (2—y)T(x—2z)=0andz € M.

Proof. Since pys(y) belongs to M and M is an affine set we obtain by Lemma
1.61 that

(1.105) (Pu(y) = ¥)T(x —pu(y)) 20

for every x € M. At the same time, since M is an affine manifold and py/(y)

belongs to M we obtain that 2p,/(y) —x belongs to M for every x € M and

this implies by relation (1.105) with x replaced by 2p;(y) — x that
(pm(y) —y) (pum(y) —x) >0

for every x € M. Combining the two inequalities yields

(pm(y) —y) (pu(y) —x) =0

and this shows the desired result. The reverse implication is now a direct
consequence of Lemma 1.61. I

We will now prove one of the most fundamental results in convex analysis.
This result has an obvious geometric interpretation and serves as a basic tool
in deriving dual representations.
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Theorem 1.65. If S C R" is a nonempty almost convez set and 'y does not
belong to the set cl(S) then there exists some nonzero vector y* € R" and
€ > 0 such that

y*Tx Z y*Ty +e

for every x belonging to cl(S). In particular the vector y* can be chosen
equal to pys)(y) —y-

Proof. Since by Lemma 1.29 the vector y does not belong to the closed
convex set cl(S) it follows that the vector p(s)(y) —y belonging to cl(S) —
is nonzero and so the scalar € :=[|py(s)(y) —y ||* is positive. Moreover, by
Lemma 1.61 we obtain for every x €cl(S) that

(Pei(s)(¥) = ¥)'x = [IPa(s) (y) — yll — (Pas)(y) —¥)Ty
= (Pcl(S)(}’)—Y) (X—Pcl (Y))

and reordering this inequality yields

(Pe(s) (¥) = ¥)"% 2 (Pais) (y) —¥)Ty +e
for every x belonging to cl(S). i

In the above result the condition that S is almost convex is too strong.
Actually we only need that the set cl(S) is a convex set. However, we listed
the almost convexity condition in order to be able to compare the above
result with a weaker separation result to be discussed later. Observe now
that the nonzero vector y* € cl(S) — y is called the normal vector’™ of the
separating hyperplane™

H™(a,a):={xe€R":a'x=a},a=y" and a = y*Ty+§
and this hyperplane strongly separates the closed convex set cl(S) and y.
Due to this terminology the set cl(S) and y are said to be strongly sepa-
rated” by the hyperplane H=(a, a). Without loss of generality we may take
as a normal vector of the hyperplane the vector y* || y*H*1 and this vector
has norm 1 and clearly belongs to cone(cl(S) — y). Before discussing the
“weak” form of the separation result in finite dimensional spaces we will
consider some implications of the above strong separation result.

Definition 1.30. If S C R" is some nonempty set then the function og :
R"™ — (=00, 00| given by

og(s) :=sup{s™x: x € S}
is called the support function 8 of the set S.

""normal vector
"8separating hyperplane
"strong separation

8%upport function
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It is easy to see that any support function og with § C R"™ a nonempty
set is a lower semicontinuous proper convex function which is also positively
homogeneous and satisfies 05(0) = 0. The next result shows that a support
function cannot distinguish between the set S and cl(co(S)).

Lemma 1.66. For any nonempty set S C R"™ it follows that the support
function og of the set S coincides with the support function o ..(s)) of the
set cl(co(S)).

Proof. To prove the above result we first observe that clearly o5 < o¢yco(s))-
It is now sufficient to verify that og > 0¢4(5) 2 Ocico(s))- To start with the
first inequality consider an arbitrary vector x belonging to the set co(S).
By relation (1.26) there exist some vectors x; € S,1 < i < m such that
x =" a;x; with a; positive and Y.7" «; = 1. Since og(s) > s'x; for
every 1 <4 < m and s € R" it follows that og(s) > > I, as'x; =s'x
and this shows using x € co(S) is arbitrary that o5 > 0¢q(s). To verify the
second inequality it is sufficient to check that og > oy g) for any set S
and to prove this consider an arbitrary x belonging to cl(S). By Lemma 1.1
there exists a sequence x,, € S,n € N with limit x and this shows by the
continuity of a linear mapping that og(s) > limy1ee8' %, = s'x. As before
it follows since x € co(S) is arbitrary that og > 0(5) and this proves the
result. I

A reformulation of Theorem 1.65 in terms of the support function of the
closed convex set C' is given by the following result.

Theorem 1.67. If S C R" is a proper nonempty almost convex set then it
follows that

xg € cl(S) & sTxg < 0 s)(s) for every s € R™.

Proof. Clearly xq € cl(S) implies that sTx < o¢g)(s) for every s belonging
to R". To show the reverse implication let sTxg < 0¢(g)(s) for every s € R"
and suppose by contradiction that xo does not belong to the set cl(S).
By Lemmal.29 it follows that cl(S) is convex and by Theorem 1.65 we
obtain that there exists some nonzero vector xj € R" and € > 0 satisfying
x§"x > x4 xg+e for every x belonging to cl(S). This shows by the definition
of a support function that

T T
oa(s)(—%g) < —xp xp —€ < =X Xo

contradicting our initial assumption and so it must follow that xo belongs
to cl(S). 1

The above result can be seen as a dual representation of a closed nonempty
convex set. Also by Lemma 1.66 one can replace in Theorem 1.67 the support
functtion o5y by 05. An immediate consequence of Theorem 1.67 is given
by the next observation.
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Theorem 1.68. For any nonempty sets S1,S2 C R"™ it follows that
g, < og, < cl(co(S1) C cl(co(S2)).
Proof. 1f cl(co(S1) C cl(co(S3)) we obtain by Lemma 1.66 that

T8 = Ocl(co(S1)) < Tel(co(Sa)) = T Ss-

To verify the reverse implication assume that og, < og,and assume by
contradiction that there exists some x¢ € cl(co(S;) which does not belong
to cl(co(S2)). By Theorem 1.67 and Lemma 1.66 this implies that there
exists some sy € R" satisfying

05, (S0) = Ocl(co(s3)) (S0) < 8¢ X0 < Te(co(s1)) (S0) = 05, (80)

and this contradict our initial assumption. Hence it must follow that cl(co(S7)
cl(co(S2)) and this shows the desired result. I

Theorem 1.68 can be used to derive composition rules for subgradients of
convex functions. To introduce the next result remember that in Definition
1.13 a polar cone K is introduced and applying this operation twice the
bipolar cone K% is given by

K% .= (K%% = {x € R" : xTx* <0 for every x* € K°}.

