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\Seekers after gold dig up much earth

and �nd little"

\The lord whose oracle is at Delphi nei-

ther speaks nor conceals, but gives signs"

- HERACLITUS
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1 Global Optimization Problem

f� = f(x�) = global minx2Df(x) (or maxx2Df(x))
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2 Complexity Issues

The main focus of computational complexity is to ana-

lyze the intrinsic di�culty of optimization problems

and to decide which of these problems are likely to be

tractable.

The pursuit for developing e�cient algorithms also leads

to elegant general approaches for solving optimiza-

tion problems, and reveals surprising connections

among problems and their solutions.
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The general problem is NP-hard.

Surprise: Consider the problem:

min f(x) = cTx + 1
2
xTQx (1)

s.t. Ax � b

where Q is an n� n symmetric matrix, and c 2 Rn.

IfQ has rank one and the only zero eigenvalue is negative,

then the problem is NP-hard (which is NOT true for

network problems).

Another Surprise: Checking if a feasible point is a

local optimum is also an NP-hard problem.
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How far can we go? Consider the following quadratic

problem

min f(x) = cTx + 1
2
xTQx (2)

s.t. x � 0

where Q is an n � n symmetric matrix, and c 2 Rn.

The Kuhn-Tucker optimality conditions for this problem

become the following so{call ed linear complementarity

problem (denoted by LCP(Q; c)): Find x 2 Rn (or prove

that no such an x exists) such that

Qx + c � 0; x � 0 (3)

xT (Qx + c) = 0: (4)

Hence, the complexity of �nding (or proving existence)

of Kuhn-Tucker points for the above quadratic problem

is reduced to the complexity of solving the corresponding

LCP which is NP-hard.

Nonconvex problems are very di�cult to solve

in the worst case. To analyze the average per-

formance of algorithms is a very challenging

problem!
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Fundamental Problem about Convexity

In most classical optimization algorithms, the underly-

ing theory is based on the assumption that the objective

function (or the feasible domain) is convex.

Unless the function has constant Hessian (i.e. is quadratic)

or has a very special structure, convexity is not easily

recognizable. Even for multivariable polynomi-

als there is no known computable procedure

to decide convexity.

Therefore, from the practical point of view, a general

objective function can be assumed to be neither convex

nor concave, having multiple local optima.
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3 Continuous Approaches to Discrete Opti-

mization Problems

In graph theory many approaches have been developed

that link the discrete universe to the continuous uni-

verse through geometric, analytic, and algebraic tech-

niques. Such techniques include global optimization for-

mulations, semide�nite programming, and spectral the-

ory.

z 2 f0; 1g , z + w = 1; z � 0; w � 0; zw = 0

Integer constraints are equivalent to continu-

ous nonconvex constraints (complementarity!)

Other approaches:

z 2 f0; 1g , z � z2 = z(1� z) = 0
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Discrete Optimization () Continuous Optimization

The key issue is:

Convex Optimization 6= Nonconvex Optimization

9



References

[1] P.M. Pardalos and J.B. Rosen, Con-

strained Global Optimization; Algorithms

and Applications, Springer Verlag (1987).

[2] R. Horst, P.M. Pardalos and N.V.

Thoai, Introduction to Global Optimiza-

tion, Kluwer Academic Publishers, (1995).

[3] Panos M. Pardalos and Henry Wolkow-

icz (Editors), Topics in Semide�nite and

Interior-Point Methods, Fields Institute Com-

munications Series Vol. 18, American Mathematical

Society (1998).

[4] L. Gibbons, D. Hearn and P.M. Pardalos,

A continuous based heuristic for the max-

imum clique problem, DIMACS Series Vol. 26

(D.S. Johnson and M.A. Trick, Editors), American

Mathematical Society (1996), pp. 103-124.

[5] L. Gibbons, D. Hearn, P.M. Pardalos,

and M. Ramana, A continuous character-

ization of the maximum clique problem,

Math. of Oper. Res. Vol. 22, No. 3 (1997), pp. 754-

768.

10



[6] P.M. Pardalos, Continuous Approaches to

Discrete Optimization Problems, In Nonlin-

ear Optimization and Applications, G. Di Pillo &

F. Giannessi, Ed., Plenum Publishing (1996), pp.

313-328.

