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1. PRELIMINARIES

1. Partially ordered spaces

Let E be a space and B � E�E a relation on E. We say that B is a partial
order on E if it is

� reexive, i.e. (x; x) 2 B for every x 2 E ;

� transitive, i.e.(x; y); (y; z) 2 B imply (x; z) 2 B.

In this note we shall deal with a special case where E is a topological vector
space and equipped with a partial order B that is linear in the sense that
(x; y) 2 B implies (x+ z; y + z); (tx; ty) 2 B for all z 2 E and t > 0.

We shall write x � y instead of (x; y) 2 B.

Proposition. If (�) is a linear partial order in E, then the set

C := fx 2 E : x � 0g

is a convex cone in E.

Conversely, if C is a convex cone in E, then the relation

x �
C
y if and only if x� y 2 C

is a linear partial order in E.

Proof Let (�) be a linear partial order in E. Let x 2 C. By the linearity, one
has tx � 0 for all t > 0. Hence tx 2 C for t > 0. When t = 0, by the reexivity
one has 0 = 0x 2 C. This shows that C is a cone. This cone is convex because
for x; y 2 C we have x � 0, y � 0, consequently x + y � 0 + y � y � 0 which
means x+ y 2 C.

Conversely, assume that C is a convex cone in E. Since 0 2 C, we have
x �

c
x for all x 2 E. This shows that (�c) is reexive. Moreover, if x� y 2 C

and y� z 2 C, then by the convexity of C we obtain x� z = x� y + y � z 2 C

or equivalently, x �c y and y �c z imply x �c z. In this way (�c) is a partial
order in E. It is linear because x � y 2 C implies t(x � y) 2 C for t > 0 and
(x+ z) � (y + z) 2 C for all z 2 E, which means x �c y implies tx �c ty and
x+ z �c y + z for all t > 0, z 2 E. The proof is complete.

Examples

1. Let E = Rn and C = Rn
+ (the positive orthant). Then (�c) is the usual

componentwise order, i.e. for x = (x1; � � � ; xn); y = (y1; � � � ; yn) one has x �c y

if and only if xi � yi , i = 1; � � � ; n.
This is a linear partial order.
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2. The lexicographic order : Let C be the cone in Rn consisting of all vectors
x, whose �rst nonzero component is positive. Then (�c) is a linear partial order.
Actually this order is complete in the sense that any two elements of Rn are
comparable (either x �c y or y �c x).

3. The ubiquitous order : Let `0 denote the space of sequences whose terms
are all zero except for a �nite number. This is a normed space if we equip it
with the max-norm. Let C be a cone consisting of sequences whose last nonzero
component is positive. Then the order generated by C is a linear partial order
in `0. The cone C is called ubiquitous because of the following property : for
each x 2 `0, there exists y 2 C such that [y; x) � C.

2. Correct cones

Let C be a convex cone in a topological vector space E. We shall make use
of the following notations : `(C) := C \ �C (the linear part of C) ; int C (the
interior of C), cl C (the closure of C).

For a subset A � E, Ac denotes the complement of A in E, i.e. Ac = E nA

.

De�nition. We say that the cone C is

i) pointed if `(C) = f0g

ii) correct if cl C + C n `(C)n � C

or equivalently cl C +C n `(C) � C n `(C) .

Note that the cone Rn
+ is pointed and correct, while the lexicographic cone

and the ubiquitous cone are pointed and not correct.

Proposition. Each of the following conditions is su�cient for C to be correct
:

i) C is closed

ii) C n `(C) is open

iii) C consists of the origin and an intersection of half-spaces that are either
open or closed.

Proof. If C is closed, then cl C = C and the correctness of C follows from the
convexity.

If C n `(C) is open, then int C 6= ; and C n `(C) = int C. Consequently, cl
C + C n `(C) = cl C + int C � C which shows that C is correct.

Finally, let C = f0g[ f \
�2^

H�g where each H� is a half-space that is either

closed or open. If all of H� are closed, then C is closed. By the �rst part, C is
correct. If one of H� is open, then `(C) = f0g and b 2 C n `(C) if and only if

3



b 2 H� for all � 2 ^. Moreover, an element a 2 cl C if and only if a 2 cl H�

for all � 2 ^. This and the fact that cl H� +H� � H� independant of whether
H� is open or closed, imply that a+ b 2 C whenever a 2 cl C and b 2 C n `(C).
Hence C is correct.

3. C-complete Sets

Let E be a topological vector space and C a convex cone in E. We shall
write x > y by understanding x� y 2 C n `(C).

Let fxigi2I be a net in E. It is said to be decreasing if xi > xj for i < j.

De�nition. A set A � E is said to be C-complete (resp. strongly C-complete)
if it has no covering of the form

f(xi � cl C)c : i 2 Ig
�
resp: f(xi � C)c : i 2 Ig

�

where fxigi2I is a decreasing net in A.

We note that every strongly C-complete set is C-complete. The converse is
not always true except for the case where C is a closed cone.

Below we give some su�cient conditions for a set to be C-complete.

Proposition 1. Every compact set is C complete. In particular every weakly
compact set in a locally convex space is C-complete.

Proof. Let A be a compact set in E and let fxigi2I be a decreasing net in A.
If the family f(xi � cl C)c : i 2 Ig covers A, then it is an open covering of A.
Since A is compact, one may extract a �nite subcovering, say f(xi` � cl C)c :
` = 1; � � � ; kg. Let i0 2 I such that i0 � i` for ` = 1; � � � ; k. Then one has

xi0 < xi` ; ` = 1; � � � ; k :

On the other hand, there exists j 2 f1; � � � ; kg such that xi0 2 (xij � cl C)c.
This implies xi0 6< xij , a contradiction. Thus A is C-complete.