Again by Theorem 1.67 it is easy to derive an important dual representation
for closed convex cones. This result is known as the bipolar theorem and
generalizes the biorthogonality relation for linear subspaces as discussed in
Lemma 1.13.

Theorem 1.69. If K C R" is a nonempty convex cone then it follows that
c(K) =K%,

Proof. Since the set K is a convex cone we obtain that cl(K) is a closed
convex cone and this implies by the definition of a support function that
Tel( K)(s) =0 for every s € K” and oo otherwise. Using this representation
and applying Theorem 1.67 it follows that

x € cl(K) & sTx<ogr)(s) for every s € R”
& sTx<0foreveryse K' @ xe K%
and this shows the desired result. |

It is also possible to give a dual representation of the nonempty relative
interior ri(K) of a convex cone K. To prove this result we first observe
for any nonempty linear subspace L that pr(x*) denotes the orthogonal
projection of the vector x* on L. By Lemma 1.13 or Lemma 1.64 we know
that any x* € R™ can be uniquely written as the sum of an element of L
and of L+ and this decomposition is given by

(1.106) x* =pr(x*) +ppe(x’)

-
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Taking L = K+ and L+ = (K1) in relation (1.106) it is clear for every
x € K with K a proper convex cone that x*'x :p(KJ_)J_(X*)TX and this
implies

(1.107) x* € K & Pk LyL(x") € K.

To prove the dual representation of ri(K) we need to verify the following
auxiliary result.

Lemma 1.70. For any nonempty conver cone K C R™ it follows that
K° =K' & K a linear subspace < K° N (K1)1\{0} is empty.

Proof. We first show that K° = K1 implies that K is a linear subspace.
Since K is a convex cone and K+ is a linear subspace it follows by Theorem
1.69 and K° = K+ that

cl(K) = (K°)° = (K4)" = (K)*

and so cl(K) is a linear subspace. By the convexity of the set K we obtain
by Lemma 1.28 that ri(cl(K)) = ri(K) and since the linear subspace cl(K)
is relatively open this implies

cl(K) =ri(cl(K)) =ri(K) C K.

Trivially K C ri(K) and this yields that K equals cl(K) and is therefore
a linear subspace. To show the result that K is a linear subspace implies
KN (K+)4\{0} is empty it follows by our assumption that K = K+. Tt
is easy to verify that K+ N (K+)*+ = {0} and so K° N (K+)+\{0} is empty.
To prove the last implication we assume by contradiction that K%\ K Lis
nonempty. This implies by relations (1.105) and (1.106) that

P(K L)L (x*) # 0 and P(K L)L (x*) € K'n (K'L)L

for every x* € K%\ K+ and so the vector Pk L)L (x*) belongs to the set KN
(K+)1\{0}. This contradicts our assumption and the lemma is proved. §

As shown by the following example the convexity of the cone is needed in
the above result.

Example 1.13. Consider the nonconver cone K = {0} x (R\{0}) C R2.
For this cone it is easy to verify that K = K+ = R x {0} and since 0 does
not belong to K it follows that K s not a linear subspace.

It is now possible to prove the following dual representation of ri(K) for
any convex cone K.

Theorem 1.71. For any nonempty convex cone K C R™ it follows that

x€ri(K) e x e (KH)t and x*Tx < 0 for x* € KON (K+)1\{0}.
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Proof. In case K is a linear subspace it follows that ri(K) = K and by
Lemma 1.70 we obtain that K = (K*)* and the second condition always
holds. The reverse implication is also a direct consequence of Lemma 1.70
and so we only need to prove the result for K not a linear subspace. To
prove the implication = we first observe that ri(K) C aff(K) and due to
0 € aff(K) we obtain by relation (1.16) that aff(K) = (K*)*. Consider now
an arbitrary x* belonging to K° N (K+)*\{0} and since by assumption x €
ri(K) there exists some ¢ > 0 satisfying x+ex* € K. Due to x* € K°\{0}
this implies that
x*Tx = x* T (x+ex*) — e||x*|?> < 0

and we have shown the desired result. To verify the reverse implication
consider some point x satisfying

(1.108) x € (K1)t and x* Tx < 0 for every x* € K% n (K+)4\{0}.

By the first part and ri(K) is nonempty every point x € ri(K) satisfies
relation (1.108). Introducing the optimization problem

s(x) ;== sup{x* "x:x* € K°N (K1)t and ||x*|| = 1}

we obtain by the compactness of the feasible region and the continuity of
the objective function that by the Weierstrass-Lebesgue theorem (Theorem
1.40) an optimal solution exists and this implies by relation (1.108) that
s(x) < 0. If it can be shown that

(1.109) (x — s(x)E) Naff(K%) c K%
it follows by Theorem 1.69 and x € (K+)* = ((K%)%)* that
x € ri(K%) = ri(cl(K)) = ri(K)

and hence the desired result is proved. By this observation it is sufficient to
verify relation (1.109) and to do this consider an arbitrary point x—s(x)y
belonging to (x — s(x)E)N aff(K%). For this point we need to check that it
belongs to K% or equivalently

AT (x—s(x)y) <0 for every A € KV.
Due to x—s(x)y € aff(K%) = (K+)* it follows for every A € K° that
(1L110)  AT(—s(x)y) = ey () (x—s(0)y)
= X pesys (A) — sy Dy (A).

Applying the Cauchy-Schwartz inequality given by relation (1.98) to the last
part and using y € E we obtain

y eyt ) S Ny lllpesys Q)< lIpgesy (N
This yields by relation (1.110) that
(1.111) AT (x=s(x)y) <x ey (A) = s(x)[pryr A
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and so for p(g 1y (A) = 0 relation (1.111) reduces to
AT (x—s(x)y) <0.