[7] J. Mitchell, P.M. Pardalos and M.G.C.

Resende, Interior Point Methods for Com-

binatorial Optimization, In Handbook of

Combinatorial Optimization Vol. 1 (1998) (D.-

Z Du and P. Pardalos, editors), pp. 189-298.

[8] D.-Z. Du and P.M. Pardalos, Global Min-

imax Approaches for Solving Discrete

Problems, Lecture Notes in Economics and Math-

ematical Systems, vol. 452, Springer-Verlag (1997),

pp. 34-48.

11



4 The Maximum Clique Problem

Consider a graph G = G(V;E), where V = f1; : : : ; ng

denotes the set of vertices (nodes), and E denotes the set

of edges. Denote by (i; j) an edge joining vertex i and

vertex j. A clique of G is a subset C of vertices with the

property that every pair of vertices in C is joined by an

edge. In other words, C is a clique if the subgraph G(C)

induced by C is complete. The maximum clique prob-

lem is the problem of �nding a clique set C of maximal

cardinality.

Applications:

� project selection, classi�cation theory, fault

tolerance, coding theory, computer vision, eco-

nomics, information retrieval, signal transmis-

sion theory, aligning DNA and protein sequences,

and other speci�c problems.
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Maximum Clique Optimization Software

Developed

� C-P.f is an exact algorithm developed by R. Car-

raghan and P.M. Pardalos for �nding the maximum

clique in an arbitrary graph. The FORTRAN code

published in OR Letters and many versions in other

languages are available.

� The code P-R.f is an exact algorithm for the max-

imum clique problem, based on a quadratic 0-1 for-

mulation (P.M. Pardalos & G.P. Rodgers). This is

the �rst public domain code for the maximum clique

problem.

� Q01SUBS solves unconstrained quadratic 0-1 prob-

lems both for dense and sparse matrices, including

concave quadratic minimization problems with box

constraints (P.M. Pardalos & G.Rodgers). The code

has been used in many industrial and business ap-

plications. This is the �rst public domain code for

quadratic zero-one problems.

� CBHMC is a Continuous Based Heuristic for the

Maximum Clique problem (Panos M. Pardalos, Sara

Ericson, Luana. E. Gibbons, Don W. Hearn).
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Motzkin-Strauss Formulation:

Consider the continuous inde�nite quadratic pro-

gramming problem

max fG(x) =
P

(i;j)2E
xixj =

1
2
xTAGx

s.t. x 2 S = fx = (x1; : : : ; xn)
T :

nP

i=1
xi = 1;

xi � 0 (i = 1; : : : ; n)g;

(5)

where AG is the adjacency matric of the graph G.

If � = maxffG(x) : x 2 Sg, then G has a maximum

clique C of size !(G) = 1=(1� 2�). This maximum can

be attained by setting xi = 1=k if i 2 C and xi = 0 if

i =2 C.

Another Continuous Formulation:

If x� is the solution of the following inde�nite quadratic

programming problem:

max f(x) =
Pn
i=1 xi �

P
(i;j)2E xixj = eTx� 1=2xTAGx

subject to 0 � xi � 1 for all 1 � i � n

then, f(x�) equals the size of the maximum independent

set.
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Quadratic 0-1 formulation:

The maximum clique problem is equivalent to the follow-

ing global quadratic zero-one problem

global min f(x) = xTAx; (6)

s.t. x 2 f0; 1g
n
; where A = A

G
� I:

Remark: There is a one to one correspondence between

maximal cliques of G and discrete local minima of the

quadratic 0-1 problem.
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Maximum weight independent set problem

global max f(x) =
nX

i=1
wixi; (7)

s.t. xi + xj � 1; 8 (i; j) 2 E; x 2 f0; 1g
n
:

The above formulation is equivalent to the following con-

tinuous quadratically constrained global optimization

problem

global max f(x) =
nX

i=1
wixi; (8)

s.t. xixj = 0; 8 (i; j) 2 E;

xi
2 � xi = 0; i = 1; 2; :::; n:
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Recent Work on Massive Data Sets:

The proliferarion of massive data sets brings with it a

series of special computational challenges. Many of these

data sets can be modeled as very large multidiagraphs

with a special set of edge attibutes that represent special

characteristics of the application at hand.

