VECTOR OPTIMIZATION

(Lecture delivered at the summer school "Generalized Convexity and Monotonicity", August 25-28, 1999, Samos, Greece)

by
DINH THE LUC
University of Avignon, France

CONTENTS

I. Preliminaries

1. Partially ordered spaces
2. Correct cones
3. C-complete sets
II. Efficient points and Existence
4. Efficient points
5. Existence criteria
III. Optimality conditions
6. Differentiable problems
7. Lipschitz continuous problems
8. Convex problems
9. Second order conditions
IV. Solution methods
10. Two classical methods
11. Normal cone method

References

1. PRELIMINARIES

1. Partially ordered spaces

Let E be a space and $B \subseteq E \times E$ a relation on E. We say that B is a partial order on E if it is

- reflexive, i.e. $(x, x) \in B$ for every $x \in E$;
- transitive, i.e. $(x, y),(y, z) \in B$ imply $(x, z) \in B$.

In this note we shall deal with a special case where E is a topological vector space and equipped with a partial order B that is linear in the sense that $(x, y) \in B$ implies $(x+z, y+z),(t x, t y) \in B$ for all $z \in E$ and $t>0$.
We shall write $x \geq y$ instead of $(x, y) \in B$.
Proposition. If (\geq) is a linear partial order in E, then the set

$$
C:=\{x \in E: x \geq 0\}
$$

is a convex cone in E.
Conversely, if C is a convex cone in E, then the relation

$$
x \underset{C}{>} y \quad \text { if and only if } x-y \in C
$$

is a linear partial order in E.
Proof Let (\geq) be a linear partial order in E. Let $x \in C$. By the linearity, one has $t x \geq 0$ for all $t>0$. Hence $t x \in C$ for $t>0$. When $t=0$, by the reflexivity one has $0=0 x \in C$. This shows that C is a cone. This cone is convex because for $x, y \in C$ we have $x \geq 0, y \geq 0$, consequently $x+y \geq 0+y \geq y \geq 0$ which means $x+y \in C$.

Conversely, assume that C is a convex cone in E. Since $0 \in C$, we have $x \geq_{c} x$ for all $x \in E$. This shows that $\left(\geq_{c}\right)$ is reflexive. Moreover, if $x-y \in C$ and $y-z \in C$, then by the convexity of C we obtain $x-z=x-y+y-z \in C$ or equivalently, $x \geq_{c} y$ and $y \geq_{c} z$ imply $x \geq_{c} z$. In this way (\geq_{c}) is a partial order in E. It is linear because $x-y \in C$ implies $t(x-y) \in C$ for $t>0$ and $(x+z)-(y+z) \in C$ for all $z \in E$, which means $x \geq_{c} y$ implies $t x \geq_{c}$ ty and $x+z \geq_{c} y+z$ for all $t>0, z \in E$. The proof is complete.

Examples

1. Let $E=R^{n}$ and $C=R_{+}^{n}$ (the positive orthant). Then (\geq_{c}) is the usual componentwise order, i.e. for $x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{n}\right)$ one has $x \geq_{c} y$ if and only if $x_{i} \geq y_{i}, i=1, \cdots, n$.

This is a linear partial order.
2. The lexicographic order : Let C be the cone in R^{n} consisting of all vectors x, whose first nonzero component is positive. Then $\left(\geq_{c}\right)$ is a linear partial order. Actually this order is complete in the sense that any two elements of R^{n} are comparable (either $x \geq_{c} y$ or $y \geq_{c} x$).
3. The ubiquitous order : Let ℓ_{0} denote the space of sequences whose terms are all zero except for a finite number. This is a normed space if we equip it with the max-norm. Let C be a cone consisting of sequences whose last nonzero component is positive. Then the order generated by C is a linear partial order in ℓ_{0}. The cone C is called ubiquitous because of the following property : for each $x \in \ell_{0}$, there exists $y \in C$ such that $[y, x) \subseteq C$.

2. Correct cones

Let C be a convex cone in a topological vector space E. We shall make use of the following notations : $\ell(C):=C \cap-C$ (the linear part of C) ; int C (the interior of C), cl C (the closure of C).

For a subset $A \subseteq E, A^{c}$ denotes the complement of A in E, i.e. $A^{c}=E \backslash A$

Definition. We say that the cone C is
i) pointed if $\ell(C)=\{0\}$
ii) correct if $\mathrm{cl} C+C \backslash \ell(C) \backslash \subseteq C$
or equivalently cl $C+C \backslash \ell(C) \subseteq C \backslash \ell(C)$.
Note that the cone R_{+}^{n} is pointed and correct, while the lexicographic cone and the ubiquitous cone are pointed and not correct.

Proposition. Each of the following conditions is sufficient for C to be correct :
i) C is closed
ii) $C \backslash \ell(C)$ is open
iii) C consists of the origin and an intersection of half-spaces that are either open or closed.

Proof. If C is closed, then $\mathrm{cl} C=C$ and the correctness of C follows from the convexity.

If $C \backslash \ell(C)$ is open, then int $C \neq \emptyset$ and $C \backslash \ell(C)=\operatorname{int} C$. Consequently, cl $C+C \backslash \ell(C)=\mathrm{cl} C+\operatorname{int} C \subseteq C$ which shows that C is correct.

Finally, let $C=\{0\} \cup\left\{\bigcap_{\lambda \in \Lambda} H_{\lambda}\right\}$ where each H_{λ} is a half-space that is either closed or open. If all of H_{λ} are closed, then C is closed. By the first part, C is correct. If one of H_{λ} is open, then $\ell(C)=\{0\}$ and $b \in C \backslash \ell(C)$ if and only if
$b \in H_{\lambda}$ for all $\lambda \in \wedge$. Moreover, an element $a \in \operatorname{cl} C$ if and only if $a \in \operatorname{cl} H_{\lambda}$ for all $\lambda \in \wedge$. This and the fact that $\operatorname{cl} H_{\lambda}+H_{\lambda} \subseteq H_{\lambda}$ independant of whether H_{λ} is open or closed, imply that $a+b \in C$ whenever $a \in \operatorname{cl} C$ and $b \in C \backslash \ell(C)$. Hence C is correct.

3. C-complete Sets

Let E be a topological vector space and C a convex cone in E. We shall write $x>y$ by understanding $x-y \in C \backslash \ell(C)$.

Let $\left\{x_{i}\right\}_{i \in I}$ be a net in E. It is said to be decreasing if $x_{i}>x_{j}$ for $i<j$.
Definition. A set $A \subseteq E$ is said to be C-complete (resp. strongly C-complete) if it has no covering of the form

$$
\left\{\left(x_{i}-\operatorname{cl} C\right)^{c}: i \in I\right\} \quad\left(\text { resp. }\left\{\left(x_{i}-C\right)^{c}: i \in I\right\}\right)
$$

where $\left\{x_{i}\right\}_{i \in I}$ is a decreasing net in A.
We note that every strongly C-complete set is C-complete. The converse is not always true except for the case where C is a closed cone.

Below we give some sufficient conditions for a set to be C-complete.
Proposition 1. Every compact set is C complete. In particular every weakly compact set in a locally convex space is C-complete.

Proof. Let A be a compact set in E and let $\left\{x_{i}\right\}_{i \in I}$ be a decreasing net in A. If the family $\left\{\left(x_{i}-\operatorname{cl} C\right)^{c}: i \in I\right\}$ covers A, then it is an open covering of A. Since A is compact, one may extract a finite subcovering, say $\left\{\left(x_{i_{\ell}}-\operatorname{cl} C\right)^{c}\right.$: $\ell=1, \cdots, k\}$. Let $i_{0} \in I$ such that $i_{0} \geq i_{\ell}$ for $\ell=1, \cdots, k$. Then one has

$$
x_{i_{0}}<x_{i_{\ell}}, \ell=1, \cdots, k
$$

On the other hand, there exists $j \in\{1, \cdots, k\}$ such that $x_{i_{0}} \in\left(x_{i_{j}}-\mathrm{cl} C\right)^{c}$. This implies $x_{i_{0}} \nless x_{i_{j}}$, a contradiction. Thus A is C-complete.

Now if E is locally convex, then $\mathrm{cl} C$ is also closed in the weak topology. It remains to apply the above reasonning for the weak topology.

Proposition 2. If E is a finite dimensional space, then every compact set is strongly C-complete.