Now if E is locally convex, then cl C is also closed in the weak topology. It
remains to apply the above reasonning for the weak topology.

Proposition 2. If E is a �nite dimensional space, then every compact set is
strongly C-complete.

Proof. We prove this proposition by induction on the dimension of C. If dim
C = 1, then either C is a straight line or a half-line. In both cases C is closed.
By Proposition 1, every compact set is C-complete. By a remark made before
Proposition 1, the set is strongly C-complet as well. Assuming the conclusion
legal for dim C < m, we show it for dim C = m. Suppose to the contrary that a
compact set A � Rn is not strongly C-complete, that is there exists a decreasing
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net fxigi2I � A such that fxi �C)c : i 2 Ig is a covering of A. Since the space
is of �nite dimension, we may assume that the net is a sequence fxigi�1 that
converges to some point x� 2 A. There exists i0 such that x� 2 (xi0 � C)c, or
equivalently x� =2 xi0 � C. It follows that x� =2 xi � C for all i � i0. By this
we may assume i0 = 1. Denote by L the smallest linear subspace containing
xi � x1, i = 2; 3; � � �: We want to show that L \ ri C = ;. In fact, let x 2 L.
Then x can be expressed as a linear combination

x =
`X

i=1

tj
�
xij � x1

�

with tj 6= 0, ij 2 f1; 2; � � �g and i1 < i2 < � � � . We prove x =2 ri C by
induction on `.

If ` = 1, then x = t1(xi1 �x1). Since xi1 �x1 2 �C n `(C), one has xi1 �x1 =2 ri
C , consequently x 2 ri C is possible only when t1 < 0. Then xi1 2 x1� ri C by
supposing x 2 ri C. Moreover as xi 2 xi1 �C for i � i1, one obtains x� 2 xi1�

cl C. Consequently,

x� 2 xi1 � cl C � x1 � cl C � ri C � x1 � C ;

a contradiction.

Assuming that x =2 ri C whenever x is a linear combination of ` � 1 terms, we
prove x =2 ri C when

x =
`+1X

j=1

tj
�
xij � x1

�
:

Suppose to the contrary that x 2 ri C. If t` > 0, we have

x� t`
�
xi` � x1

�
=

`+1X

j=1

j 6=`

tj
�
xij � x1

�
:

The vector in the left hand side belongs to ri C because �t`(xi`�x1) 2 C n`(C)
and x 2 ri C, while the vector in the right hand side is a combination of ` terms
and is not in ri C by induction. This contradiction shows that t` < 0. In this
cas we obtain

x� t`
�
xi` � xil+1

�
=

`�1X

j=1

tj(xij � x1
�
+
�
t` + t`+1

��
xi`+1 � x1

�
:

Since xi` � xi`+1 2 C and t` < 0, the vector in the left hand side belongs to
ri C, while the vector in the right hand side does not belong to ri C. The
contradiction shows that L\ ri C = ; .
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Now we separate L and ri C by a hyperplane H : H � L and H\ ri C = ;.
Putting C1 := C \H we see that C1 is a convex cone with dim C1 < dim C.
Moreover, as C1 � C, one has

�
xi � C1

�c
�
�
xi � C

�c
and consequently the

family
�
(xi�C1)

c : i 2 I
	
covers A. By induction on the dimension of the cone,

the set A has no coverings of the above form. By this A is strongly C-complete.

II.EFFICIENT POINTS AND EXISTENCE CRITERIA

4. E�cient Points

De�nition. Let A be a subset of a topological vector space E equiped with a
linear partial order that is generated by a convex cone C. We say that a point
a 2 A is

i) an ideal point of A if x � a for every x 2 A.
The set of all ideal points of A is denoted by IMin A or IMin(A=C).

ii) an e�cient point of A if whenever a � x for some x 2 A one has x � a.

The set of all e�cient points of A is denoted by Min A or Min(A=C).
Sometimes one is interested also in the set of e�cient points with respect to
the ordering generated by the cone f0g[ int C if int C 6= ;. This is the set of
weakly e�cient points and denoted by WMin A or WMin(A=C). If there exists
a convex cone K 6= E with int K � C n `(C), such that a 2 Min(A=K), then we
call it properly e�cient. The set of all properly e�cient points of A is denoted
by PrMin A or PrMin(A=C).
Note that there are some other de�nitions of proper e�cient points. They
coincide with the one we gave in the case where A is a convex set in a �nite
dimensional space.

Exemple

1. Let A = f(x; y) 2 R2 : x2 + y2 � 1 or x � 0, jyj � 1g � R2 and let
C = R2

+. Then
IMin A = ;

PrMin A = f(x; y) 2 R2 : x2 + y2 = 1 ; x < 0; y < 0g
Min A = f(x; y) 2 R2 : x2 + y2 = 1; x � 0; y � 0g
WMin A = Min A [ f(x;�1) : x � 0g :

2. For E = `0 (Example 3 of 1), C the ubiquitous cone, the unit ball has no
e�cient points.

Below is an equivalent de�nition of e�cient points.

Proposition 1. Let A � E. Then

i) a 2 IMin A if and only if a 2 A and A � a+C ;
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ii) a 2 Min A if and only if a 2 A and A \ (a� C) � a+ `(C).
In other words a 2 Min A, if and only if a 2 A and there is no y 2 A with

a > y ;

iii) a 2WMin A if and only if a 2 A and A \ (a� int C) = ;.

