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Topics
The symposium is aimed at bringing together researchers from all continents

to report their latest results and to exchange new ideas in the field of generalized

convexity and generalized monotonicity and their applications in optimization,

control, stochastic, economics, management science, finance, engineering and re-

lated topics.
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Stability of generalized convex functions

Phan Thanh An and Hoang Xuan Phu

Institute of Mathematics

P.O.Box 631 Bo Ho, Hanoi, Vietnam

Some kind of generalized convexity is said to be stable (or absolutely stable, re-

spectively) with respect to some property (P) if this property is maintained during

an arbitrary function from this class is disturbed by a continuous linear functional

with sufficiently small norm (or by an arbitrary linear functional, respectively).

In this paper we consider some main properties of generalized convex functions:

(Pl) Each lower level set is convex,

(Pm) Each local minimizer is a global minimizer,

(Pγ
m) Each γ-local minimizer x∗ of a function f(·) : D → R

1 defined by

f(x∗) ≤ f(x) for all x ∈ D with ‖x − x∗‖ ≤ γ is a global minimizer.

There arise the questions: What kinds of generalized convexities are stable or

absolutely stable with respect to (Pl), (Pm) or (Pγ
m)?

We prove that known generalized convexities like quasiconvexity, explicit qua-

siconvexity and pseudoconvexity are not stable with respect to (Pl) or (Pm). The

notion of s-quasiconvex functions is introduced which is stable with respect to

(Pl) and (Pm). Moreover, only classical convexity is absolutely stable with respect

to (Pl) and (Pm). Additionally, we prove that so-called γ-convexlike functions are

absolutely stable with respect to (Pγ
m) and if a lower semi-continuous function

f(·) : [a, b] ⊂ R
1 → R

1 is absolutely stable with respect to (Pγ
m) then it must be

γ-convexlike.

The Banach Iterative Procedure for Solving
Monotone Variational Inequalities

Pham Ngoc Anh and Le Dung Muu

Hanoi Institute of Mathematics

P.O. Box 631 Bo Ho, Hanoi, Vietnam

A function (mapping) F : C → C is said to be strongly Lipschitzian on C

with constant δ > 0 if
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||F (x) − F (x′)||2 ≤ δ〈x − x′, F (x) − F (x′)〉 ∀ x, x′ ∈ C.

We consider the variational inequality

find x∗ ∈ C : 〈F (x∗) − x − x∗〉 ≥ 0 ∀ x ∈ C. (1)

where C ⊂ Rn is a closed convex set and F is a Lipschitzian mapping from C to

Rn.

We use the differentiable merit function recently developed by Fukushima

for solving variational inequality (1). We show that one can choose a suitable

regularization matrix such that a solution of the variational inequality can be

found by computing a fixed point of a certain nonexpansive mapping. This result

allows that the Banach interative procedure for contractive mapping can be used

for solving variational inequality with strongly Lipschitzian function. Our method

gives a new look for the Auxiliary Principle for monotone variational inequalities.

The system of (generalized) vector equilibrium
problems and its applications

Qamar Hasan Ansari

Aligarh Muslim University, India

Siegfried Schaible

University of California, Riverside, USA

Jen-Chih Yao

National Sun Yat-sen University, Kaohsiung, Taiwan

We introduce the system of vector equilibrium problems and prove the ex-

istence of a solution. As an application we derive some existence results for a

system of vector variational inequalities. We also establish some existence results

for a system of vector optimization problems which includes the Nash equilibrium

problem with vector-valued functions.

In a follow-up study we introduce the system of generalized vector equilibrium

problems with its various realizations for variational inequalities and optimization

models. By using a maximal element theorem we establish existence results for

such a system. As an application we derive existence results for a solution of

a more general Nash equilibrium problem with vector-valued functions. Results

are obtained under suitable generalized convexity assumptions.
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Normal operator in quasiconvex programming

Didier Aussel

D�epartement de Math�ematiques

Universit�e de Perpignan, France

Let us consider the optimization problem

(P ) Minimize f(x) with x ∈ K

where X is a Banach space
K is a closed convex subset of X
f is a nondifferentiable quasiconvex function.

Using some recent existence results for variational inequality problems and

the particular properties of the normal operator we obtain an existence theorem

and a uniqueness theorem for problem (P). The Banach space X is not supposed

to be reflexive, nor K to be compact.

Some other interesting properties of the normal operator will be presented.

On the equivalence of several generalizations
of the Ekeland variational principle and the

original principle

Truong Quang Bao and Phan Quoc Khanh

Department of Mathematics

Vietnam National University - Hochiminh City

The Ekeland variational principle is one of the most important principles in

nonlinear analysis which appeared in the last three decades. There have been

numerous applications in optimization, fixed point theory, critical point theory....