Proof. We prove this proposition by induction on the dimension of C. If dim $C=1$, then either C is a straight line or a half-line. In both cases C is closed. By Proposition 1, every compact set is C-complete. By a remark made before Proposition 1, the set is strongly C-complet as well. Assuming the conclusion legal for $\operatorname{dim} C<m$, we show it for $\operatorname{dim} C=m$. Suppose to the contrary that a compact set $A \subseteq R^{n}$ is not strongly C-complete, that is there exists a decreasing
net $\left\{x_{i}\right\}_{i \in I} \subseteq A$ such that $\left.\left\{x_{i}-C\right)^{c}: i \in I\right\}$ is a covering of A. Since the space is of finite dimension, we may assume that the net is a sequence $\left\{x_{i}\right\}_{i>1}$ that converges to some point $x_{*} \in A$. There exists i_{0} such that $x_{*} \in\left(x_{i_{0}}-\bar{C}\right)^{c}$, or equivalently $x_{*} \notin x_{i_{0}}-C$. It follows that $x_{*} \notin x_{i}-C$ for all $i \geq i_{0}$. By this we may assume $i_{0}=1$. Denote by L the smallest linear subspace containing $x_{i}-x_{1}, i=2,3, \cdots$. We want to show that $L \cap$ ri $C=\emptyset$. In fact, let $x \in L$. Then x can be expressed as a linear combination

$$
x=\sum_{i=1}^{\ell} t_{j}\left(x_{i_{j}}-x_{1}\right)
$$

with $t_{j} \neq 0, \quad i_{j} \in\{1,2, \cdots\}$ and $i_{1}<i_{2}<\cdots$. We prove $x \notin$ ri C by induction on ℓ.

If $\ell=1$, then $x=t_{1}\left(x_{i_{1}}-x_{1}\right)$. Since $x_{i_{1}}-x_{1} \in-C \backslash \ell(C)$, one has $x_{i_{1}}-x_{1} \notin$ ri C, consequently $x \in$ ri C is possible only when $t_{1}<0$. Then $x_{i_{1}} \in x_{1}-$ ri C by supposing $x \in$ ri C. Moreover as $x_{i} \in x_{i_{1}}-C$ for $i \geq i_{1}$, one obtains $x_{*} \in x_{i_{1}}-$ cl C. Consequently,

$$
x_{*} \in x_{i_{1}}-\operatorname{cl} C \subseteq x_{1}-\operatorname{cl} C-\text { ri } C \subseteq x_{1}-C,
$$

a contradiction.
Assuming that $x \notin$ ri C whenever x is a linear combination of $\ell \geq 1$ terms, we prove $x \notin$ ri C when

$$
x=\sum_{j=1}^{\ell+1} t_{j}\left(x_{i_{j}}-x_{1}\right)
$$

Suppose to the contrary that $x \in$ ri C. If $t_{\ell}>0$, we have

$$
x-t_{\ell}\left(x_{i_{\ell}}-x_{1}\right)=\sum_{\substack{j=1 \\ j \neq \ell}}^{\ell+1} t_{j}\left(x_{i_{j}}-x_{1}\right)
$$

The vector in the left hand side belongs to ri C because $-t_{\ell}\left(x_{i_{\ell}}-x_{1}\right) \in C \backslash \ell(C)$ and $x \in$ ri C, while the vector in the right hand side is a combination of ℓ terms and is not in ri C by induction. This contradiction shows that $t_{\ell}<0$. In this cas we obtain

$$
x-t_{\ell}\left(x_{i_{\ell}}-x_{i_{l+1}}\right)=\sum_{j=1}^{\ell-1} t_{j}\left(x_{i_{j}}-x_{1}\right)+\left(t_{\ell}+t_{\ell+1}\right)\left(x_{i_{\ell+1}}-x_{1}\right)
$$

Since $x_{i_{\ell}}-x_{i_{\ell+1}} \in C$ and $t_{\ell}<0$, the vector in the left hand side belongs to ri C, while the vector in the right hand side does not belong to ri C. The contradiction shows that $L \cap$ ri $C=\emptyset$.

Now we separate L and ri C by a hyperplane $H: H \supseteq L$ and $H \cap$ ri $C=\emptyset$. Putting $C_{1}:=C \cap H$ we see that C_{1} is a convex cone with $\operatorname{dim} C_{1}<\operatorname{dim} C$. Moreover, as $C_{1} \subseteq C$, one has $\left(x_{i}-C_{1}\right)^{c} \supseteq\left(x_{i}-C\right)^{c}$ and consequently the family $\left\{\left(x_{i}-C_{1}\right)^{c}: i \in I\right\}$ covers A. By induction on the dimension of the cone, the set A has no coverings of the above form. By this A is strongly C-complete.

II.EFFICIENT POINTS AND EXISTENCE CRITERIA

4. Efficient Points

Definition. Let A be a subset of a topological vector space E equiped with a linear partial order that is generated by a convex cone C. We say that a point $a \in A$ is
i) an ideal point of A if $x \geq a$ for every $x \in A$.

The set of all ideal points of A is denoted by $\operatorname{IMin} A$ or $\operatorname{IMin}(A / C)$.
ii) an efficient point of A if whenever $a \geq x$ for some $x \in A$ one has $x \geq a$.

The set of all efficient points of A is denoted by $\operatorname{Min} A$ or $\operatorname{Min}(A / C)$.
Sometimes one is interested also in the set of efficient points with respect to the ordering generated by the cone $\{0\} \cup$ int C if int $C \neq \emptyset$. This is the set of weakly efficient points and denoted by $W \operatorname{Min} A$ or $W \operatorname{Min}(A / C)$. If there exists a convex cone $K \neq E$ with int $K \supseteq C \backslash \ell(C)$, such that $a \in \operatorname{Min}(A / K)$, then we call it properly efficient. The set of all properly efficient points of A is denoted by $\operatorname{PrMin} A$ or $\operatorname{PrMin}(A / C)$.
Note that there are some other definitions of proper efficient points. They coincide with the one we gave in the case where A is a convex set in a finite dimensional space.

Exemple

1. Let $A=\left\{(x, y) \in R^{2}: x^{2}+y^{2} \leq 1 \quad\right.$ or $\left.x \geq 0,|y| \leq 1\right\} \subseteq R^{2}$ and let $C=R_{+}^{2}$. Then
$\operatorname{IMin} A=\emptyset$
$\operatorname{Pr} \operatorname{Min} A=\left\{(x, y) \in R^{2}: \quad x^{2}+y^{2}=1, x<0, y<0\right\}$
$\operatorname{Min} A=\left\{(x, y) \in R^{2}: \quad x^{2}+y^{2}=1, x \leq 0, y \leq 0\right\}$
WMin $A=\operatorname{Min} A \cup\{(x,-1): x \geq 0\}$.
2. For $E=\ell_{0}$ (Example 3 of 1), C the ubiquitous cone, the unit ball has no efficient points.
Below is an equivalent definition of efficient points.
Proposition 1. Let $A \subseteq E$. Then
i) $a \in I$ Min A if and only if $a \in A$ and $A \subseteq a+C$;
ii) $a \in \operatorname{Min} A$ if and only if $a \in A$ and $A \cap(a-C) \subseteq a+\ell(C)$.

In other words $a \in \operatorname{Min} A$, if and only if $a \in A$ and there is no $y \in A$ with $a>y$;
iii) $a \in W \operatorname{Min} A$ if and only if $a \in A$ and $A \cap(a-\operatorname{int} C)=\emptyset$.

Proof. These conclusions are direct consequences of the definition
The relationship between the different concepts of efficiency is seen in the next result. We suppose always that $C \neq E$.

Proposition 2. For every nonempty set $A \subseteq E$ one has

$$
\operatorname{Pr} \operatorname{Min} A \subseteq \operatorname{Min} A \subseteq W \operatorname{Min} A
$$

Moreover, if $I \operatorname{Min} A \neq \emptyset$, then $I \operatorname{Min} A=\operatorname{Min} A$ and this set is a singleton whenever C is pointed.