Understanding the structure of the underlying

diagraph is essential for storage organization

and information retrieval.

In our experiments with data from telecomunications

tra�c, the corresponding mulrigraph has 53,767,087

vertices and over 170 milion of edges. A giant

connected component with 44,989,297 vertices

was computed. The maximum clique (and quasi-clique)

problem is considered in this giant component.

References

[1] J. Abello, P.M. Pardalos and M.G.C. Resende, \On

maximum clique problems in very large graphs",

In DIMACS, American Mathematical Society,

1999.

17



Hamiltonian Cycle Problem (Filar-Pardalos)

Given a directed graph, �nd a path that enters every

node exactly once before returning to the starting node,

or determine that no such path exists.

This problem has been formulated as a contin-

uous quadratic optimization problem.
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The Steiner Problem in Graphs (Pardalos-Khoury-

Du)

Let G = (N ;A; C) be an undirected graph, where N =

f1; : : : ; ng is a set of nodes, A is a set of undirected arcs

(i; j) with each arc incident to two nodes, and C is a set

of nonnegative costs cij associated with undirected arcs

(i; j). Then, the Steiner problem in Graphs (SPG) is de-

�ned as follows:

Instance: A graph G = (N ;A; C), a node subset R 2

N .

Question: Find the minimum cost tree, on G, that

would connect all the vertices in R.

New Exact Algorithms and Heuristics have been

developed
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Minimax Problems

Techniques and principles of minimax theory play a key

role in many areas of research, including game theory, op-

timization, scheduling, location, allocation, packing, and

computational complexity. In general, a minimax prob-

lem can be formulated as

min
x2X

max
y2Y

f(x; y) (9)

where f(x; y) is a function de�ned on the product of X

and Y spaces.
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Du and Hwang: Let g(x) = maxi2I fi(x) where

the fi's are continuous and pseudo-concave functions in

a convex region X and I(x) is a �nite index set de�ned

on a compact subset X 0 of P . Denote M(x) = fi 2

I(x) j fi(x) = g(x)g. Suppose that for any x 2 X ,

there exists a neighborhood of x such that for any point

y in the neighborhood, M(y) � M(x). If the minimum

value of g(x) over X is achieved at an interior point of

X 0, then this minimum value is achieved at a DH-point,

i.e., a point with maximal M(x) over X 0. Moreover, if x

is an interior minimum point in X 0 and M(x) � M(y)

for some y 2 X 0, then y is a minimum point.
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The �nite index set I in above can be replaced by a

compact set. The result can be stated as follows:

Du and Pardalos: Let f(x; y) be a continuous func-

tion on X � I where X is a polytope in Rm and I is

a compact set in Rn. Let g(x) = maxy2Y f(x; y). If

f(x; y) is concave with respect to x, then the minimum

value of g(x) over X is achieved at some DH-point.

The proof of this result is also the same as the proof the

previous theorem except that the existence of the neigh-

borhood V needs to be derived from the compactness of

I and the existence of x̂ needs to be derived by Zorn's

lemma.
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Sphere Packing (Pardalos-Maranas-Floudas)

Consider the problems of packing circles in a square.

What is the maximum radius of n equal circles that can

be packed into a unit square?

Consider the optimization problem:

min
xi2[0;1]�[0;1]

max
1�i<j�n

�kxi � xjk:

Let rn denote the maximum radius in the �rst problem

and dn the min-max distance in the second problem. It

is easy to show that

rn =
dn

2(1 + dn)
:

Exact solution exist only for n=1-10, 16, 23,

36. We obtained some new results (n=15, 28,

29) using the minimax approach.
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5 Nonlinear Assignment Problems

Given a set N = f1; 2; : : : ; ng and n � n matrices F

= (fij) and D = (dkl), the quadratic assignment

problem (QAP) can be stated as follows:

min
p2�N

nX

i=1

nX

j=1
fijdp(i)p(j);

where �N is the set of all permutations of N .

Generalizations: Biquadratic Assignment Problem, 3-

dimensional Assignment, etc.