Proof. These conclusions are direct consequences of the de�nition

The relationship between the di�erent concepts of e�ciency is seen in the next
result. We suppose always that C 6= E.

Proposition 2. For every nonempty set A � E one has

PrMin A � Min A � WMin A :

Moreover, if IMin A 6= ;, then IMin A = Min A and this set is a singleton
whenever C is pointed.

Proof. For the �rst inclusion let x 2 PrMin A. If x =2 Min A, then there is
y 2 A with x�y 2 C n`(C). Let K =2 E be a convex cone with int K � C n`(C)
and x 2 Min(A=K). Then x�y 2 int K � K n `(K) which contradicts x 2 Min
(A=K). Next, let x 2 Min A. If x =2W Min A, then by Proposition 1, ii), there
exists y 2 A such that x� y 2 int C. As C 6= E, int C � C n `(C) and we have
x� y 2 C n `(C), a contradiction with the fact that x 2 MinA.
Finally, let x 2 IMin A. It follows that x 2Min A. Let y 2Min A. Then y � x,
hence x � y. For any z 2 A one has z � x because x 2 IMin A. Consequently
z � y, which shows that y 2 IMin A. By this IMin A = MinA. If in addition
C is pointed, then x � y and y � x imply x = y. Thus IMin A is a singleton.

If the space E is equipped with two orders then the relationship between
e�ciencies with respect to these cones is expressed by the next proposition.

Proposition 3. Assume that K is a pointed convex cone with C � K. Then
we have

i) I Min(A=K) = I Min(A=C) provided I Min(A=C) is nonempty ;

ii) Min(A=K) � Min (A=C) (similarly for W Min and Pr Min).

Proof. Observe that C is pointed. By Proposition 2, if I Min(A=C) is nonempty,
it is a singleton, say fxg. In view of Proposition 1, A � x +C. It follows that
A � x+K which means I Min(A=K) = fxg.

Now let x 2 Min (A=K). By Proposition 1, A \ (x � K) = fxg. Therefore
A \ (x � C) = fxg, which implies x 2Min(A=C). The proof for W Min and
PrMin is analogous.
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Note that the above result is no longer true if K is not pointed except for
the particular case where K is a closed half-space.

We shall denote by Ax := A \ (x � C) for x 2 E and call it a section of A
at x.

Proposition 4. Let x 2 E with Ax 6= ;. The following assertions hold

i) IMin Ax � I Min A if IMin A 6= ; ;

ii) Min Ax � Min A (similarly for W Min).

Proof. For the �rst inclusion, let y 2 IMin Ax and z 2 IMin A. We have
Ax � y +C and A � z + C. Then z 2 Ax and z � y 2 `(C). This implies

A � z + C = z � y + y + C = y + `(C) +C = y + C

which shows y 2 IMin A.

Next, assume y 2MinAx. By Proposition 1, we have Ax\(y�C) � y+`(C).
Since y �C � x� C, we obtain

A \ (y � C) � A \ (y � C) \ (x�C) � Ax \ (y � C) � y + `(C)

which shows that y 2 Min A.

The proof for WMin is analogous.

Remark that the inclusion Pr Min Ax � Pr Min A is not true in general except
for very speci�c cases.

5. Existence criteria

Theorem 1. Le A be a nonempty set in E. Then Min A 6= ; if and only if
there is x 2 E such that Ax is nonempty and strongly C-complete.

Proof. The necessity is obvious because by taking x 2 Min A, the selection Ax

is nonempty and has no decreasing nets, hence strongly C-complete.

For the su�ciency, suppose to the contrary that for some x 2 E, the selection
Ax is nonempty and strongly C-complete, but Min A = ;. Denote by P the set
of all decreasing nets in Ax and introduce a partial order on P by inclusion, i.e.
for a; b 2 P one writes a � b if and only if b � a as sets. We observe that P is
nonempty because Min A = ; and the above introduced order is a partial order
on P. Now we prove that P satis�es the hypothesis of Zorn's lemma : every
chain X = fa� : � 2 �g � P has an upper bound. Indeed, denote by B the
family of all �nite subsets of �. For each B 2 B we set

aB :=
[

�2B

a� :
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It is evident that aB 2 P. Now we put

a0 = [faB : B 2 Bg :

Let I0 be the index set consisting of all elemnts of a a0 with � > � if � >
C
�

being considered as elements of a0. In other words the index set order is de�ned
by the cone (�C n `(C)) [ f0g. Then I0 is a directed index set because for
�; � 2 I0 there exist B1; B2 2 B such that � 2 aB1 and � 2 aB2 . Taking
B = B1[B2 we see that �; � 2 aB. Since aB is a decreasing net, there is  2 aB
such that � >

C
 and � >

C
. Then  2 I0 with  > � and  > �. Moreover, it is

evident that a0 � a for all a 2 X. Hence a0 is an upper bound of X. Now we
apply Zorn's lemma to obtain a maximal element a�, say a� = fxigi2I 2 P.we
claim that the family f(xi�C)c : i 2 Ig is a covering of A. Indeed, if not, there
is y 2 A such that y =2 (xi � C)c for all i 2 I, or equivalently y 2 xi � C for all
i 2 I. Since Min A = ;, for this y there exists z 2 y � C n `(C). It follows that

z 2 xi � C � C n `(C) � xi � C n `(C) :

In other words z 2 Ax and z <
C
xi for all i 2 I. This contradicts the maximality

of a�. In this way the family f(xi � C)c : i 2 Ig covers Ax. This is impossible
because Ax is strongly C-complete. The proof is complete.