Proof. For the first inclusion let $x \in \operatorname{PrMin} A$. If $x \notin \operatorname{Min} A$, then there is $y \in A$ with $x-y \in C \backslash \ell(C)$. Let $K \notin E$ be a convex cone with int $K \supseteq C \backslash \ell(C)$ and $x \in \operatorname{Min}(A / K)$. Then $x-y \in \operatorname{int} K \subseteq K \backslash \ell(K)$ which contradicts $x \in \operatorname{Min}$ (A / K). Next, let $x \in \operatorname{Min} A$. If $x \notin W \operatorname{Min} A$, then by Proposition 1, ii), there exists $y \in A$ such that $x-y \in \operatorname{int} C$. As $C \neq E$, int $C \subseteq C \backslash \ell(C)$ and we have $x-y \in C \backslash \ell(C)$, a contradiction with the fact that $x \in \operatorname{Min} A$.
Finally, let $x \in I \operatorname{Min} A$. It follows that $x \in \operatorname{Min} A$. Let $y \in \operatorname{Min} A$. Then $y \geq x$, hence $x \geq y$. For any $z \in A$ one has $z \geq x$ because $x \in I$ Min A. Consequently $z \geq y$, which shows that $y \in I \operatorname{Min} A$. By this $I \operatorname{Min} A=\operatorname{Min} A$. If in addition C is pointed, then $x \geq y$ and $y \geq x$ imply $x=y$. Thus I Min A is a singleton.

If the space E is equipped with two orders then the relationship between efficiencies with respect to these cones is expressed by the next proposition.

Proposition 3. Assume that K is a pointed convex cone with $C \subseteq K$. Then we have
i) $I \operatorname{Min}(A / K)=I \operatorname{Min}(A / C)$ provided $I \operatorname{Min}(A / C)$ is nonempty ;
ii) $\operatorname{Min}(A / K) \subseteq \operatorname{Min}(A / C)($ similarly for $W \operatorname{Min}$ and $\operatorname{Pr} \operatorname{Min})$.

Proof. Observe that C is pointed. By Proposition 2, if $I \operatorname{Min}(A / C)$ is nonempty, it is a singleton, say $\{x\}$. In view of Proposition $1, A \subseteq x+C$. It follows that $A \subseteq x+K$ which means $I \operatorname{Min}(A / K)=\{x\}$.

Now let $x \in \operatorname{Min}(A / K)$. By Proposition 1, $A \cap(x-K)=\{x\}$. Therefore $A \cap(x-C)=\{x\}$, which implies $x \in \operatorname{Min}(A / C)$. The proof for W Min and PrMin is analogous.

Note that the above result is no longer true if K is not pointed except for the particular case where K is a closed half-space.

We shall denote by $A_{x}:=A \cap(x-C)$ for $x \in E$ and call it a section of A at x.

Proposition 4. Let $x \in E$ with $A_{x} \neq \emptyset$. The following assertions hold
i) $I \operatorname{Min} A_{x} \subseteq I \operatorname{Min} A \quad$ if $I \operatorname{Min} A \neq \emptyset$;
ii) $\operatorname{Min} A_{x} \subseteq \operatorname{Min} A \quad$ (similarly for $\left.W \operatorname{Min}\right)$.

Proof. For the first inclusion, let $y \in I \operatorname{Min} A_{x}$ and $z \in I$ Min A. We have $\overline{A_{x} \subseteq} y+C$ and $A \subseteq z+C$. Then $z \in A_{x}$ and $z-y \in \ell(C)$. This implies

$$
A \subseteq z+C=z-y+y+C=y+\ell(C)+C=y+C
$$

which shows $y \in I$ Min A.
Next, assume $y \in \operatorname{Min} A_{x}$. By Proposition 1, we have $A_{x} \cap(y-C) \subseteq y+\ell(C)$. Since $y-C \subseteq x-C$, we obtain

$$
A \cap(y-C) \subseteq A \cap(y-C) \cap(x-C) \subseteq A_{x} \cap(y-C) \subseteq y+\ell(C)
$$

which shows that $y \in \operatorname{Min} A$.
The proof for W Min is analogous.
Remark that the inclusion $\operatorname{Pr} \operatorname{Min} A_{x} \subseteq \operatorname{Pr} \operatorname{Min} A$ is not true in general except for very specific cases.

5. Existence criteria

Theorem 1. Le A be a nonempty set in E. Then Min $A \neq \emptyset$ if and only if there is $x \in E$ such that A_{x} is nonempty and strongly C-complete.
Proof. The necessity is obvious because by taking $x \in \operatorname{Min} A$, the selection A_{x} is nonempty and has no decreasing nets, hence strongly C-complete.

For the sufficiency, suppose to the contrary that for some $x \in E$, the selection A_{x} is nonempty and strongly C-complete, but $\operatorname{Min} A=\emptyset$. Denote by \mathcal{P} the set of all decreasing nets in A_{x} and introduce a partial order on \mathcal{P} by inclusion, i.e. for $a, b \in \mathcal{P}$ one writes $a \geq b$ if and only if $b \subseteq a$ as sets. We observe that \mathcal{P} is nonempty because $\operatorname{Min} A=\emptyset$ and the above introduced order is a partial order on \mathcal{P}. Now we prove that \mathcal{P} satisfies the hypothesis of Zorn's lemma: every chain $X=\left\{a_{\lambda}: \lambda \in \Lambda\right\} \subseteq \mathcal{P}$ has an upper bound. Indeed, denote by \mathcal{B} the family of all finite subsets of Λ. For each $B \in \mathcal{B}$ we set

$$
a_{B}:=\bigcup_{\lambda \in B} a_{\lambda} .
$$

It is evident that $a_{B} \in \mathcal{P}$. Now we put

$$
a_{0}=\cup\left\{a_{B}: B \in \mathcal{B}\right\}
$$

Let I_{0} be the index set consisting of all elemnts of a a_{0} with $\alpha>\beta$ if $\beta>{ }_{C} \alpha$ being considered as elements of a_{0}. In other words the index set order is defined by the cone $(-C \backslash \ell(C)) \cup\{0\}$. Then I_{0} is a directed index set because for $\alpha, \beta \in I_{0}$ there exist $B_{1}, B_{2} \in \mathcal{B}$ such that $\alpha \in a_{B_{1}}$ and $\beta \in a_{B_{2}}$. Taking $B=B_{1} \cup B_{2}$ we see that $\alpha, \beta \in a_{B}$. Since a_{B} is a decreasing net, there is $\gamma \in a_{B}$ such that $\alpha \underset{C}{>} \gamma$ and $\beta \underset{C}{>} \gamma$. Then $\gamma \in I_{0}$ with $\gamma>\alpha$ and $\gamma>\beta$. Moreover, it is evident that $a_{0} \geq a$ for all $a \in X$. Hence a_{0} is an upper bound of X. Now we apply Zorn's lemma to obtain a maximal element a_{*}, say $a_{*}=\left\{x_{i}\right\}_{i \in I} \in \mathcal{P}$.we claim that the family $\left\{\left(x_{i}-C\right)^{c}: i \in I\right\}$ is a covering of A. Indeed, if not, there is $y \in A$ such that $y \notin\left(x_{i}-C\right)^{c}$ for all $i \in I$, or equivalently $y \in x_{i}-C$ for all $i \in I$. Since Min $A=\emptyset$, for this y there exists $z \in y-C \backslash \ell(C)$. It follows that

$$
z \in x_{i}-C-C \backslash \ell(C) \subseteq x_{i}-C \backslash \ell(C) .
$$

In other words $z \in A_{x}$ and $z<_{C} x_{i}$ for all $i \in I$. This contradicts the maximality of a_{*}. In this way the family $\left\{\left(x_{i}-C\right)^{c}: i \in I\right\}$ covers A_{x}. This is impossible because A_{x} is strongly C-complete. The proof is complete.

Theorem 2. Assume that A is a nonempty set in E and C is correct. Then $\operatorname{Min} A=\emptyset$ if and only if there is $x \in E$ such that A_{x} is nonempty and C complete.

Proof. Proceed in the same way as in the proof of the preceding theorem by using the following characterization of a correct cone

$$
\operatorname{cl} C+C \backslash \ell(C) \subseteq C \backslash \ell(C)
$$

in order to obtain $z \underset{C}{>} x_{i}$ for all $i \in I$.
Corollary. If A is a nonempty compact set in a finite dimensional space, then $\operatorname{Min} A \neq \emptyset$ whatever the cone C be.

If A is a nonempty compact set in an infinite dimensional space and the cone C is closed, then $\operatorname{Min} A \neq \emptyset$.

Proof. Invoke Theorems 1,2 above and Proposition 1,2 of Section 2.
Note that in an infinite dimensional space a compact set may have no efficient points if the cone C is not correct. To see this, consider the following example. Let E be ℓ_{0} and C be the ubiquitous cone (Example 3 of Section 1).