Applications:

� Location Theory, VLSI Problems

� Statistical Data Analysis

� Parallel and Distributing Computing

�MultiTarget MultiSensor Tracking Problems

� The Turbine Balancing Problem
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Quadratic Integer Programming

The unconstrained quadratic zero-one programming prob-

lem (QP) has the form:

global min f(x) = cTx + xTAx

subject to

x 2 f0; 1gn (10)

where A is an n � n rational matrix and c is a rational

vector of length n.

A public domain code is available
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6 Hierarchical Optimization

The word hierarchy comes from the Greek word

\��������", a system of graded (religious) au-

thority.

The mathematical study of hierarchical structures can

be found in diverse scienti�c disciplines including envi-

ronment, ecology, biology, chemical engineering, classi�-

cation theory, databases, network design, transportation,

game theory and economics. The study of hierarchy oc-

curring in biological structures reveals interesting prop-

erties as well as limitations due to di�erent properties of

molecules. To understand the complexity of hierarchical

designs requires \systems methodologies that are

amenable to modeling, analyzing and optimiz-

ing" (Haimes Y.Y. 1977) these structures.

Hierarchical optimization can be used to study proper-

ties of these hierarchical designs. In hierarchical op-

timization, the constraint domain is implicitly

determined by a series of optimization prob-

lems which must be solved in a predetermined

sequence.
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Hierarchical (or multi-level) optimization is a gener-

alization of mathematical programming. The simplest

two-level (or bilevel) programming problem describes a

hierarchical system which is composed of two levels of

decision makers and is stated as follows:

(BP) min
y2Y

'(x(y); y) (11)

subject to  (x(y); y) � 0 (12)

where x(y) = argmin
x2X

f(x; y) (13)

subject to g(x; y) � 0; (14)

where X � Rn and Y � Rm are closed sets,  : X �

Y ! Rp and g : X�Y ! Rq are multifunctions, ' and

f are real-valued functions. The set S = f(x; y) : x 2

X; y 2 Y;  (x; y) � 0; g(x; y) � 0g is the constraint set

of BP.
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Multi-level programming problems have been studied

extensively in their general setting during the last decade.

In general, hierarchical optimization problems are non-

convex and therefore is not easy to �nd globally optimal

solutions. Moreover, suboptimal solutions may lead to

both theoretical and real-world paradoxes (as for instance

in the case of network design problems).

Many algorithmic developments are based on the prop-

erties of special cases of BP (and the more general prob-

lem) and reformulations to equivalent or approximating

models, presumably more tractable. Most of the exact

methods are based on branch and bound or cutting

plane techniques and can handle only moderately size

problems.
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7 Nonconvex Potential Energy Functions

Problem: Compute the native 3 dimensional confor-

mation (folded state) of a (globular) protein given its

amino acid sequence, possibly in the presence of addi-

tional agents (e.g., drugs).

Given a cluster of N atoms in 3� dimensional space,

the potential energy function of the cluster is de�ned as

the summation (over all of the pairs) of the two-body

interatomic pair potentials. Let the center of theN atoms

be a1; � � � ; aN . The potential energy function is de�ned

as follows.

VN(a1; � � � ; aN) =
X

1�i<j�N
v(jjai � ajjj); (15)

where jj:jj is the Euclidean norm and v(r) is the inter-

atomic pair potential.
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There are many potential functions that have been con-

sidered, e.g.

v(r) = r�12 � 2r�6 (Lennard-Jones)

The global minimization of potential energy functions

plays an important role in the determination of ground

states or stable states of certain classes of molecular clus-

ters and proteins.

Our approaches:

�Multispace Search Techniques

� Tabu Search

� Fast Function Evaluations

� Concave Minimization Approaches

Remark: Nonconvex Energy Functions appear in many

areas of engineerings design.

31



7.1 Global Concave Minimization Approaches

Many powerful techniques in global optimization are based

on the fact that many objective functions can be ex-

pressed as the di�erence of two convex functions

(so called d.c functions).

If D(x) is an objective function in Rn, then the rep-

resentation D(x) = p(x) � q(x), where p; q are convex

functions is said to be a d.c. decomposition of D.

� Every real-valued function on Rn whose second par-

tial derivatives a re continuous is d.c. In that case

D(x) = (D(x) + �jjxjj2)� �jjxjj2 (16)

for some � > 0. Therefore the d.c. decomposition of D

is not unique. It is clear that the function

VN(a1; � � � ; aN) =
X

1�i<j�N
v(jjai � ajjj); (17)

is a d.c. function with many d.c. decompositions.
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For simplicity of notation, consider the d.c. program:

min f(x)� g(x)

s.t. x 2 D
(18)

where D is a polytope in Rn with nonempty interior,

and f and g are convex functions on Rn.