Theorem 2. Assume that A is a nonempty set in E and C is correct. Then
Min A = ; if and only if there is x 2 E such that Ax is nonempty and C-
complete.

Proof. Proceed in the same way as in the proof of the preceding theorem by
using the following characterization of a correct cone

cl C +C n `(C) � C n `(C)

in order to obtain z >
C
xi for all i 2 I.

Corollary. If A is a nonempty compact set in a �nite dimensional space, then
Min A 6= ; whatever the cone C be.

If A is a nonempty compact set in an in�nite dimensional space and the cone
C is closed, then Min A 6= ;.

Proof. Invoke Theorems 1,2 above and Proposition 1,2 of Section 2.

Note that in an in�nite dimensional space a compact set may have no e�cient
points if the cone C is not correct. To see this, consider the following example.
Let E be `0 and C be the ubiquitous cone (Example 3 of Section 1).
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Let x0 = (1; 0; 0; � � �); xn = (1;�
1

2n
; � � � ;�

1

2n
; 0; � � �0) and A = fxi : i =

0; 1; 2; � � �g. It is evident that lim
n!1

xn = x0. Hence A is a compact set. Despite

of this, MinA = ; because x0 > x1 > x2 � � � .

III. OPTIMALITY CONDITIONS

6. Di�erentiable Problems

Let us consider the following vector problem (VP) :

Min f(x)

g(x) � 0

h(x) = 0

where f; g and h are functions from X to Y; Z and W respectively with X;Y; Z
andW Banach spaces. We assume that Y and Z are partially ordered by convex
pointed cones Cy and Cz having nonempty interiors. The above problem means
�nding a point x0 2 X (called an e�cient solution) such that f(x0) is an
e�cient point of the set ff(x) 2 Y : x 2 X; g(x) � 0 ; h(x) = 0g. A weakly
e�cient solution is de�ned in a similar way. A solution is local if one restricts
the problem on a neighborhood of this point. In this section we shall derive a
necessary condition for local weakly e�cient solutions. Two classic results of
analysis will be needed :

1. Mean Value Theorem (MVT) : If f is Gateaux di�erentiable on X, then
for each a; b 2 X one has

jjf(b)� f(a)jj � supfjjf 0(c)jj � jjb� ajj : c 2 [a; b]g :

2. Open Mapping Theorem (Lyusternik's Theorem) : If h is Fr�echet di�er-
entiable with h0 continuous at x0 and if h0(x0) is surjective, then the tangent
cone to the set M := fx 2 X : h(x) = 0g at x0 2M de�ned by

TM (x0 := fv 2 K : v = lim
i!1

ti(xi � x0); ti > 0; xi �! x0; xi 2Mg

coincides with Ker h0(x0).

We recall also that the positive polar cone of a cone C � Y is de�ned by

C0 := f� 2 Y 0 :� �; y �� 0 for all y 2 Cg

where Y 0 denotes the topological dual space of Y .
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Theorem. Assume that f; g and h are Frechet di�erentiable with f 0 and g0

bounded and h0 continuous in a neighborhood of x0. If x0 is a local weakly
e�cient solution of (VP), then there exist multipliers (�; �; ) 2 (CY ; CZ; f0g)

0n

f0g such that

�f 0(x0) + �g0(x0) + h0(x0) = 0 ; �g(x0) = 0 :

Proof. Assume �rst that h0(x0) is not surjective, i.e. h0(x0)(X) is a proper
subspace of W . Then there exists a nonzero functionnal  2W 0 n f0g such that

� ; h0(x0)(u) �= 0 for all u 2 X :

This implies h0(x0) = 0. Now setting � = 0 and � = 0 we obtain multipliers
(�; �; ) as requested.

Now consider the case where h0(x0) is surjective. We want to show that

(f 0(x0); g
0(x0); h

0(x0)(X) \ (�int CY ;�g(x0)� int CZ; f0g) = ; : (1)

In fact, if this intersection is not empty, then there is a vector u 2 X with
jjujj= 1 such that

f 0(x0)(u) 2 � int CY

g0(x0)(u) 2 �g(x0)� int CZ

h0(x0)(u) = 0:

Applying Lyusternik's theorem we �nd xi 2M n fx0g such that fxig converges
to x0 and fuig with ui = (xi � x0)=jjxi � x0jj, converges to u. Note that as f

0

is bounded in a neighborhood of x0, in view of (MVT) we have the following
estimate :

lim
f(xi)� f(x0)

jjxi � x0jj
= f 0(x0)(u) :

Hence, for i su�ciently large we obtain

f(xi)� f(x0) 2 � int CY :

Similarly, for i su�ciently large we have

g(xi)� g(x0)

jjxi � x0jj
2 �g(x0) � int K :

Since jjxi � x0jj tends to 0 as i tends to 1 the above implies

g(xi) 2 (1 � jjxi � x0jj)g(x0)� int CZ � �CZ

for i su�ciently large. This and the fact that h(xi) = 0 (because xi 2 M ),
together with (2) show that x0 is not a local weakly e�cient solution of (VP),
a contradiction.
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In this way (1) is true. We separate those convex sets of (1) by a linear functional
(�; �; ) 2 (Y; Z;W )0 n f0g :

�f 0(x0)(u) + �[g0(x0)(v) + g(x0)] + h0(x0)(w) �� �;�c � + � �;�k �

for all u 2 Y; v 2 Z; w 2W;

c 2 CY ; k 2 CZ .
It follows from the above inequality that

� 2 C0; � 2 K0;  2 W 0 and �g(x0)0. Remember that g(x0) 2 �K, hence
�g(x0) = 0. Moreover, one has

�f 0(0)(u) + �g0(x0)(v) + h0(x0)(w) � 0

for all u 2 Y , v 2 Z, w 2W which implies

�f 0(x0) + �g0(x0) + h0(x0) = 0

as required.