Let $\quad x_{0}=(1,0,0, \cdots), \quad x_{n}=\left(1,-\frac{1}{2^{n}}, \cdots,-\frac{1}{2^{n}}, 0, \cdots 0\right)$ and $A=\left\{x_{i}: i=\right.$ $0,1,2, \cdots\}$. It is evident that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$. Hence A is a compact set. Despite of this, $\operatorname{Min} A=\emptyset$ because $x_{0}>x_{1}>x_{2} \cdots$.

III. OPTIMALITY CONDITIONS

6. Differentiable Problems

Let us consider the following vector problem (VP) :

$$
\begin{aligned}
& \operatorname{Min} f(x) \\
& g(x) \leq 0 \\
& h(x)=0
\end{aligned}
$$

where f, g and h are functions from X to Y, Z and W respectively with X, Y, Z and W Banach spaces. We assume that Y and Z are partially ordered by convex pointed cones C_{y} and C_{z} having nonempty interiors. The above problem means finding a point $x_{0} \in X$ (called an efficient solution) such that $f\left(x_{0}\right)$ is an efficient point of the set $\{f(x) \in Y: x \in X, g(x) \leq 0, h(x)=0\}$. A weakly efficient solution is defined in a similar way. A solution is local if one restricts the problem on a neighborhood of this point. In this section we shall derive a necessary condition for local weakly efficient solutions. Two classic results of analysis will be needed :

1. Mean Value Theorem (MVT) : If f is Gateaux differentiable on X, then for each $a, b \in X$ one has

$$
\|f(b)-f(a)\| \leq \sup \left\{\left\|f^{\prime}(c)\right\| \cdot\|b-a\|: c \in[a, b]\right\}
$$

2. Open Mapping Theorem (Lyusternik's Theorem) : If h is Fréchet differentiable with h^{\prime} continuous at x_{0} and if $h^{\prime}\left(x_{0}\right)$ is surjective, then the tangent cone to the set $M:=\{x \in X: h(x)=0\}$ at $x_{0} \in M$ defined by

$$
T_{M}\left(x_{0}:=\left\{v \in K: v=\lim _{i \rightarrow \infty} t_{i}\left(x_{i}-x_{0}\right), t_{i}>0, \quad x_{i} \longrightarrow x_{0}, x_{i} \in M\right\}\right.
$$

coincides with Ker $h^{\prime}\left(x_{0}\right)$.
We recall also that the positive polar cone of a cone $C \subseteq Y$ is defined by

$$
C^{\prime}:=\left\{\xi \in Y^{\prime}: \prec \xi, y \succ \geq 0 \quad \text { for all } y \in C\right\}
$$

where Y^{\prime} denotes the topological dual space of Y.

Theorem. Assume that f, g and h are Frechet differentiable with f^{\prime} and g^{\prime} bounded and h^{\prime} continuous in a neighborhood of x_{0}. If x_{0} is a local weakly efficient solution of (VP), then there exist multipliers $(\xi, \theta, \gamma) \in\left(C_{Y}, C_{Z},\{0\}\right)^{\prime} \backslash$ $\{0\}$ such that

$$
\xi f^{\prime}\left(x_{0}\right)+\theta g^{\prime}\left(x_{0}\right)+\gamma h^{\prime}\left(x_{0}\right)=0, \quad \theta g\left(x_{0}\right)=0
$$

Proof. Assume first that $h^{\prime}\left(x_{0}\right)$ is not surjective, i.e. $h^{\prime}\left(x_{0}\right)(X)$ is a proper subspace of W. Then there exists a nonzero functionnal $\gamma \in W^{\prime} \backslash\{0\}$ such that

$$
\prec \gamma, h^{\prime}\left(x_{0}\right)(u) \succ=0 \quad \text { for all } u \in X .
$$

This implies $\gamma h^{\prime}\left(x_{0}\right)=0$. Now setting $\xi=0$ and $\theta=0$ we obtain multipliers (ξ, θ, γ) as requested.

Now consider the case where $h^{\prime}\left(x_{0}\right)$ is surjective. We want to show that

$$
\begin{equation*}
\left(f^{\prime}\left(x_{0}\right), g^{\prime}\left(x_{0}\right), h^{\prime}\left(x_{0}\right)(X) \cap\left(-\operatorname{int} C_{Y},-g\left(x_{0}\right)-\operatorname{int} C_{Z},\{0\}\right)=\emptyset\right. \tag{1}
\end{equation*}
$$

In fact, if this intersection is not empty, then there is a vector $u \in X$ with $\|u\|=1$ such that

$$
\begin{aligned}
& f^{\prime}\left(x_{0}\right)(u) \in-\operatorname{int} C_{Y} \\
& g^{\prime}\left(x_{0}\right)(u) \in-g\left(x_{0}\right)-\operatorname{int} C_{Z} \\
& h^{\prime}\left(x_{0}\right)(u)=0 .
\end{aligned}
$$

Applying Lyusternik's theorem we find $x_{i} \in M \backslash\left\{x_{0}\right\}$ such that $\left\{x_{i}\right\}$ converges to x_{0} and $\left\{u_{i}\right\}$ with $u_{i}=\left(x_{i}-x_{0}\right) /\left\|x_{i}-x_{0}\right\|$, converges to u. Note that as f^{\prime} is bounded in a neighborhood of x_{0}, in view of (MVT) we have the following estimate :

$$
\lim \frac{f\left(x_{i}\right)-f\left(x_{0}\right)}{\left\|x_{i}-x_{0}\right\|}=f^{\prime}\left(x_{0}\right)(u)
$$

Hence, for i sufficiently large we obtain

$$
f\left(x_{i}\right)-f\left(x_{0}\right) \in-\operatorname{int} C_{Y}
$$

Similarly, for i sufficiently large we have

$$
\frac{g\left(x_{i}\right)-g\left(x_{0}\right)}{\left\|x_{i}-x_{0}\right\|} \in-g\left(x_{0}\right)-\operatorname{int} K .
$$

Since $\left\|x_{i}-x_{0}\right\|$ tends to 0 as i tends to ∞ the above implies

$$
g\left(x_{i}\right) \in\left(1-\left\|x_{i}-x_{0}\right\|\right) g\left(x_{0}\right)-\operatorname{int} C_{Z} \subseteq-C_{Z}
$$

for i sufficiently large. This and the fact that $h\left(x_{i}\right)=0$ (because $x_{i} \in M$), together with (2) show that x_{0} is not a local weakly efficient solution of (VP), a contradiction.

In this way (1) is true. We separate those convex sets of (1) by a linear functional $(\xi, \theta, \gamma) \in(Y, Z, W)^{\prime} \backslash\{0\}:$

$$
\xi f^{\prime}\left(x_{0}\right)(u)+\theta\left[g^{\prime}\left(x_{0}\right)(v)+g\left(x_{0}\right)\right]+\gamma h^{\prime}\left(x_{0}\right)(w) \geq \prec \xi,-c \succ+\prec \theta,-k \succ
$$

for all $u \in Y, v \in Z, w \in W$,
$c \in C_{Y}, k \in C_{Z}$.
It follows from the above inequality that
$\xi \in C^{\prime}, \theta \in K^{\prime}, \gamma \in W^{\prime}$ and $\theta g\left(x_{0}\right) 0$. Remember that $g\left(x_{0}\right) \in-K$, hence $\theta g\left(x_{0}\right)=0$. Moreover, one has

$$
\xi f^{\prime}(0)(u)+\theta g^{\prime}\left(x_{0}\right)(v)+\gamma h^{\prime}\left(x_{0}\right)(w) \geq 0
$$

for all $u \in Y, v \in Z, w \in W$ which implies

$$
\xi f^{\prime}\left(x_{0}\right)+\theta g^{\prime}\left(x_{0}\right)+\gamma h^{\prime}\left(x_{0}\right)=0
$$

as required.