To verify that the above inequality also holds for p k1) (A) # 0 we observe
by relation (1.107) that

prcLyr(A) # 0 & prry(A) € KO (K+)7\{0}
By the definition of s(x) and relation (1.111) this implies
AT (x—s(x)y) < x ey (A) = 56 by () <0
and hence also for this case the result follows. J

The strong separation result of Theorem 1.69 can be used to prove the
following “weaker” separation result valid under a weaker condition on the
point y. In this weaker form we assume that the vector y does not belong
to ri(S). By Theorem 1.65 it is clear that we may assume without loss of
generality that y belongs to the relative boundary®'rbd(S) :=cl(S)\ri(S) of
the almost convex set S C R™.

Theorem 1.72. If S C R" is a nonempty almost convex set and y belongs
to rbd(S) then there exists some nonzero vector y* belonging to the unique
linear subspace L,gs) parallel to the set aff(S) satisfying y*Tx > y*Ty for
every x € S. Moreover, for the same vector y* there exists some xg € S
such that y*Txy > y*Ty.

Proof. By Lemma 1.29 it follows that the sets ri(S) C S and cl(S) are
nonempty convex sets. Also by Lemma 1.29 we obtain that ri(S) =ri(cl(S))
and so y € rbd(S) does not belong to ri(cl(S)).Consider now for every n € N
the set (y +n LE)N aff(S). Due to y does not belong to ri(cl(S)) we obtain
by the definition of the relative interior that there exists some vector y,
satisfying

(1.112) yn ¢ cl(S) and y, € (y +n 'E) N aff(S)

By Lemma 1.29 the set cl(S) is a closed convex set and so it follows by
relation 1.112 and Theorem 1.69 that one can find some vector y; € R"
such that

(1.113) lyn 1= 1, y;, € cone(cl(S) —yn) and y'x > y;Tyn

for every x € cl(S). Since y,, belongs to aff(S) this implies by relation (1.16)
that

(1.114) Iy lI=1,¥n € Lags) and y;,Tx > y3Tyn.

By relation (1.114) the sequence {y}, : n € N} belongs to a compact set and
so by Lemma 1.3 there exist a convergent subsequence {y} : n € Ny} with

(1.115) lim yr=y"

n€Ng— o0

8lrelative boundary



68 J.B.G.FRENK

This implies by relations (1.112),(1.114) and (1.115) that
(1.116) yTx= lim yTx> lim y!'y,=yTy

neNyg—o0 neNy— o0

for every x € cl(S) and
(1.117) Y" € Lag(sy and || y* [|= 1.

Suppose now that there does not exist a xg € S satisfying aTxg > aTy. By
relation (1.116) this implies that aT(x —y) = 0 for every x € S and since y
belongs to cl(S) C aff(S) we obtain that y

(1.118) aTz =0

for every z belonging to L,g(s). Since by relation (1.117) the vector y*
belongs to Lyg(s) we obtain by relation (1.118) that || y* [*= 0 and this
yields a contradiction with || y* ||= 1. Hence it must follow that there exists
some xg € S satisfying y*Txy > y*'y and this proves the desired result.

The separation of Theorem 1.72 is called a proper separation®® between
the set S and y. Observe by Theorems 1.65 and 1.72 it is always possible
to separate a convex set C and a point.y outside C. If we know additionally
that this point y does not belong to cl(C) then strong separation holds
while for y belonging to cl(C) and not to C' we have proper separation. The
above separation results are the corner stones of convex and quasiconvex
analysis. An easy consequence of these results is given by the observation
that closed convex sets and relatively open convex sets are evenly convex.
Remember the definition of an evenly convex set is presented in Definition
1.11 and this subset of convex sets plays an important role in duality theory
for quasiconvex functions.

Lemma 1.73. If the proper convex set C' C R™ 1is closed or relatively open
then C is evenly convex.

Proof. Since the set C' C R" is proper there exists some y ¢ C and this
implies by Theorem 1.65 and C closed and convex that the set C' and y can
be strongly separated. Hence there exist some a € R" and b € R satisfying
C C H<(a,b) with H<(a,b) denoting the open halfspace given by

H<(a,b):={x € R":a'x < b}

and this shows that the set Hé of all open halfspaces containing the set C
is nonempty. By the definition of the set Hé it is clear that

C CN{H<(a,b): H<(a,b) € HS}
and applying again Theorem 1.65 one can show by contradiction that
C =n{H<(a,b): H(a,b) € H5}

Hence the closed convex set C'is evenly convex and this shows the first part.
To show that any relatively open convex set C' is evenly convex we observe

82proper separation
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since any closed convex set is evenly convex and C' C cl(C) that any element
of the nonempty set 7—[3(0) also belongs to the set Hé of all open halfspaces

containing the set C and this shows that
C CN{H<(a,b) : H<(a,b) € H5}

To verify that C equals N{H<(a,b) : H<(a,b) € H5} and hence is evenly
convex we assume by contradiction that there exists some

(1.119) y € N{H<(a,b) : H<(a,b) € H5} and y ¢ C.

If y does not belong to cl(C) then again by Theorem 1.65 one can find
some open halfspace containing C' and not containing y and this contradicts
relation (1.119). Moreover, if we consider the other case that y belongs to
rbd(C) we obtain by relation (1.119), Theorem 1.72 and C relatively open
that one can find some nonzero y* € L,g(s) satistying

(1.120) y*Tx > y*Ty for every x € C

Since C is relatively open and y* € L,g(s) there exists for every x € (' some
e > 0 satisfying x — ey* belongs to C and this yields by relation (1.120)
applied to x — ey* that

yix=y" (x—ey") +ely'll > vy

Hence we can find an open halfspace containing C' which does not contain
y and again by relation (1.119) we obtain a contradiction. This shows the
second part and we are done. 1

Without proof we now mention the following result for evenly convex sets
(cf. [16]).

Lemma 1.74. If S C R" is an evenly convex set and its complement S€ is
also convex then it follows that S is either empty or R™ or an open or closed
halfspace.

In the nex section we will use these results to derive dual representations
for convex and quasiconvex functions.