7. Lipschitz continuous problems

In this section we consider the problem (VP) in �nite dimensional spaces
that is we suppose that X = Rn, Y = Rm ; Z = Rk and W = R` .
Recall that Clarke's generalized Jacobian of a locally Lipschitz function f from
Rn to Rm is de�ned by

@f(x) := cof lim
i!1

f 0(xi) : xi ! x ; f 0(xi) existsg

where co denotes the closed convex hull.
We shall use the following properties of generalized Jacobian :

i) @f(x) is compact, convex ;

ii) The set valued map x 7�! @f(x) is upper semi-continuous ;

iii) In the case m = 1

@(f1 + f2)(x) � @f1(x) + @f2(x) ;

@(max
�2T

f�(x) = @f�0 (x) if �0 is the unique index where the maximum is at-

tained.

0 2 @f(x) if x is a local minimum of f .

iv) The mean value theorem : for a; b;2Rn, one has

f(b) � f(a) 2 cofM (b� a) :M 2 @f(c) ; c 2 [a; b]g :
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We shall also use Ekeland's variational principle :
Let ' be a lower semicontinuous function on Rn. If '(x0) � inf ' + � for

some � > 0, then there is x� 2 Rn such that

jjx� � x0jj �
p
�

'(x�) � '(x0)

'(x�) < '(x) +
p
�jjx� x� jj for all x 6= x� :

Theorem. Assume that f; g and h are Lipschitz continuous and x0 is a weakly
e�cient solution of (VP). Then there exist multipliers (�; �; ) 2 (CY ; CZ; f0g)

0n

f0g such that
0 2 @(�f + �g + h)(x0)

�g(x0) = 0 :

Proof. Let � = (�; �; ) 2 (CY ; CZ; f0g)
0 n f0g and T = f� : jj�jj = 1g. Let

e 2 int CY such that

1 = max f� �; e �: � 2 C0Y ; jj�jj= 1g :

For � > 0 set
H�(x) := (f(x) � f(x0) + �e; g(x); h(x)g

and consider the function

F�(x) := max
�2T

� �;H�(x) � : (1)

It is evident that F�(x) is Lipschitz continuous. We want to apply Ekeland's

principle to obtain a point x� that minimizes the function F�(x)+
p
� jjx�x�jj.

To this purpose, we prove that F�(x) > 0 for all x 2 Rn. Indeed, if not, i.e.
F�(x) � 0 for some x, then g(x) � 0 ; h(x) = 0 and

� �; f(x)� f(x0) � < 0 for all � 2 C0Y n f0g :

This means that x is a feasible solution and satis�es

f(x) � f(x0) 2 int C ;

a contradiction to the optimality of x0. In this way F�(x) > 0. We obtain then

F�(x0) = � � inf
x

F�(x) + � :

According to Ekeland's principle, there is x� such that

jjx� � x0jj �
p
�

F�(x�) < F�(x) +
p
�jjx� x� jj; for x 6= x� :

13



In other words, x� is a minimum of the function F�(x) +
p
�jjx� x� jj. Conse-

quently we have

0 2 @(F� (x) +
p
�jjx� x� jj)(x�) � @F�(x�) +

p
� B(0; 1) (2)

where B(0; 1) denotes the unit ball in Rn (it is Clark's subdi�erential of the
function x 7�! jjx � x� jj at x�). To calculate the subdi�erential @F�(x�) we
make the following observation : Since F�(x) > 0, the vector H�(x�) 6= 0, hence
the linear function � 7�!� �;H�(x�) � attains its maximum at a unique point
�� 2 T on T (This is so because if that function has two distinct minima �1
and �2 on T , then at � = (�1 + �2)=jj�1 + �2jj 2 T one has

� �;H�(x�) � =
2

jj�1 + �2jj
� �1;H�(x�) � > � �1;H�(x�) �

because jj�1+�2jj < jj�1jj+ jj�2jj � 2, a contradiction, [Note that �1+�2 6= 0]:)
We obtain

@F�(x�) = @ � �� ;H�(x�) �= @(��f + ��g + �h)(x�) :

Observe that in Ekeland's principle, if � �! 0, then x� �! x0. Moreover, as
H�(x�) �! (0; g(x0); h(x0)), one has �� �! �0 2 T for some �0. Further,
since @ � �� ;H�(x�) � = @ � �� ;H0(x�) �, the upper semicontinuity of the
subdi�erential map

� �; x �7�! @ � �;H0(x) �

and (2) show that

0 2 @ � �0;H0(x0) �= @(�f + �g + h)(x0) :

Finally, to see �g(x0) = 0, it su�ces to note that as F�(x) > 0, by letting
� �! 0, we obtain �g(x0) � 0. On the other hand g(x0) 2 �CZ and � 2 C0Z
imply �g(x0) � 0. Thus, �g(x0) = 0 and the proof is complete.