7. Lipschitz continuous problems

In this section we consider the problem (VP) in finite dimensional spaces that is we suppose that $X=R^{n}, \quad Y=R^{m}, \quad Z=R^{k}$ and $W=R^{\ell}$.
Recall that Clarke's generalized Jacobian of a locally Lipschitz function f from R^{n} to R^{m} is defined by

$$
\partial f(x):=\overline{\mathrm{co}}\left\{\lim _{i \rightarrow \infty} f^{\prime}\left(x_{i}\right): x_{i} \rightarrow x, f^{\prime}\left(x_{i}\right) \text { exists }\right\}
$$

where $\overline{c o}$ denotes the closed convex hull.
We shall use the following properties of generalized Jacobian :
i) $\partial f(x)$ is compact, convex ;
ii) The set valued map $x \longmapsto \partial f(x)$ is upper semi-continuous ;
iii) In the case $m=1$

$$
\partial\left(f_{1}+f_{2}\right)(x) \subseteq \partial f_{1}(x)+\partial f_{2}(x)
$$

$\partial\left(\max _{\alpha \in T} f_{\alpha}(x)=\partial f_{\alpha_{0}}(x)\right.$ if α_{0} is the unique index where the maximum is attained.
$0 \in \partial f(x)$ if x is a local minimum of f.
iv) The mean value theorem : for $a, b, \in R^{n}$, one has

$$
f(b)-f(a) \in \overline{\operatorname{co}}\{M(b-a): M \in \partial f(c), c \in[a, b]\} .
$$

We shall also use Ekeland's variational principle :
Let φ be a lower semicontinuous function on R^{n}. If $\varphi\left(x_{0}\right) \leq \inf \varphi+\zeta$ for some $\zeta>0$, then there is $x_{\zeta} \in R^{n}$ such that

$$
\begin{aligned}
\left\|x_{\zeta}-x_{0}\right\| & \leq \sqrt{\zeta} \\
\varphi\left(x_{\zeta}\right) & \leq \varphi\left(x_{0}\right) \\
\varphi\left(x_{\zeta}\right) & <\varphi(x)+\sqrt{\zeta}\left\|x-x_{\zeta}\right\| \quad \text { for all } x \neq x_{\zeta}
\end{aligned}
$$

Theorem. Assume that f, g and h are Lipschitz continuous and x_{0} is a weakly efficient solution of (VP). Then there exist multipliers $(\xi, \theta, \gamma) \in\left(C_{Y}, C_{Z},\{0\}\right)^{\prime} \backslash$ $\{0\}$ such that

$$
\begin{gathered}
0 \in \partial(\xi f+\theta g+\gamma h)\left(x_{0}\right) \\
\theta g\left(x_{0}\right)=0
\end{gathered}
$$

Proof. Let $\lambda=(\xi, \theta, \gamma) \in\left(C_{Y}, C_{Z},\{0\}\right)^{\prime} \backslash\{0\}$ and $T=\{\lambda:\|\lambda\|=1\}$. Let $e \in \operatorname{int} C_{Y}$ such that

$$
1=\max \left\{\prec \xi, e \succ: \xi \in C_{Y}^{\prime},\|\xi\|=1\right\}
$$

For $\zeta>0$ set

$$
H_{\zeta}(x):=\left(f(x)-f\left(x_{0}\right)+\zeta e, g(x), h(x)\right\}
$$

and consider the function

$$
\begin{equation*}
F_{\zeta}(x):=\max _{\lambda \in T} \prec \lambda, H_{\zeta}(x) \succ \tag{1}
\end{equation*}
$$

It is evident that $F_{\zeta}(x)$ is Lipschitz continuous. We want to apply Ekeland's principle to obtain a point x_{ζ} that minimizes the function $F_{\zeta}(x)+\sqrt{\zeta}\left\|x-x_{\zeta}\right\|$. To this purpose, we prove that $F_{\zeta}(x)>0$ for all $x \in R^{n}$. Indeed, if not, i.e. $F_{\zeta}(x) \leq 0$ for some x, then $g(x) \leq 0, h(x)=0$ and

$$
\prec \xi, f(x)-f\left(x_{0}\right) \succ<0 \quad \text { for all } \xi \in C_{Y}^{\prime} \backslash\{0\}
$$

This means that x is a feasible solution and satisfies

$$
f(x)-f\left(x_{0}\right) \in \operatorname{int} C
$$

a contradiction to the optimality of x_{0}. In this way $F_{\zeta}(x)>0$. We obtain then

$$
F_{\zeta}\left(x_{0}\right)=\zeta \leq \inf _{x} F_{\zeta}(x)+\zeta
$$

According to Ekeland's principle, there is x_{ζ} such that

$$
\begin{aligned}
& \left\|x_{\zeta}-x_{0}\right\| \leq \sqrt{\zeta} \\
& F_{\zeta}\left(x_{\zeta}\right)<F_{\zeta}(x)+\sqrt{\zeta}\left\|x-x_{\zeta}\right\|, \quad \text { for } x \neq x_{\zeta}
\end{aligned}
$$

In other words, x_{ζ} is a minimum of the function $F_{\zeta}(x)+\sqrt{\zeta}\left\|x-x_{\zeta}\right\|$. Consequently we have

$$
\begin{equation*}
0 \in \partial\left(F_{\zeta}(x)+\sqrt{\zeta}\left\|x-x_{\zeta}\right\|\right)\left(x_{\zeta}\right) \subseteq \partial F_{\zeta}\left(x_{\zeta}\right)+\sqrt{\zeta} B(0,1) \tag{2}
\end{equation*}
$$

where $B(0,1)$ denotes the unit ball in R^{n} (it is Clark's subdifferential of the function $x \longmapsto\left\|x-x_{\zeta}\right\|$ at $\left.x_{\zeta}\right)$. To calculate the subdifferential $\partial F_{\zeta}\left(x_{\zeta}\right)$ we make the following observation : Since $F_{\zeta}(x)>0$, the vector $H_{\zeta}\left(x_{\zeta}\right) \neq 0$, hence the linear function $\lambda \leftharpoondown \rightarrow \prec, H_{\zeta}\left(x_{\zeta}\right) \succ$ attains its maximum at a unique point $\lambda_{\zeta} \in T$ on T (This is so because if that function has two distinct minima λ_{1} and λ_{2} on T, then at $\lambda=\left(\lambda_{1}+\lambda_{2}\right) /\left\|\lambda_{1}+\lambda_{2}\right\| \in T$ one has

$$
\prec \lambda, H_{\zeta}\left(x_{\zeta}\right) \succ=\frac{2}{\left\|\lambda_{1}+\lambda_{2}\right\|} \prec \lambda_{1}, H_{\zeta}\left(x_{\zeta}\right) \succ>\prec \lambda_{1}, H_{\zeta}\left(x_{\zeta}\right) \succ
$$

because $\left\|\lambda_{1}+\lambda_{2}\right\|<\left\|\lambda_{1}\right\|+\left\|\lambda_{2}\right\| \leq 2$, a contradiction, [Note that $\left.\lambda_{1}+\lambda_{2} \neq 0\right]$.) We obtain

$$
\partial F_{\zeta}\left(x_{\zeta}\right)=\partial \prec \lambda_{\zeta}, H_{\zeta}\left(x_{\zeta}\right) \succ=\partial\left(\xi_{\zeta} f+\theta_{\zeta} g+\gamma_{\zeta} h\right)\left(x_{\zeta}\right)
$$

Observe that in Ekeland's principle, if $\zeta \longrightarrow 0$, then $x_{\zeta} \longrightarrow x_{0}$. Moreover, as $H_{\zeta}\left(x_{\zeta}\right) \longrightarrow\left(0, g\left(x_{0}\right), h\left(x_{0}\right)\right)$, one has $\lambda_{\zeta} \longrightarrow \lambda_{0} \in T$ for some λ_{0}. Further, since $\partial \prec \lambda_{\zeta}, H_{\zeta}\left(x_{\zeta}\right) \succ=\partial \prec \lambda_{\zeta}, H_{0}\left(x_{\zeta}\right) \succ$, the upper semicontinuity of the subdifferential map

$$
\prec \lambda, x \succ \vdash \longrightarrow \prec \prec \lambda, H_{0}(x) \succ
$$

and (2) show that

$$
0 \in \partial \prec \lambda_{0}, H_{0}\left(x_{0}\right) \succ=\partial(\xi f+\theta g+\gamma h)\left(x_{0}\right)
$$

Finally, to see $\theta g\left(x_{0}\right)=0$, it suffices to note that as $F_{\zeta}(x)>0$, by letting $\zeta \longrightarrow 0$, we obtain $\theta g\left(x_{0}\right) \geq 0$. On the other hand $g\left(x_{0}\right) \in-C_{Z}$ and $\theta \in C_{Z}^{\prime}$ imply $\theta g\left(x_{0}\right) \leq 0$. Thus, $\theta g\left(x_{0}\right)=0$ and the proof is complete.