2. DUAL REPRESENTATIONS AND CONJUGATION.

In the first part of this section we will consider in detail properties of
convex functions which can be derived using the above strong and weak sep-
aration results. In particular we will discuss a dual representation of a lower
semicontinuous proper convex function based on relation (1.95). Moreover,
in the second subsection we will discuss similar properties of quasiconvex
functions and in particular we derive a dual representation of an evenly
quasiconvex function.
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2.1. Dual representations and conjugation for convex functions.
In this section we consider extended real valued convex functions f : R"* —
[—00, 00] for which there exists some element in its domain R" with a finite
function value. At first sight these functions seem complicated and as always
in mathematics one tries to approximate these complicated functions by
simpler functions. For convex functions these simpler functions are given by
the so-called affine minorants.

Definition 2.1. For any function f : R — (—o0,00] the affine function
a: R" = R given by a(x) = aTx + « with a € R" and « € R is called an
affine minorant®® of the function f if

f(x) = ax)
for every x belonging to R™. Moreover, the possibly empty set of affine mi-
norants of the function f is denoted by Ay.

Since any affine minorant a of a function f is continuous and convex it is
easy to verify the following result.

Lemma 2.1. For any function f : R™ — [—00, 0] it follows that

Ar = Acor) = Aty

Proof. We only give a proof of the above result for A; nonempty. Since
o(f) < co(f) < f it follows immediately that

Aoty € Aco(n) € Ay

Q

Moreover, if the function a belongs to A; then clearly a < f and a is

continuous and convex. This implies by relation (1.83) that a < co(f) and
hence the afiine function a belongs to Am. 1

Since an affine function is always finite valued the set of affine minorants
of a function f is empty if there exists some x € R" satisfying f(x) = —o0
and so it is necessary to consider functions f : R™ — (—o00,00]. In the next
theorem we give a necessary and sufficient condition for the set Ay of affine
minorants of the function f to be nonempty.

Theorem 2.2. If f : R* — [—o0,00] is an arbitrary function then it fol-
lows that

Ajg nonempty < co(f)(x) > —oo for every x € R".

Proof. 1f the set Ay is nonempty then for a given a belonging to A; we
obtain by definition that a(x) = a'x+a and a(x) < f(x) for every x € R".
Since the function @ is a convex function majorized by f this implies by
relation (1.81) that

co(f)(x) > a'x+a

83affine minorant of the function f
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and this shows the desired result. To show the reverse implication we con-
sider some f satisfying co(f)(x) > —oo for every x € R". In case dom(co(f))
is empty it follows that co(f) is identically oo and hence f is identically oo
and so trivially A is nonempty. Therefore consider the case that dom(co(f))
is nonempy and since by Lemma 1.49 this is a convex set it must fol-
low by Lemma 1.25 that ri(dom(co(f))) is nonempty. Since by construc-
tion co(f) > —oo is a convex function it follows by Lemma 1.48 for x €
ri(dom(co(f))) that

(2.1) —00 < co(f)(x0) = (co(f)(x0) < 0.

This implies that the point (xg,co(f)(xg) — €) with € > 0 does not belong to
the set epi(co(f)) and by Lemma 1.51 this set equals the nonempty closed
convex set cl(co(epi(f))). Applying now Theorem 1.65 there exists some
nonzero vector (xg, ") satisfying

(2.2) Xy X+ 7 > x5 %0 + B*(co(f) (x0) — €)

for every (x,r) € epi(co(f)). Since by relation (2.1) the real valued vector
(x0,c0(f)(x0)) belongs to epi(co(f)) we obtain by relation (2.2) that

x5 %o + B*co(f)(x0) > x5 %0 + B (co(f)(x0) — €)

and this yields fe > 0. Due to € > 0 we obtain § > 0. Also by Lemma 1.49
it follows for every x € co(dom(f)) that the vector (x,r) with r = co(f)(x)

belongs to epi(co(f)) C epi(co(f)) and this implies dividing the inequality
in relation (2.2) by # > 0 that

23 col)x) 2 cof F)(x0) = o3 (x = x0) —
for every x € co(dom(f)). Since f > co(f) this shows

(2.4) f(x) = co(f)(x) = co(f)(x0) — %XST(X —X0) —¢€

for every x € dom(f) C co(dom(f)) and hence the set A of affine monorants
of f is nonempty. I

Unfortunately it is not true as shown by the following example that A
is nonempty for f > —oo.

Example 2.1. For the concave function f : R — R given by f(r) = —x°

it is easy to verify that co(epi(f)) = R? and f > —oo. Hence we obtain that
Aco(p) s empty and this yields by relation (2.5) that Ay is empty.

In some cases it is difficult to check co(f) > —oo and so we derive in the
next lemma a sufficient condition.

Lemma 2.3. If f : R — [—00,00] is an arbirary function and there ezists

some y satisfying co(f)(y) is finite then the set Ay is nonempty and co(f)
1S proper.
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Proof. We may copy the same proof as used in Theorem 2.2 replacing ev-
erywhere co(f) by co(f) and this proves that the set A; is nonempty and
hence co(f) > —oo. To show that co(f) is proper we still need to verify that
dom(co(f)) is nonempty. Assume therefore by contradiction that co(f) is
identically co. Hence it must follow that f is identically oo and so also co(f)
is identically oo . This contradicts our assumption that co(f)(y) is finite
and so it must follow that co(f) is proper. 1

By Lemma 1.48 a sufficient condition to guarantee that there exists y
satisfying —oo < co(f)(y) < oo is the existence of some y € ri(dom(co(f))
satisfying co(f)(y) > —oo. In order to prove the next result known as
Minkowski’s theorem we introduce the the following set of convex functions.

Definition 2.2. The function f : R" — [—00, 00| belongs to the set conv(R™)
if fis convexr and lower semicontinuous and there exists some'y € R"™ with

f(y) finite.

It is now possible to prove the following important result.

Theorem 2.4. If f : R" — [—00, 00| denotes some function with dom(f)
nonempty then it follows that

f € conv(R") & f(x) =sup{a(x):a € As} and Ay nonempty.
Proof. If the function f : R" — [—00,00] with dom(f) nonempty has the
representation
f(x) =sup{a(x) : a € Ay} and Ay nonempty
then clearly f is lower semicontinuous and convex. At the same time f >
—oo and since dom(f) is nonempty this yields that there exists some y with
f(y) finite and this shows that f belongs to the set conv(R"). To prove the

reverse implication we observe since f belongs to conv(R") that f equals
co(f) and this shows by Lemma 2.3 that the set Ay is nonempty and hence

f(x) > sup{a(x) :a € As}.