By introducing an additional variable t, Problem (18)

can be converted into the equivalent problem

� Global Concave Minimization:

min t� g(x)

s.t. x 2 D; f(x)� t � 0
(19)

with concave objective function t � g(x) and

convex feasible set f(x; t) 2 Rn+1 : x 2 D; f(x) �

t � 0g. If (x�; t�) is an optimal solution of (19), then x�

is an optimal solution of (18) and t� = f(x�).
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Therefore, any d.c. program of type (18) can be solved

by an algorithm for minimizing a concave function over

a convex set. There are many algorithms for the general

problem of minimizing a concave function over a convex

set.

Branch and bound type algorithms that exploit the

special structure of this problem have deen developed.

A new type of branching process is introduced in which

every partition set is a simplicial prism in Rn+1, and the

lower bound will be constructed by means of a piecewise

linear approximation of the convex function f(x)� t.

A branch and bound algorithm for the original prob-

lem is based on the the above techniques for computing

bounds and a prismatic partition of the domain. The

e�ciency of the branch and bound algorithm is based

on the quality of bounds. Moreover, since the original

nonconvex energy function does not have a unique d.c.

decomposition, experimentation with di�erent decompo-

sitions will indicate which one will be best to chose.
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7.2 Problem: The Distance Geometry Problem

The distance geometry problem is that of deter-

mining the coordinates of a set of points in space from a

given set of pairwise distance measurements.

We can express the distance geometry problem as the

problem of �nding three-dimensional coordinates x1; : : : ; xn
that satisfy:

kxi � xjk = di;j;

where i and j are the indexs of the set 1; : : : ; n that

describes n ranked atoms, and di;j is the given distance

between two atoms i and j.

Generally, we can only know a set of pairwise distances

between atoms. This means the distance matrix D =

(di;j) is sparse. For any triple of atoms fi; j; kg, in which

all pairwise distances are known, they should satisfy the

following triangle inequality:

di;j � di;k + dk;j:
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Since the distance data available fromNMR spectroscopy

is necessarily imprecise, we use only upper and lower

bounds on the distances di;j. Therefore, we can also ex-

press the distance geometry problem as:

li;j � kxi � xjk � ui;j;

where li;j and ui;j are the lower and upper bounds on the

distance constraints, respectively.

We call both li;j � kxi � xjk � ui;j and kxi � xjk =

di;j the distance constrains.

The distance geometry problem is NP hard

even in the one dimensional case.
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Many algorithms for the distance geometry problem

are based on the minimization of an error function which

measures the violations of the distance constraints. One

such error function is de�ned by:

f(x) =
X
(max (0;

kxi � xjk
2

u2i;j
�1) ) 2+ (max (0; 1�

kxi � xjk
2

l2i;j
) ) 2;

where the sum
P
ranges over all the given pairwise atoms

whose distances are known. Another error function is:

f(x) =
1

2

X
( kxi � xjk

2 � d2
i;j
)2:
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The distance geometry problem is de�ned as the fol-

lowing global optimization problem:

Min f(x);

where the objective function f(x) is the error function

de�ned above.

Algorithmic Approaches:

� Multiquadratic Programming Problem

� Tabu Based Pattern Search Heuristic
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8 Nonconvex Network Problems

� Dynamic Slope Scaling Procedure (DSSP) for Fixed

Charge Network Problems.

� Reduction of nonconvex discontinuous network 
ow

problems to �xed charge network 
ow problems.

� New heuristics based on DSSP and dynamic domain

contraction technique for large-scale problems.
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9 Parallel Algorithms

We discussed a small fraction of research directions in

global optimization. Furthermore, the existence of com-

mercial multiprocessing computers has created substan-

tial interest in exploring the uses of parallel process-

ing for solving global optimization problems.
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10 The Road Less Traveled

� Satis�ability Problem

� Feedback Vertex Set Problem

� Graph Coloring

� Frequency Assignment Problem

� Approximate Algorithms

� Randomized Algorithms
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