Remark that the condition presented in the above theorem is useful if the first multiplier $\xi \neq 0$. One can guarantee this by imposing certain constraint qualification for instance all the matrices $N \in \partial h\left(x_{0}\right)$ has rank equal to ℓ and there exists $u \in \cap\left\{\right.$ ker $\left.N: N \in \partial h\left(x_{0}\right)\right\}$ such that $M(u) \in-$ int C_{Z} for all $M \in \partial g\left(x_{0}\right)$.

8. Convex Problems

Consider the following convex problem (VP)

$$
\begin{aligned}
& \operatorname{Min} f(x) \\
& g(x) \leq 0
\end{aligned}
$$

where f is a convex function from R^{n} to R^{m}, g is a convex function from R^{n} to R^{k}. We recall that f is convex if for $\lambda \in(0,1), x, y \in R^{n}$ one has

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

The ordering cone $C_{Y} \subseteq R^{m}$ is supposed to be convex, closed pointed with nonempty interior and the ordering cone $C_{z} \subseteq R^{k}$ is supposed to be convex, closed. One can show that for a convex problem every local efficient solution is a global efficient solution. For a convex problem we have the following sufficient condition.

Theorem. Assume that f and g are convex and there exist multiplicators $(\xi, \theta) \in\left(C_{Y}, C_{Z}\right)^{\prime} \backslash[0\}$ such that

$$
\begin{gathered}
0 \in \partial(\xi f)\left(x_{0}\right)+\partial(\theta g)\left(x_{0}\right) \\
\theta g\left(x_{0}\right)=0
\end{gathered}
$$

Then x_{0} is an efficient (resp. weakly efficient solution of (VP) if $\xi \in$ int C_{Y} (resp. $\xi \in C^{\prime} \backslash\{0\}$).

Proof. We prove the case of weakly efficient solutions. The other case is similar. Suppose to the contrary that x_{0} is not weakly efficient, i.e. there exists a feasible solution $x \in R^{n}(g(x) \leq 0)$ such that

$$
f(x)-f\left(x_{0}\right) \in-\operatorname{int} C
$$

On the one hand we have

$$
\max _{\lambda \in \partial(\xi f)\left(x_{0}\right)} \prec \lambda, x-x_{0} \succ=(\xi f)^{\prime}\left(x_{0}, x-x_{0}\right) \leq \xi f(x)-\xi f\left(x_{0}\right)<0
$$

because $\xi \in C_{Y}^{\prime} \backslash\{0\}$, where $(\xi f)^{\prime}\left(x_{0}, x-x_{0}\right)$ denotes the directional derivative of the convex scalar function ξf at x_{0} in direction $x-x_{0}$. [Note that $\partial(\xi f)\left(x_{0}\right)$ coincides with the convex analysis subdifferential of ξf at x_{0}]. On the other hand for $g(x)$ one has

$$
\max _{\lambda \in \partial(\theta g)\left(x_{0}\right)} \prec \lambda, x-x_{0} \succ=(\theta g)^{\prime}\left(x_{0}, x-x_{0}\right) \leq \theta g(x)-\theta g\left(x_{0}\right) \leq 0
$$

because $\theta g\left(x_{0}\right)=0$ and $g(x) \in-C_{Z}, \theta \in C_{Z}^{\prime}$. It follows from the above inequalities that

$$
\max _{\lambda \in \partial(\xi f)\left(x_{0}\right)+\partial(\theta g)\left(x_{0}\right)} \prec \lambda, x-x_{0} \succ<0
$$

which shows $0 \notin \partial(\xi f)\left(x_{0}\right)+\partial(\theta g)\left(x_{0}\right)$, a contradiction.
9. Second order conditions

For the sake of simplicity let us present second order conditions for an unconstrained problem (VP)

$$
\operatorname{Min}_{x \in R^{n}} f(x)
$$

where f is a function from R^{n} to R^{m} and R^{m} is partially ordered by a convex closed pointed cone C with a nonempty interior.
We assume that f is of class $C^{1,1}$ that is f is differentiable with f^{\prime} Lipschitz continuous. The generalized Jacobian of the function f^{\prime} is then called generalized Hessian of f and denoted by $\partial^{2} f$.

Theorem 1. Assume that x_{0} is a local weakly efficient solution of (VP). Then the following conditions hold
i) $f^{\prime}\left(x_{0}\right) u \in(-\operatorname{int} C)^{c}$ for all $u \in R^{n}$
or equivalently there is $\xi \in C^{\prime} \backslash\{0\}$ such that

$$
\xi f^{\prime}\left(x_{0}\right)=0
$$

ii) $\partial^{2} f\left(x_{0}\right)(u, u) \cap(-\operatorname{int} C)^{c} \neq \emptyset$ for all $u \in R^{n}$ satisfying $f^{\prime}\left(x_{0}\right)(u) \in-C \backslash$ int C, or equivalently for such u there exist $\eta \in C^{\prime} \backslash\{0\}$ and $\varphi \in \partial^{2} f\left(x_{0}\right)$ such that

$$
\prec \eta, \varphi(u, u) \succ \geq 0 .
$$

Proof. For i), suppose to the contrary that for some $u \in R^{n}$, one has $f^{\prime}\left(x_{0}\right)(u) \in$ $(-\operatorname{int} C)^{c}$, i.e. $f^{\prime}\left(x_{0}\right)(u) \in-\operatorname{int} C$. Since

$$
f^{\prime}\left(x_{0}\right)(u)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t u\right)-f\left(x_{0}\right)}{t}
$$

for $t>0$ sufficiently close to 0 one has

$$
\frac{f\left(x_{0}+t u\right)-f\left(x_{0}\right)}{t} \in-\operatorname{int} C
$$

which implies $f\left(x_{0}+t u\right)-f\left(x_{0}\right) \in-\operatorname{int} C$, a contradiction with the fact that x_{0} is locally weakly efficient.

For ii), suppose again to the contrary that there is some $u \in R^{n}$ such that

$$
\begin{array}{cl}
f^{\prime}\left(x_{0}\right)(u) & \in-(C \backslash \operatorname{int} C) \\
\partial^{2} f\left(x_{0}\right)(u, u) & \subset-\operatorname{int} C
\end{array}
$$

Let V be a closed, convex neighborhood of $\partial^{2} f\left(x_{0}\right)(u, u)$ such that $V \subseteq-$ int C. By the upper semicontinuity of generalized Hessian, there exists $\zeta>0$ such that $\partial^{2} f\left(x_{0}+t u\right)(u, u) \subset V$ for every $t \in[0, \zeta]$.

This yields the inclusion

$$
\operatorname{cl} \operatorname{conv}\left\{\partial^{2} f(x)(u, u): x \in\left[x_{0}, x_{0}+\zeta u\right]\right\} \subset V
$$

By using Taylor's expansion (similar to the mean value theorem) we obtain

$$
\begin{gathered}
f\left(x_{0}+t u\right)-f\left(x_{0}\right) \in f^{\prime}\left(x_{0}\right)(t u)+\operatorname{cl} \operatorname{conv}\left\{\partial^{2} f(x)(t u, t u): x \in\left[x_{0}, x_{0}+\zeta u\right]\right\} \\
\subseteq-t(C \backslash \operatorname{int} C)+t^{2} V \subset-\operatorname{int} C
\end{gathered}
$$

for every $t \in(0, \zeta]$. This is a contradiction to the assumption of the theorem.

Theorem 2. Assume that the following conditions hold at a point $x_{0} \in R^{m}$:
i) $\xi f^{\prime}\left(x_{0}\right)=0$ for some $\xi \in \operatorname{int} C^{\prime}$;
ii) $\partial^{2} f\left(x_{0}\right)(u, u) \subset(-C)^{c}$ for $u \in \operatorname{Ker} f^{\prime}\left(x_{0}\right), u \neq 0$.