Suppose now by contradiction that there exists some xy € R" satisfying

(2.5) f(x0) > sup{a(xo) : a € Af}.
If this holds there exists some finite v such that
(2.6) f(xo) >y > sup{a(xo) : a € A}

and this yields that the vector (xg,y) does not belong to the closed and
convex epigraph epi(f). By Theorem 1.65 one can now find some vector
(x5, 8") and € > 0 satisfying

(2.7) x5 x4 B*r > x5 xo + 7 +e

for every (x,r) belonging to the nonempty set epi(f). Since for every h > 0
the vector (x,r + h) belongs to epi(f) for (x,7) € epi(f) it must follow by
relation (2.7) that £* > 0. If it happens that f(x¢) < oo then we know that
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(x0, f(x0)) belongs to epi(f) and this implies again by relation (2.7) that
B*(f(xg) — ) > 0. Due to f(xgp) — > 0 this yields f* > 0 and so we obtain
by relation (2.7) that

for every x belonging to dom(f). Hence we have found some a € Ay sat-
isfying a(x9) = S and this contradicts relation (2.6). If f(x¢) = oo and in
relation (2.7) the scalar 5* is positive then by a similar proof we obtain a
contradiction and so we consider the last case f(xg) = oo and 5* = 0. Hence
it follows by relation (2.7) that

(2.8) —x5 (x —x0) +€<0

for every x belonging to dom(f). Consider now the affine function ag : R™ —
R given by

(

1
x—x0)+§e

It is clear that ag(x0) > 0 and by relation (2.8) we obtain

ap(x) = —xg

(2.9) ap(x) < —x3 (x —x¢) +€<0

for every x € dom(f). Since the set Ay is nonempty consider now an arbi-
trary function a belonging to this set. By relation (2.9) it follows for every
A > 0 that the affine function

(2.10) a(x) + Aap(x) < a(x) < f(x)

for every x € dom(f) and so this affine function is an affine minorant of f .
By relation (2.6) and ap(xg) > 0 we obtain that scalar

B — a(xo)

Ao =
0 ag(Xo)

>0

and this shows that
(2.11) a(xp) + Aoao(x0) = B

Hence by relations (2.10) and (2.11) we obtain a contradiction with relation
(2.6) and this shows the desired result. I

An immediate consequence of Minkowski’s theorem and Lemma 2.1 is
listed in the next result.

Lemma 2.5. If f : R® — [—o00,00] is an arbitrary function satisfying
—o00 < co(f)(y) < oo for some y then it follows that Ay is nonempty and

co(f)(x) = supia(x) : a € As}.

In Theorem 2.4 we only guarantee that any function f € conv(R™) can
be approximated from below by affine functions. However, it is sometimes
useful to derive an approximation formula in terms of the origianl function
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f- This formula was first constructed in its general form by Fenchel and it
has an easy geometrical interpretation.

Definition 2.3. Let f : R" — [—oo,00] be an arbitrary function. The
conjugate function 84 f* 1 R™ — [—o0, 0] of the function f or the Legendre-
Young-Fenchel transform f* of f is given by

f*(x*) = sup{x*"x—f(x) : x € R"}.
Morever the biconjugate function 8° f** : R" — [—o0,00] of the function f
s given by

F*(x) == (f)*(x) := sup{x ' x* — f*(x*) : x* € R"}

By the above definition it is immediately clear that conjugate function
f* is convex and lower semicontinuous. Moreover, if the function f: R" —
[—00,00] is proper and the set Ay of affine minorants is nonempty then it
is easy to verify that the function f* is also proper. As shown by the next
result the biconjugate function has a clear geometrical interpretation.

Lemma 2.6. If the set Ay of affine minorants of the function f is nonempty
then it follows that

(x*,r) € epi(f*) & a € Ay with a(x) = x*Tx—r
and

[ (x) = sup{a(x) : a € A}

Proof. To verify the first equivalence relation we observe for the affine mi-
norant a(x) = x*' x — r < f(x) for every x € R" that

r> f*(x*) =sup{x*"x — f(x):x € R"}

or equivalently (x*,r) belonging to epi(f*). Moreover, if (x*,r) € R"'!
belongs to epi(f*) we obtain by the definition of an epigraph that r > f*(x*)
and this implies for every x € R™ that

a(x) =x*Tx —r < f(x).
To prove the second equality we observe by definition that
F¥*(x) = sup{x"x* —r: (x*,7) € epi(f*)}.

Since by the first part (x*,7) € epi(f*) if and only if a(x) = x*
affine minorant of the function f this shows that

[ (x) = sup{a(x) : a € A}

and hence the second equality is verified. I

Tx —risan

To prove one of the most important theorems in convex analysis we need
to introduce the next definition.

84conjugate function of f
85biconjugate function
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Definition 2.4. If f : R* — [—o0,00] is an arbitrary function then the
closure cl(f) : R™ — [—o0, 00| of the function f is given by

c(f) = f if f > —o0 and cl(f) = —oco otherwise.

Clearly the function cl(f) is lower semicontinuous and satisfies cl(f) < f.
The next result is well-known and is known as the Fenchel-Moreau theorem.

Theorem 2.7. For any function f : R" — [—o0, 00| it follows that
[ = cl(co(f))-

Proof. If there exists some xq satisfying co(f)(xg) = —oo then it follows in
case f*(x}) < oo for some xj; that there exists some finite « satisfying o >
x§ " x— f(x) for every x € R" . This shows that the function x — x} x—a is
an affine minorant of the function f and so we obtain by relation (1.83) that
co(f)(x0) > —oo. This yields a contradiction and therefore f* is identically
oo. This implies f** is identically —oo and by the definition of the closure
we obtain f** = cl(co(f)). In case co(f) > —oo and there exists some x
satisfying co(f)(xo) is finite the result follows by Lemma 2.5 and Lemma
2.6. Finally if co(f) is identically oo then clearly f is identically co and so
f*(x) = —oc0 and f**(x) = oo for every x € R". I

An important consequence of the Fenchel-Moreau theorem is given by the
next result.