Remark that the condition presented in the above theorem is useful if the �rst
multiplier � 6= 0. One can guarantee this by imposing certain constraint qual-
i�cation for instance all the matrices N 2 @h(x0) has rank equal to ` and
there exists u 2 \f ker N : N 2 @h(x0)g such that M (u) 2 � int CZ for all
M 2 @g(x0).

8. Convex Problems

Consider the following convex problem (VP)

Minf(x)
g(x) � 0

14



where f is a convex function from Rn to Rm; g is a convex function from Rn to
Rk. We recall that f is convex if for � 2 (0; 1); x; y 2 Rn one has

f(�x + (1� �)y) � �f(x) + (1� �)f(y) :

The ordering cone CY � Rm is supposed to be convex, closed pointed with
nonempty interior and the ordering cone Cz � Rk is supposed to be convex,
closed. One can show that for a convex problem every local e�cient solution is
a global e�cient solution. For a convex problem we have the following su�cient
condition.

Theorem. Assume that f and g are convex and there exist multiplicators
(�; �) 2 (CY ; CZ)

0 n [0g such that

0 2 @(�f)(x0) + @(�g)(x0)

�g(x0) = 0 :

Then x0 is an e�cient (resp. weakly e�cient solution of (VP) if � 2 int CY

(resp. � 2 C0 n f0g).

Proof. We prove the case of weakly e�cient solutions. The other case is similar.
Suppose to the contrary that x0 is not weakly e�cient, i.e. there exists a feasible
solution x 2 Rn (g(x) � 0) such that

f(x) � f(x0) 2 � int C :

On the one hand we have

max
�2@(�f)(x0)

� �; x� x0 �= (�f)0(x0; x� x0) � �f(x) � �f(x0) < 0

because � 2 C0Y n f0g, where (�f)
0(x0; x�x0) denotes the directional derivative

of the convex scalar function �f at x0 in direction x� x0. [Note that @(�f)(x0)
coincides with the convex analysis subdi�erential of �f at x0]. On the other
hand for g(x) one has

max
�2@(�g)(x0)

� �; x� x0 �= (�g)0(x0; x� x0) � �g(x) � �g(x0) � 0

because �g(x0) = 0 and g(x) 2 �CZ ; � 2 C0Z . It follows from the above
inequalities that

max
�2@(�f)(x0)+@(�g)(x0)

� �; x� x0 � < 0

which shows 0 =2 @(�f)(x0) + @(�g)(x0), a contradiction.

9. Second order conditions
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For the sake of simplicity let us present second order conditions for an un-
constrained problem (VP)

Min
x2Rn

f(x)

where f is a function from Rn to Rm and Rm is partially ordered by a convex
closed pointed cone C with a nonempty interior.
We assume that f is of class C1;1 that is f is di�erentiable with f 0 Lipschitz con-
tinuous. The generalized Jacobian of the function f 0 is then called generalized
Hessian of f and denoted by @2f .

Theorem 1. Assume that x0 is a local weakly e�cient solution of (VP). Then
the following conditions hold

i) f 0(x0)u 2 (� int C)c for all u 2 Rn

or equivalently there is � 2 C0 n f0g such that

�f 0(x0) = 0

ii) @2f(x0)(u; u)\(� int C)c 6= ; for all u 2 Rn satisfying f 0(x0)(u) 2 �Cn
int C, or equivalently for such u there exist � 2 C0 n f0g and ' 2 @2f(x0) such
that

� �; '(u; u) � � 0 :

Proof. For i), suppose to the contrary that for some u 2 Rn, one has f 0(x0)(u) 2
(�int C)c, i.e. f 0(x0)(u) 2 �int C. Since

f 0(x0)(u) = lim
t!0

f(x0 + tu)� f(x0)

t
;

for t > 0 su�ciently close to 0 one has

f(x0 + tu)� f(x0)

t
2 � int C

which implies f(x0 + tu)� f(x0) 2 � int C, a contradiction with the fact that
x0 is locally weakly e�cient.

For ii), suppose again to the contrary that there is some u 2 Rn such that

f 0(x0)(u) 2 �(C n int C)
@2f(x0)(u; u) � � int C :

Let V be a closed, convex neighborhood of @2f(x0)(u; u) such that V � �

int C. By the upper semicontinuity of generalized Hessian, there exists � > 0
such that @2f(x0 + tu)(u; u) � V for every t 2 [0; �].

This yields the inclusion

cl convf@2f(x)(u; u) : x 2 [x0; x0 + �u]g � V :
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By using Taylor's expansion (similar to the mean value theorem) we obtain

f(x0 + tu)� f(x0) 2 f 0(x0)(tu) + cl conv f@2f(x)(tu; tu) : x 2 [x0; x0 + �u]g

� �t(C n int C) + t2V � � int C

for every t 2 (0; �]. This is a contradiction to the assumption of the theorem.

Theorem 2. Assume that the following conditions hold at a point x0 2 Rm :

i) �f 0(x0) = 0 for some � 2 int C0 ;

ii) @2f(x0)(u; u) � (�C)c for u 2 Ker f 0(x0); u 6= 0.
Then x0 is a local e�cient solution of (VP).