Then x_{0} is a local efficient solution of (VP).
Proof. If x_{0} is not a local efficient solution of (VP), then there exists a sequence $\overline{\left\{x_{i}\right\}}$ converging to x_{0} such that

$$
\begin{equation*}
f\left(x_{i}\right)-f\left(x_{0}\right) \in-C \backslash\{0\}, i=1,2, \cdots \tag{1}
\end{equation*}
$$

without loss of generality we may assume that the sequence $\left\{u_{i}\right\}$ where $u_{i}=$ $\left(x_{i}-x_{0}\right) /\left\|x_{i}-x_{0}\right\|$ converges to some $u \in R^{n}$. Condition i) shows that $f^{\prime}\left(x_{0}\right)(u) \notin-C \backslash\{0\}$. There are two possible cases : $f^{\prime}\left(x_{0}\right)(u) \in(-C)^{c}$ and $f^{\prime}\left(x_{0}\right)(u)=0$. The first case is impossible because (1) implies $f^{\prime}\left(x_{0}\right)(u) \in-C$. Thus $u \in \operatorname{Ker} f^{\prime}\left(x_{0}\right)$. In view of ii) there exists a closed convex neighborhood V of $\partial^{2} f\left(x_{0}\right)(u, u)$ in $(-C)^{c}$ such that $\partial^{2} f(x)(v, v) \subset V$ whenever $\left\|x-x_{0}\right\|<\zeta$, $\|v-u\|<\zeta$ for some positive ζ small enough. By Taylor's expansion we obtain

$$
\begin{aligned}
& f\left(x_{i}\right)-f\left(x_{0}\right) \in f^{\prime}\left(x_{0}\right)\left(x_{i}-x_{0}\right)+\mathrm{cl} \operatorname{conv}\left\{\partial^{2} f(x)\left(x_{i}-x_{0}, x_{i}-x_{0}\right): x \in\left[x_{0}, x_{i}\right]\right\} \\
& \subseteq\left\|x_{i}-x_{0}\right\|\left\{f^{\prime}\left(x_{0}\right)\left(u_{i}\right)+\left\|x_{i}-x_{0}\right\| \cdot \mathrm{cl} \operatorname{conv}\left\{\partial^{2} f(x)\left(u_{i}, u_{i}\right): x \in\left[x_{0}, x_{i}\right]\right\}\right\}
\end{aligned}
$$

Observe that $f^{\prime}\left(x_{0}\right)\left(u_{i}\right) \subset(-C)^{c} \cup\{0\}$ by Condition i).
Moreover, for i sufficiently large, we have $\left\|x_{i}-x_{0}\right\|<\zeta$ and $\left\|u_{i}-u\right\| \leq \zeta$. Consequently, for such i, the above inclusions yield

$$
\begin{aligned}
f\left(x_{i}\right)-f\left(x_{0}\right) & \in\left\|x_{i}-x_{0}\right\|\left\{(-C)^{c} \cup\{0\}+\left\|x_{i}-x_{0}\right\| V\right\} \\
& \subseteq(-C)^{C} \cup\{0\}+(-C)^{c} \subset(-C)^{c}
\end{aligned}
$$

which contradicts (1). The proof is complete.

IV. SOLUTION METHODS

10. Two classical methods

Let us consider the following problem (VP) :

$$
\operatorname{Min}_{x \in X} f(x)=\left(f_{1}(x), \cdots, f_{m}(x)\right)
$$

where X is a nonempty subset of R^{n} and the ordering cone of R^{m} is the positive orthant R_{+}^{m}.
a) Weighting method

This method consists of choosing weights $p_{1}, \cdots, p_{m} \geq 0$, not all zero and solving the associated scalar problem (P) by known techniques :

$$
\begin{equation*}
\operatorname{Min}_{x \in X} \sum_{i=1}^{m} p_{i} f_{i}(x) \tag{P}
\end{equation*}
$$

Theorem. For the problems (VP) and (P) above we have
i) If $p_{i}>0, i=1, \cdots, m$ then any optimal solution of (P) is an efficient solution of (VP).
ii) If $p_{i} \geq 0, i=1, \cdots, m$ and not all are zero, then any optimal solution of (P) is a weakly efficient solution of (VP). If in addition that optimal solution is unique, then it is an efficient solution.

Proof. Observe that if $x_{0} \in X$ is not an efficient solution of (VP), then there is $x \in X$ such that $f(x) \leq f\left(x_{0}\right), f(x) \neq f\left(x_{0}\right)$. Hence $\sum_{i=1}^{m} p_{i} f_{i}(x)<\sum_{i=1}^{m} p_{i} f_{i}\left(x_{0}\right)$ if all $p_{i}>0$. This means that x_{0} cannot be an optimal solution of (P). The case of weakly efficient solutions is proven in a similar way.
If in addition, x_{0} is a unique solution of (P) [or more general, $f(\operatorname{argmin}(\mathrm{P}))$ is a singleton] where $p_{i} \geq 0, i=1, \cdots, m$, not all zero, then for any other $x \in X$ with $f(x) \leq f\left(x_{0}\right), f(x) \neq f\left(x_{0}\right)$ one has $\sum_{i=1}^{m} p_{i} f_{i}(x) \leq \sum_{i=1}^{m} p_{i} f_{i}\left(x_{0}\right)$ which implies that x solves (P). This contradicts the uniqueness assumption. The proof is complete.

In practice, one chooses a family of weighting vectors $p=\left(p_{1}, \cdots, p_{m}\right)$ and solves the corresponding scalar problems (P). By this one may generate a subset of efficient solutions of (VP). In the case ii) of the theorem, in order to obtain an efficient solution, one proceeds as follows : let $p_{1}>0, \cdots, p_{\ell}>0$ and $p_{\ell+1}=$ $\cdots=p_{m}=0$. One set $f_{i}^{*}=f_{i}\left(x_{0}\right)$ where x_{0} is an optimal solution of (P). Then one solves a subsidary problem $\left(P_{*}\right)$:

$$
\min \sum_{j=\ell+1}^{m} f_{j}(x)
$$

$$
x \in X, f_{i}(x)=f_{i}^{*} \quad i=1, \cdots, \ell
$$

It is not difficult to see that any solution of $\left(P_{*}\right)$ is an efficient solution of (VP).
b) Constraint Method.

In this method one minimizes one objective, while other objectives are considered as constraints.

Let us choose $k \in\{1, \cdots, m\}, L_{j} \in R, j=1, \cdots, n, j \neq k$, and solve the scalar problem $\left(P_{k}\right)$:

$$
\begin{gathered}
\operatorname{Min}_{x \in X} f_{k}(x) \\
f_{j}(x) \leq L_{j}, j=1, \cdots, n, j \neq k
\end{gathered}
$$

Note that if L_{j} are small, then $\left(P_{k}\right)$ may have no feasible solutions, if L_{j} are two big, then an optimal solution of (P_{k}) may be not efficient. We shall say that a constraint $f_{j}(x) \leq L_{j}$ is binding if every optimal solution of $\left(P_{k}\right)$ verifies $f_{j}(x)=L_{j}$.

Theorem. Assume that x_{0} is an optimal solution of $\left(P_{k}\right)$ and all the constraints are binding. Then x_{0} is an efficient solution of (VP).
Proof. If x_{0} is not efficient, then there is some $x \in X$ such that $f_{i}(x) \leq f_{i}\left(x_{0}\right)$ for $i=1,2, \cdots, m, f(x) \neq f\left(x_{0}\right)$. It follows that x is a feasible solution of $\left(P_{k}\right)$, and $f_{k}(x)=f_{k}\left(x_{0}\right)$. In other words x is an optimal solution of $\left(P_{k}\right)$. Since the constraints are binding, we conclude $f_{i}(x)=f_{i}\left(x_{0}\right)$ for all $i=1, \cdots, m$, a contradiction.

Below is an algorithm to solve (VP).
Step 1 Solve

$$
\min _{x \in X} f_{i}(x)
$$

Let x^{1}, \cdots, x^{m} be optimal solutions.
Step 2 Construct the payoff table

$$
\begin{array}{cll}
f_{1}\left(x^{1}\right) & \cdots & f_{m}\left(x^{1}\right) \\
\vdots & & \vdots \\
f_{1}\left(x^{m}\right) & \cdots & f_{m}\left(x^{m}\right) \\
M_{1} & & M_{m} \\
m_{1} & & m_{m}
\end{array}
$$

where

$$
\begin{aligned}
M_{i} & =\max \left\{f_{i}\left(x^{1}\right), \cdots, f_{i}\left(x^{m}\right)\right\} \\
m_{i} & =\min \left\{f_{i}\left(x^{1}\right), \cdots, f_{i}\left(x^{m}\right)\right\}
\end{aligned}
$$

Step 3 Choose $r=1,2, \cdots$ and solve $\left(P_{k}\right)$ with

$$
L_{j}=M_{j}-\frac{t}{r-1}\left(M_{j}-m_{j}\right), t=0, \cdots, r-1
$$

If at a solution of $\left(P_{k}\right)$, all the constraints are binding, then this solution is efficient. Otherwise, assuming f_{1}, \cdots, f_{ℓ} active, $f_{\ell+1}, \cdots, f_{m}\left(\neq f_{k}\right)$ nonbinding, one solves $\left(P_{*}\right)$ (in the previous method) to obtain an efficient solution.