Theorem 2.8. If the lower semicontinuous hull f of the function f : R" —
[—00,00] is convex then it follows that

7 (%) = f(x) =lim inf f(y)

for every x belonging to dom(f).

Proof. Tt is well-known by Lemma 1.46 that f(x) =liminfy_,x f(y). More-
over, since f is convex we obtain that f is a lower semicontinous convex
function majorized by f and this shows by Lemma 1.51 that f < co(f). Triv-

ially co(f) < f and hence we obtain that co(f) = f. Since by assumption x
belongs to dom(f) it follows that either co(f)(x) is finite or co(f)(x) = —oo.
If it happens that co(f)(x) = —oo then cl(co(f)) is identically —oo and by

the Fenchel-Moreau theorem we obtain that

F**(x) = —o0 = co(f)(x) = f(x).
Also, if co(f)(x) is finite then it follows that co(f) is proper and by the

definition of the closure it follows that cl(co(f)) = co(f) = f. Applying now
the Fenchel-Moreau theorem yields the desired result. I

Looking back at the proof of Theorem 2.2 we observe that the inequality
in relation (2.3) is so important that it has been given a special name.
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Definition 2.5. For any function f : R" — (—o0,00], X9 € R and € > 0
the subset of R™ consisting of those vectors x; satisfying

f(x) > f(xo) +x37(x — x0) — €

for every x € R" is called the e—subgradient set®® of the function f at
the point xo. This set is denoted by O.f(xg) and its elements are called
e—subgradients’”. Moreover, the set dom(O.f) is given by

dom(0.f) = {x € R" : 0.f(x) # 0}

By Theorem 2.4 it follows that any convex function f: R" — [—o0, 0]
with f(xg) > —oo for some x( € ri(dom(f)) has a y-subgradient at xq for
any v > 0. Actually by using the stronger proper separation result one can
show the following improvement for any xq belonging to ri(dom(f)).

Theorem 2.9. If f: R" — [—00,00] is a convez function with f(xg) finite
for some xq belonging to ri(dom(f)) then there exists some x{ belonging to
the linear subspace L ogdom(yr)) parallel to aff(dom(f)) satisfying

f(x) > f(x0) + %" (x — x0)
for every x € R™.

Proof. Consider xq € ri(dom(f)) satisfying f(x¢) is finite. Since by Lemma
1.48 we obtain that f(xg) = f(xo) it follows by Lemma 2.5 that the convex
function f is proper and by Lemma 1.47 this yields

(x0, f(x0)) belongs to rbd(epi(f))

Since epi(f) is a nonempty convex set we may apply Theorem 1.72 and so
there exists some nonzero vector (xg, ") belonging to the linear subspace
Lagepi(s) Parallel to aff(epi(f)) satisfying

(2.12) xy'x + B°r > x3"x0 + 8" f(x0)
for every (x,r) belonging to epi(f). Since
aff(epi(f)) = aff(dom(f)) x R

and 80 Lag(epi(f)) = Laff(dom(f)) X R we obtain that xj belongs to the linear
subspace Lag(dom(f)) Parallel to aff(dom(f)) and so for every ¢ > 0 it follows
that

(2.13) xo + txg € aff(dom(f)).

Since we additionally know that x belongs to ri(dom(f)) there exists using
relation (2.13) some e > 0 satisfying xg — ex; € dom(f) and this implies by
relation (2.12) for r = f(xg — ex() that

(2.14) —¢ || x5 |I* +8f(x0 — ext) > Bf (x0)

86 subgradient set of f at xo
87y —subgradients
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Clearly by relation (2.12) it must follow that 8 > 0. To check that g > 0
we assume by contradiction that § = 0 and this yields by relation (2.14)
that x; = 0. Hence the normal vector (xj, ") must be the zero vector and

this contradicts (x§, ") nonzero. Dividing the expression in relation (2.12)
by 8* > 0 yields for r = f(x),x € dom(f) that

(%) > f(x0) — %x’aT(x ~ %)

and this shows with vy§ = —%x’ﬁ belonging to the linear subspace Lag(dom(f))
parallel to aff(dom(f)) that the result holds. I

Observe the vector 4 € Lag(dom(s)) In the above theorem has a special
name and as one might expect this is called a subgradient.

Definition 2.6. For any function f : R" — (—o00, 00| and xg € R the subset
of R" consisting of those vectors x{ satisfying

f(x) > f(xo) + x4 (x — %)

for every x € R™ is called the subgradient set®® of the function f at the point
xo. This set is denoted by Of (xo) and its elements are called subgradients®®.
Moreover, the set dom(0f) is given by

dom(0f) :={x € R": 0f(x) # 0}
The next result can now be easily verified.

Lemma 2.10. If f : R" — [—00,00] is a convex function with f(xg) finite
for some x¢ € ri(dom(f)) then it follows that

ri(dom(f)) C dom(0f) C dom(f)
Moreover, the set Of (x) is closed and convex.

Proof. By Theorem 2.9 it follows immediately that ri(dom(f)) C dom(9f).
To verify the other inclusion we know that dom(f) is nonempty and so let
y € dom(f) and consider an arbitrary x € dom(df). By the definition of
the subgradient it follows with x* belonging to df(x) that

0o > f(y) > f(x) +x"T(y — x)

and this shows that x belongs to dom(f). The last part of the above lemma
is esay to verify and so we omit it. I

By the following example it is shown that a subgradient might not exist
for x belonging to the relative boundary of dom(f).

Example 2.2. Consider the convezx function f : R — (—o0, 00| given by
f(z) = =z for £ >0 and f(z) = oo otherwise.
Clearly 0 belongs to the relative boundary of dom(f) but 0f(0) is empty.

88subgradient set of f at xp
89subgradients
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In case the subgradient of a function at a certain point exists one can also
prove the following relation between f and f*.