Proof. If x0 is not a local e�cient solution of (VP), then there exists a sequence
fxig converging to x0 such that

f(xi)� f(x0) 2 �C n f0g; i = 1; 2; � � � (1)

without loss of generality we may assume that the sequence fuig where ui =
(xi � x0) = jjxi � x0jj converges to some u 2 Rn. Condition i) shows that
f 0(x0)(u) =2 �C n f0g. There are two possible cases : f 0(x0)(u) 2 (�C)c and
f 0(x0)(u) = 0. The �rst case is impossible because (1) implies f 0(x0)(u) 2 �C.
Thus u 2 Ker f 0(x0). In view of ii) there exists a closed convex neighborhood V
of @2f(x0)(u; u) in (�C)c such that @2f(x)(v; v) � V whenever jjx� x0jj < �,
jjv�ujj < � for some positive � small enough. By Taylor's expansion we obtain

f(xi)�f(x0) 2 f 0(x0)(xi�x0)+ cl conv
�
@2f(x)(xi�x0; xi�x0) : x 2 [x0; xi]g

� jjxi � x0jjff
0(x0)(ui) + jjxi � x0jj � cl conv f@

2f(x)(ui; ui) : x 2 [x0; xi]g
	
:

Observe that f 0(x0)(ui) � (�C)c [ f0g by Condition i).
Moreover, for i su�ciently large, we have jjxi � x0jj < � and jjui � ujj � �.
Consequently, for such i, the above inclusions yield

f(xi)� f(x0) 2 jjxi � x0jj
�
(�C)c [ f0g+ jjxi � x0jjV

	

� (�C)C [ f0g+ (�C)c � (�C)c

which contradicts (1). The proof is complete.

IV. SOLUTION METHODS

10. Two classical methods
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Let us consider the following problem (VP) :

Min
x2X

f(x) =
�
f1(x); � � � ; fm(x)

�

where X is a nonempty subset of Rn and the ordering cone of Rm is the positive
orthant Rm

+ .

a) Weighting method

This method consists of choosing weights p1; � � � ; pm � 0, not all zero and
solving the associated scalar problem (P) by known techniques :

Min
x2X

mX

i=1

pifi(x) : (P )

Theorem. For the problems (VP) and (P) above we have

i) If pi > 0; i = 1; � � � ;m then any optimal solution of (P) is an e�cient
solution of (VP).

ii) If pi � 0; i = 1; � � � ;m and not all are zero, then any optimal solution of
(P) is a weakly e�cient solution of (VP). If in addition that optimal solution is
unique, then it is an e�cient solution.

Proof. Observe that if x0 2 X is not an e�cient solution of (VP), then there is

x 2 X such that f(x) � f(x0); f(x) 6= f(x0). Hence
mX

i=1

pifi(x) <
mX

i=1

pifi(x0)

if all pi > 0. This means that x0 cannot be an optimal solution of (P). The case
of weakly e�cient solutions is proven in a similar way.
If in addition, x0 is a unique solution of (P) [or more general, f (argmin (P)) is a
singleton] where pi � 0, i = 1; � � � ;m, not all zero, then for any other x 2 X with

f(x) � f(x0); f(x) 6= f(x0) one has
mX

i=1

pifi(x) �
mX

i=1

pifi(x0) which implies

that x solves (P ). This contradicts the uniqueness assumption. The proof is
complete.

In practice, one chooses a family of weighting vectors p = (p1; � � � ; pm) and solves
the corresponding scalar problems (P). By this one may generate a subset of
e�cient solutions of (VP). In the case ii) of the theorem, in order to obtain an
e�cient solution, one proceeds as follows : let p1 > 0; � � � ; p` > 0 and p`+1 =
� � �= pm = 0. One set f�i = fi(x0) where x0 is an optimal solution of (P). Then
one solves a subsidary problem (P�) :

min
mX

j=`+1

fj(x)
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x 2 X; fi(x) = f�i i = 1; � � � ; ` :

It is not di�cult to see that any solution of (P�) is an e�cient solution of (VP).

b) Constraint Method.

In this method one minimizes one objective, while other objectives are con-
sidered as constraints.

Let us choose k 2 f1; � � � ;mg, Lj 2 R, j = 1; � � � ; n, j 6= k, and solve the
scalar problem (Pk) :

Min
x2X

fk(x)

fj(x) � Lj ; j = 1; � � � ; n ; j 6= k :

Note that if Lj are small, then (Pk) may have no feasible solutions, if Lj
are two big, then an optimal solution of (Pk) may be not e�cient. We shall say
that a constraint fj(x) � Lj is binding if every optimal solution of (Pk) veri�es
fj(x) = Lj .

Theorem. Assume that x0 is an optimal solution of (Pk) and all the con-
straints are binding. Then x0 is an e�cient solution of (VP).

Proof. If x0 is not e�cient, then there is some x 2 X such that fi(x) � fi(x0)
for i = 1; 2; � � � ;m, f(x) 6= f(x0). It follows that x is a feasible solution of (Pk),
and fk(x) = fk(x0). In other words x is an optimal solution of (Pk). Since
the constraints are binding, we conclude fi(x) = fi(x0) for all i = 1; � � � ;m, a
contradiction.

Below is an algorithm to solve (VP).

Step 1 Solve
min
x2X

fi(x) :

Let x1; � � � ; xm be optimal solutions.

Step 2 Construct the payo� table

f1(x
1) � � � fm(x

1)
...

...
f1(x

m) � � � fm(x
m)

M1 Mm

m1 mm

where
Mi = maxffi(x

1); � � � ; fi(x
m)g

mi = min ffi(x
1); � � � ; fi(x

m)g
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Step 3 Choose r = 1; 2; � � � and solve (Pk) with

Lj = Mj �
t

r � 1
(Mj �mj) ; t = 0; � � � ; r � 1 :

If at a solution of (Pk), all the constraints are binding, then this solution is
e�cient. Otherwise, assuming f1; � � � ; f` active, f`+1; � � � ; fm (6= fk) nonbinding,
one solves (P�) (in the previous method) to obtain an e�cient solution.