11. Normal Cones Method

This method is aimed at generating all efficient solutions of a linear multiobjective problem (VP) :

$$
\begin{aligned}
& \operatorname{Min} C x \\
& A x \geq b
\end{aligned}
$$

where C is an $m \times n$-matrix with m rows C^{1}, \cdots, C^{m} and A is an $p \times n$-matrix with p rows a^{1}, \cdots, a^{p}, and $b \in R^{p}$.
Denote by $M:=\{x: A x \geq b\}$. We recall that the normal cone to M at $x_{0} \in M$ is denoted by $N_{M}\left(x_{0}\right)$ and defined by

$$
N_{M}\left(x_{0}\right):=\left\{v \in R^{n}:<v, x-x_{0}>\leq 0, x \in M\right\} .
$$

Normal cone can be explicitely calculated by the following rule.
Lemma. Let $I\left(x_{0}\right)$ be the active index set at $x_{0} \in M$, i.e.

$$
I\left(x_{0}\right)=\left\{i \in\{1, \cdots, p\}: \prec a^{i}, x_{0} \succ=b_{i}\right\}
$$

and $\quad \prec a^{j}, x_{0} \succ>b_{j}$ if $j \notin I\left(x_{0}\right)$. Then $N_{M}\left(x_{0}\right)=\operatorname{cone}\left\{-a^{i}: i \in I\left(x_{0}\right)\right\}$.
Proof. By a direct verification.
Definition. Let $I \subseteq\{1, \cdots, p\}$. We say that I is normal if there is $x_{0} \in M$ such that $N_{M}\left(x_{0}\right)=\operatorname{cone}\left\{-a^{i}: i \in I\right\}$, and I is negative if cone $\left\{-a^{i}: i \in I\right\}$ contains a vector of the form $\sum_{i=1}^{m} \lambda_{i} C^{i}$ with $\lambda_{1}>0, \cdots, \lambda_{m}>0$.

Let F be a face of the polyhedral convex set M. We say that F is an efficient solution face if every point of F is an efficient solution of (VP).

Theorem. Assume that there are no redundant constraints among $\prec a^{i}, x \succ$ $b_{i}, i=1, \cdots, p$. Let F be a face of M determined by the system

$$
\begin{aligned}
& \prec a^{i}, x \succ=b_{i}, i \in I_{F} \subseteq\{1, \cdots, p\} \\
& \prec a^{j}, x \succ \geq b_{j}, j \in\{1, \cdots, p\} \backslash I_{F} .
\end{aligned}
$$

Then F is an efficient solution face if and only if I_{F} is negative and normal.
Proof. Invoke the lemma and use the fact that x_{0} is an efficient solution of (VP) if and only if there exist $\lambda_{1}>0, \cdots, \lambda_{m}>0$ such that

$$
\prec \Sigma \lambda_{i} C^{i}, x-x_{0} \succ \geq 0 \text { for all } x \in M
$$

The next three prodedures allow to completely solve the problem (VP).
Procedure 1 (Finding an initial efficient solution vertex).
Step 1 Solve the system

$$
\sum_{i=1}^{p} \mu_{i} a^{i}=\sum_{j=1}^{m} \lambda_{j} \cdot C^{j}, \mu_{i} \geq 0, \lambda_{j} \geq 1
$$

If it has no solutions, STOP ((VP) has no efficient solutions). Otherwise go to Step 2).

Step 2 Let λ be a solution of the above system. Put $v=C^{T} \lambda$. If $v=0$, STOP (every feasible solution of (VP) is efficient). Otherwise solve the scalar linear problem

$$
\min _{x \in M} \prec v, x \succ
$$

It is sure that this problem has optimal solutions. An optimal solution vertex of this problem is an efficient solution vertex of (VP).
Procedure 2 (Determining all efficient edges emanating from an initial efficient vertex x_{0}).

Step 1 Determine the active index set

$$
I\left(x_{0}\right):=\left\{i \in\{1, \cdots, p\}:<a^{i}, x_{0}>=b_{i}\right\}
$$

and pick $I \subseteq I\left(x_{0}\right)$ with $|I|=n-1$ not previously considered.
If $\operatorname{rank}\left\{a^{i}: i \in I\right\}=n-1$, go to Step 2 .
Otherwise pick another $I \subseteq I\left(x_{0}\right)$.
Step 2 Verify whether I is negative by solving the system

$$
\sum_{I \subset I} \mu_{i} a^{i}=\sum_{j=1}^{m} \lambda_{j} C^{j}, \mu_{i} \geq 0, i \in I, \lambda_{j} \geq 1, j=1, \cdots, m
$$

If it has a solution, then go to Step 3 (I is negative).
Otherwise return to Step 1.
Step 3 Verify whether I is normal which implies that the edge determined by I is efficient.

Find $v \neq 0$ by solving

$$
\prec a^{i}, v \succ=0, i \in I .
$$

Solve the system

$$
\prec a^{i}, x_{0}+t v \succ \geq b_{i}, i=1, \cdots, p .
$$

Let the solution set be $\left[t_{0}, 0\right]$ or $\left[0, t_{0}\right]\left(t_{0}\right.$ may be ∞ or $\left.-\infty\right)$.
If $t_{0}=0$, then Return to Step 1 (I is not normal).
If $t_{0} \neq 0$, then $\left[x_{0}, x_{0}+t_{0} v\right]$ is an efficient edge. Store it and return to Step 1 until no subset $I \subseteq I\left(x_{0}\right)$ with power $(n-1)$ left.
Procedure 3 (Finding an ℓ-dimensional efficient solution face adjacent to x_{0}).
Let $\left\{\left[x_{0}, x_{0}+t_{i} v_{i}\right] ; i=1, \cdots, k\right\}$ be the family of all efficient edges emanating from x_{0} that have been obtained by Procedure 2 (assume $t_{i}>0$).

Step 1 Pick $J \subseteq\{1, \cdots, k\}$ with $|J|=\ell$, not previously considered and set

$$
x_{J}=\frac{x_{0}}{\ell+1}+\sum_{j \in J} \lambda_{j} \frac{x_{j}}{\ell+1}
$$

where $x_{j}=x_{0}+t_{j} v_{j}$ and $\lambda_{j}=t_{j}$ if t_{j} is finite, $\lambda_{j}=1$ if $t_{j}=\infty$.
Step 2 Determine the active index set $I\left(x_{J}\right)$.
If $I\left(x_{J}\right)=\emptyset$, then Return to Step 1.
Otherwise go to Step 3.
Step 3 (Verify whether $I\left(x_{J}\right)$ is negative).
Solve the system of Step 2 (Procedure 2) with $I=I\left(x_{J}\right)$.
If it has a solution, go to Step $4\left(I\left(x_{J}\right)\right.$ is negative).
Otherwise return to Step 1.
Step 4 (Find an ℓ-dimensional efficient face containing $\left[x_{0}, x_{0}+t_{j} v_{j}\right]: j \in$ $J]$.

Determine $J_{0}:=\left\{j \in\{1, \cdots, k\}: I_{J} \supseteq I\left(x_{J}\right)\right\}$.
Then the convex hull of $\left\{\left[x_{0}, x_{0}+t_{j} v_{j}\right]: j \in J_{0}\right\}$ is an ℓ-dimensional efficient face adjacent to x_{0}.

Store it and pick J not containing J_{0} with $|J|=\ell$ and continue Step 1.
Note that the set of efficient solutions of (VP) is pathwise connected, the above procedures allow to generate all efficient solutions of (VP) in a finite number of iterations. Procedure 3 also gives a method generating all maximal efficient faces adjacent to a given efficient vertex.

References

1. D.T.Luc, Theory of vector optimization, LNEMS 319, Springer-Verlag, 1989.
2. A.Guerragio and D.T.Luc, On optimality conditions for $C^{1,1}$ vector optimization problems, Studi Matematici 52, Universita Bocconi, 1999.
3. N.T.B.Kim and D.T.Luc, Normal cones to a polyhedral convex set and generating efficient faces in linear multiobjective programming, Acta Mathematica Vietnamica, 1999.
4. B.D.Craven, Nonsmooth multiobjective programming, Numer. Funct. Anal. and Optim. 10(1989), 49-64.