Lemma 2.11. For f : R" — [—00,00] be a proper function it follows that
x5 € 0f (x0) & f(x0) + f*(x0) = X0 X

Proof. Ifx} € 0f (xo) it follows by definition that f(x) > f(xo)+x§ " (x—%0)-
In case f(xg) = oo this implies that f(x) = oo for every x € R"™ and this
contradict that f is proper. Therefore it must follow that f(xg) is finite and
so we obtain for every x € R" that

x5 xo — f(xo) > x' x5 — f(x)
This yields by the definition of the conjugate function that
x5 %0 — f(x0) > f*(xp)

and since trivially f*(x) < x§' x9 — f(x¢) the desired equality follows. To
show the reverse iimplication we observe for every x € R" that

xj ' x = f(x) < f7(x5) = %0 %5 — f(x0)-
Since f is proper this shows for every x belonging to dom(f) that
F(x) 2 f(x0) +%5" (x — x0)
and this shows xj, belongs to 0f(x¢). i1

A direct consequence of the above result is given by the following im-
provement of the Fenchel-Moreau theorem.

Lemma 2.12. For f : R" — (—o00,00] a proper function it follows for every
xg belonging to dom(0f) and x§ € 0f (xo) that

f**(x0) = x5 x0 — [*(x5) = f(x0)

Proof. Tt is easy to verify that f**(x¢) < f(xp) and this shows by Lemma
2.11 that

F(x0) 2 [ (x0) 2 x5 %0 — [*(x5) = f(x0).
for every x{; belonging to 0f(xo).

Convex functions have remarkable continuity properties. Before mention-
ing the main result we introduce the next definition.

Definition 2.7. A function f : R* — R is called Lipschitz continuous® on
the set S C R™ if there exists some finite constant L ( the so-called Lipschitz
constant) satisfying

[f(x1) = f(x2) S Ll %1 —x2 ||

for every x1,xs belonging to S.
Without proof we now list the following result (cf.[8]).

90Lipschitz continuous function
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Lemma 2.13. If f : R" — [—00,00] is a proper convex function with f(y)
finite for some y € R™ then it follows that the function fis continuous on
ri(dom(f)) and Lipschitz continuous on every compact subset of ri(dom(f)).

Finally at the end of this section we will consider the general duality
framework for optimization problems. To do so we consider for a given
function f : R™ — [—00, 00] the optimization problem

inf{f(x) : x € R"}.

Since f represents an extended real valued function the above optimization
problem also covers constraint optimization problems. Associate with the
function f a function F' : R™ x R" — [—o00,00] satisfying F(x,0) = f(x)
and consider the so-called perturbation function p : R™ — [—o00, 0] defined
by

p(y) = inf{F(x,y) : x € R™}
By the definition of the function F' we obtain that
p(0) =inf{f(x) : x € R"}.

and an example of such a function and the corresponding perturbation func-
tion is listed in Example 1.10. The dual problem of the above primal problem
is now given by

p™(0) = sup{—p*(y) : y € R"}.

Clearly by the Fenchel-Moreau theorem we obtain that p**(0) =cl(p)(0) and
this yields immediately for p a proper convex function that

p*™(0) = p(0) < p is lower semicontinuous in 0

Moreover, if 0 belongs to ri(dom(p)) we obtain that the subgradient set of p
at 0 is nonempty and by Lemma 2.12 any element from this subgradient set
is an optimal solution of the dual problem. This concludes our discussion of
the general framework of duality theory for optimization programs. For a
detailed analysis of the Lagrangian perturbation function of Example 1.10
and its relation with the so-called cone convexlike vector valued functions
the reader is referred to [6].

2.2. Dual representations and conjugation for quasiconvex func-
tions. In this section we primarily study duality results for the class of
evenly quasiconvex functions. Most of the the results of this section can
be found in [16]. Unfortunately in this paper no geometrical interpreta-
tion of the results are given and for a clear geometrical interpretation the
reader should consult [7]. In these papers it is shown that one can use the
same approach as in convex analysis and this results in proving that certain
subsets of quasiconvex functions can be approximated from below by so-
called quasi-affine functions. As in convex analysis the used approximations
and the generalized bi-conjugate functions have a clear geometrical inter-
pretation (cf.[7]). Before introducing these simpler quasi-affine functions we
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denote by Gy the class of extended real valued and nondecreasing functions
¢ : R — [—o00,00]. Moreover, the subclass G; C Gy denotes the class of
extended real valued lower semicontinuous and nondecreasing functions on

R.

Definition 2.8. A function a. : R — [—00,00] is called a G;-affine func-
tion with i = 0,1 if

ac(x) = c(a'x) + a

for some c belonging to G; , a € R"™ and o € R. The function a. is called a
Gi-affine minorant of the the function f: R™ — [—00, 0] if a. is a Gi-affine
function and a.(x) < f(x) for every x € R"™. Moreover, the set of G;-affine
minorants of the function f is denoted by G;Ay.

Since the function ¢ : R"™ — [—00, 00| with ¢ identically —oo belongs to
the set G; C Gy it follows immediately that the set of G;-affine minorants
and the set of Gp-affine minorants of any function f : R" — [—o0,00] is
nonempty. This is a major difference with the set of affine minorants of a
function f since this set might be empty. Observe in Theorem 2.2 we showed
that this set is nonempty if and only if co(f) > —oo. We now show that a
Go-affine function, respectively a Gi-affine function is an evenly quasiconvex
function, respectively a lower semicontinuous quasiconvex function.

Lemma 2.14. If the function a. : R" — [—00, 0] is Go-affine then it fol-
lows that ac is evenly quasiconvex. Moreover, if the function a. is G1-affine
then it follows that a. is lower semicontinuous and quasiconvex.