11. Normal Cones Method

This method is aimed at generating all e�cient solutions of a linear multi-
objective problem (VP) :

Min Cx

Ax � b

where C is an m�n�matrix with m rows C1; � � � ; Cm and A is an p�n�matrix
with p rows a1; � � � ; ap, and b 2 Rp.

Denote by M := fx : Ax � bg. We recall that the normal cone to M at x0 2M

is denoted by NM (x0) and de�ned by

NM (x0) := fv 2 Rn :< v; x� x0 >� 0 ; x 2Mg :

Normal cone can be explicitely calculated by the following rule.

Lemma. Let I(x0) be the active index set at x0 2M , i.e.

I(x0) = fi 2 f1; � � � ; pg :� ai; x0 �= big

and � aj ; x0 �> bj if j =2 I(x0). Then NM (x0) = conef�ai : i 2 I(x0)g :

Proof. By a direct veri�cation.

De�nition. Let I � f1; � � � ; pg. We say that I is normal if there is x0 2 M

such that NM (x0) = conef�ai : i 2 Ig, and I is negative if cone f�ai : i 2 Ig

contains a vector of the form
mX

i=1

�iC
i with �1 > 0; � � � ; �m > 0.

Let F be a face of the polyhedral convex set M . We say that F is an e�cient
solution face if every point of F is an e�cient solution of (VP).

Theorem. Assume that there are no redundant constraints among � ai; x �

bi ; i = 1; � � � ; p. Let F be a face of M determined by the system

� ai; x � = bi ; i 2 IF � f1; � � � ; pg

� aj; x � � bj ; j 2 f1; � � � ; pg n IF :
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Then F is an e�cient solution face if and only if IF is negative and normal.

Proof. Invoke the lemma and use the fact that x0 is an e�cient solution of
(VP) if and only if there exist �1 > 0; � � � ; �m > 0 such that

� ��iC
i; x� x0 �� 0 for all x 2M :

The next three prodedures allow to completely solve the problem (VP).

Procedure 1 (Finding an initial e�cient solution vertex).

Step 1 Solve the system

pX

i=1

�ia
i =

mX

j=1

�j �C
j ; �i � 0 ; �j � 1 :

If it has no solutions, STOP ((VP) has no e�cient solutions). Otherwise go to
Step 2).

Step 2 Let � be a solution of the above system. Put v = CT�. If v = 0,
STOP (every feasible solution of (VP) is e�cient). Otherwise solve the scalar
linear problem

min
x2M

� v; x � :

It is sure that this problem has optimal solutions. An optimal solution vertex
of this problem is an e�cient solution vertex of (VP).

Procedure 2 (Determining all e�cient edges emanating from an initial e�cient
vertex x0).

Step 1 Determine the active index set

I(x0) := fi 2 f1; � � � ; pg :< ai; x0 >= big ;

and pick I � I(x0) with jIj = n � 1 not previously considered.
If rank fai : i 2 Ig = n� 1, go to Step 2.
Otherwise pick another I � I(x0).

Step 2 Verify whether I is negative by solving the system

X

I�I

�ia
i =

mX

j=1

�jC
j ; �i � 0 ; i 2 I ; �j � 1 ; j = 1; � � � ;m :

If it has a solution, then go to Step 3 (I is negative).
Otherwise return to Step 1.

Step 3 Verify whether I is normal which implies that the edge determined
by I is e�cient.
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Find v 6= 0 by solving

� ai; v �= 0 ; i 2 I :

Solve the system

� ai; x0 + tv �� bi ; i = 1; � � � ; p :

Let the solution set be [t0; 0] or [0; t0] (t0 may be 1 or �1).
If t0 = 0, then Return to Step 1 (I is not normal).
If t0 6= 0, then [x0; x0 + t0v] is an e�cient edge. Store it and return to Step

1 until no subset I � I(x0) with power (n� 1) left.
Procedure 3 (Finding an `-dimensional e�cient solution face adjacent to x0).

Let f[x0; x0+tivi] ; i = 1; � � � ; kg be the family of all e�cient edges emanating
from x0 that have been obtained by Procedure 2 (assume ti > 0).

Step 1 Pick J � f1; � � � ; kg with jJ j = `, not previously considered and set

xJ =
x0

`+ 1
+
X

j2J

�j
xj

`+ 1

where xj = x0 + tjvj and �j = tj if tj is �nite, �j = 1 if tj =1.

Step 2 Determine the active index set I(xJ ).
If I(xJ ) = ;, then Return to Step 1.
Otherwise go to Step 3.

Step 3 (Verify whether I(xJ ) is negative).
Solve the system of Step 2 (Procedure 2) with I = I(xJ ).
If it has a solution, go to Step 4 (I(xJ ) is negative).
Otherwise return to Step 1.

Step 4 (Find an `-dimensional e�cient face containing [x0; x0 + tjvj] : j 2
J ].

Determine J0 := fj 2 f1; � � � ; kg : IJ � I(xJ )g.
Then the convex hull of f[x0; x0+ tjvj] : j 2 J0g is an `-dimensional e�cient

face adjacent to x0.
Store it and pick J not containing J0 with jJ j = ` and continue Step 1.

Note that the set of e�cient solutions of (VP) is pathwise connected, the above
procedures allow to generate all e�cient solutions of (VP) in a �nite number
of iterations. Procedure 3 also gives a method generating all maximal e�cient
faces adjacent to a given e�cient vertex.
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