Proof. To show that any Gy-affine function is evenly quasiconvex we observe
for every r € R that there exists some ¢ € Gp,a € R" and o € R such that
L(ac,r) := {x € R": ¢(a’x) < r} and this shows

(2.15) L(ae,r) = {x € R":a'x € L(c,r)}

with L(c,r) denoting the lower level set of the function ¢ of level r. Since
¢ is nondecreasing it follows that the lower level set L(c,r) for any r € R
represents a (possibly empty) interval and if this interval is nonempty it has
the form (—o0, 8,) or (—o0, 8,] with 3, := sup{t : ¢(t) < r}. This implies by
relation (2.15) that L(a.,r) is either empty, a closed or open halfspace and
so we obtain that this set is evenly quasiconvex. To prove that any Gp-affine
function is a lower semicontinuous quasiconvex function we observe by the
lower semicontinuity of ¢ and Theorem 1.39 that the lower level set L(c,r)
is either empty or a closed set represented by (—oo, 3,.) and this shows that
the lower level set L(a.,r) is either empty or a closed halfspace. Applying
now Theorem 1.39 yields the desired result. I

By Lemma 2.14 and Lemmas 1.54, 1.55 and 1.56 one can show similarly as
in Lemma 2.1 the following result and so the proof of this result is omitted.
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Lemma 2.15. For any function f : R™ — [—o00,00] it follows that
GoAs = GoAege(s) and G1As = G1Ag(p) = G1A 7y

We will now show a generalization of Minkowsky’s theorem (Theorem 2.4)
valid for evenly quasiconvex and lower semicontinuous quasiconvex func-
tions.

Theorem 2.16. If f: R" — [—00,00] is an arbitrary function then
eqe(f)(x) = sup{ac(x) : ac € GoArs}.

Moreover, it follows that

ge(f)(x) = sup{ac(x) : ac. € Gi A}

Proof. We only give a proof of the first formula since the proof of the second
formula is similar and can be found in [16]. Since the set Gp. Ay is nonempty
we obtain by Lemma 2.15 that

eqc(f)(x) = sup{ac(x) : ac € GoAy}.

If for some x it follows that eqc(f)(x¢) = —oo the result follows immediately
and so we assume that eqc(f)(xp) > —oo. Suppose by contadiction that

eqc(f)(xo0) > sup{ac(xo) : ac € GoAs}.
and let 8 be some finite number satisfying
(2.16) eqc(f)(xo) > B > sup{ac(xo) : ac € GoAy}.

If it happens that L(eqc(f),) is empty it follows by relation (2.16) that
f(x) > eqc(f)(x) > B for every x € R" and so taking a. identically equal
to S we obtain that a. is a Gp-affine minorant of the function f and this
contradicts relation (2.16). Suppose therefore that L(eqc(f), 3) is nonempty
and since by Lemma 1.56 the function eqc(f) is evenly quasiconvex one can
find a collection of vectors (a;, ;);c; such that

(2.17) L(eqe(f), B) = NierH=(ay, o)

By relation (2.16) it follows that the vector xo does not belong to L(eqc(f), 5)
and so by relation (2.17) there exists some ¢g € I satisfying

(2.18) a; Xo > a,.
Introduce now the increasing function ¢ : R™ — [—00, 00| represented by
c(t) = inf{f(y) : y'a;, >t and y € R"}
and consider the Gy-affine function a. : R" — [—00, 00| given by
ac(x) :==c(a;,x) = inf{f(y) : y "ai, > x"ay,}.

It is clear by the definition of a, that a.(x) < f(x) for every x belonging to
R™ and so a. is a Gp-affine minorant of the function f. Moreover, by relation
(2.18) we obtain for every y satisfying y'a;, > xJ a;, that y'a;, > «j,
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and this shows by relation (2.17) that y does not belong L(eqc(f),3). This
implies
y' i, 2 %025, = f(y) 2 eac(f)(y) 2 B

and so we obtain a.(xo) > /. This yields a contradiction with relation (2.16)
and the result is verified. |

By the above observation it is clear that for lower semicontinuous quasi-
convex functions and evenly quasiconvex functions the affine functions for
convex functions are replaced by respectively Gi-affine and Gp-affine func-
tions. Using these functions one can also generalize the conjugate and bi-
conjugate functions used within convex analysis.

Definition 2.9. If f : R" — [—00,00] is an arbitrary function and c € G;
then the c-conjugate function f¢: R"™ — [—o00,00] of the function f is given
by

f(x*) = sup{e(x*Tx)—f(x) : x € R"}.

Moreover the bi-G;-conjugare function f99 : R" — [—00, 0] of the function
f s given by

1919 (x) := sup{e(x"x*) — f4(x*) : x* € R", ¢ € G;}.

By a similar proof as in Lemma 2.6 it is easy to give a geometrical inter-
pretation of the biconjugate function.

Lemma 2.17. For any function f : R™ — [—o00, 0] it follows that

(x*,7) € epi(f©) & ac € GiAf with a.(x) = c(x*Tx) —r

and
fY9i9i (x) = sup{ac(x) : a. € Gi Ay}

Combining now Lemma 2.17 and Theorem 2.16 we immediately obtain
the following generalization of the Fenchel-Moreau theorem.

Theorem 2.18. For any function f : R* — [—o0,00] it follows that f9090 =
ege(f) and f99 = ge(f)

Although the above formula yields a dual representation of an evenly
quasiconvex hull and a lower semicontinuous convex hull the above formula
is of no use since the definition of the bi-G;-conjugate function is still very
complicated. Therefore we wonder whether it is possible to simplify these
formulas. Indeed this is possible and this simplification is listed without
proof in the following theorem for the case of the bi-Gy conjugate function.
For this case the bi-conjugate function simplifies most and the proof of this
result is purely algebraic and can be found in [16].

Theorem 2.19. For any function f : R™ — [—o0,00] it follows that

F99%(x) = sup inf{f(y):y'x* >x'x"}
x*€R"
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Combining now Theorem 2.19 and 2.18 we immediately obtain the follow-
ing dual representation of the evenly quasiconvex hull eqc(f) of an arbitrary
function f.

Theorem 2.20. For any function f : R™ — [—o0,00] it follows that
eqe(f)(x) = sup inf{f(y):y x* >xx"}
x*CR™

Actually the above result can also be proved directly copying the proof
of the generalized Minkowsky theorem (Theorem 2.16). However, although
it is mathematically easier to prove the above result directly we loose the
geometrical interpretation of the above result. This concludes this short
section on duality results for quasiconvex functions. Observe we did not
introduce the concept of the c-subgradient but this can be done similarly
as for convex functions. It is the intention of the author if time permits to
write a book on convex and quasiconvex analysis and besides the theoretical
results show how the above results can be used to build basic algorithmic
procedures for convex and quasiconvex optimization problems.
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