Also, many generalizations of the principle have been proposed for more general

settings (e.g. for vector optimization, and for multivalued optimization) and for

additional or deeper conclusions. Recently, in [1], [2] the authors proved sev-

eral generalized principles, containing additional properties of the approximate

extremal point which is asserted to exist in the Ekeland principle. In the present

note we prove that these generalizations are in fact equivalent to the original

principle.

REFERENCES
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[1] Zhong, C. K., A generalization of Ekeland�sVariational Principle and Ap-

plication to the Study of the Relation between the Weak P.S. Condition

and Coercivity, Nonlinear Analysis, Vol. 29, pp. 1421 - 1431, 1997.

[2] Zhong, C.K., Zhu, J., and Cho, Y.J., Generalized Variational Principle and

Vector Optimization, Journal of Optimization Theory and Applications, Vol.

106, pp. 201 - 217, 2000.

A finite iteration technique for a fuzzy
quadratic programming problem

C.R. Bector, S.K. Bhatt, and V.N. Sharma

Department of Business Administration

University of Manitoba

Winnipeg, Manitoba R3T 5V4, Canada

In this paper we consider two problems, one under symmetric fuzzy environ-

ment, and the second under non-symmetric fuzzy environment, such that each

problem has a single fuzzy quadratic objective function and a number of fuzzy

and crisp linear constraints. To solve such a problem, we suggest a finite step

method that uses linear programming and parametric quadratic programming ap-

proach. Furthermore, we present a numerical example to demonstrate the method

developed.

Inf-Invex Alternative Theorem With Application
To Vector Valued Games

D. Bhatia

Department of Operational Research

University of Delhi, Delhi-110007, India

Arpana Sharma

Department of Mathematics

University of Delhi, Keshav Puram, Delhi-10035, India

E-mail: arpana sharma@yahoo.com

The definition of inf-invexity is extended for a function of two variables and

is then utilized to prove an inf-invexity alternative theorem of Gordan�stype. As
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an application of this, a vector valued non-linear constrained game is shown to

be equivalent to a pair of symmetric dual multiobjective non-linear programming

problems in which the multiplier corresponding to the objective is a vector valued

function of two variables.

On pseudomonotone maps T for which -T is also
pseudomonotone

Monica Bianchi, Nicolas Hadjisavvas(∗) and Siegfried Schaible

(∗)University of the Aegean

83200 Karlovassi, Samos, Greece

Recently pseudomonotone variational inequalities have been studied quite ex-

tensively, hereby extending the theory of pseudoconvex minimization problems.

The focus of the present work are ˝pseudoaffine maps˝, i.e., pseudomonotone

maps T for which −T is also pseudomonotone. A particular case of such maps

are the gradients of pseudolinear functions, which also have been studied exten-

sively. Our main goal is to derive the general form of pseudoaffine maps which

are defined on the whole space.

Testing a global optimization method
for D.C. programming problems

Albert Ferrer Biosca

Universitat Politècnica de Catalunya

Departament de Matemàtica Aplicada I

EUPB, Campus SUD, Barcelona, Spain

e-mail:alberto.ferrer@upc.es

A method for modeling a real constrained optimization problem as a D.C.

canonical programming problem has been developed from a new procedure of

D.C. representation of any polynomial function. A modified algorithm of D.C.

programming has been implemented to solve this problem. The solution obtained

with a local optimization package is also included and their results are compared.
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A Logarithmic Barrier Strategy
for Vector Optimization

R.S. Burachik, L.M. Gra�na Drummond∗ and S. Scheimberg
∗ Federal University of Rio de Janeiro

R.Barao da Torre 445/704 Rio de Janeiro

RJ, CEP 22411-003 Brazil, Brazil

We propose a logarithmic penalization method for finding efficient points of

nonsmooth constrained convex vector-valued problems. Under the sole assump-

tion of the existence of a Slater-type point, we show that the technique produces a

uni-parametric point-to-set mapping, whose nonempty outer limit at zero is con-

tained in the dual optimal set, and such that the primal projection of this limit is

included in the primal optimal set.

Combinatorial Optimization and Convexity

Rainer Burkard

Institute for Mathematics B

Graz University of Technology

Steyrergasse 30, A-8010 Graz, Austria

email: burkard@tugraz.at

(Abstract to be given later).

Pseudoconvexity under the Charnes-Cooper
transformation

Alberto Cambini

Department of Statistics and Applied Mathematics

University of Pisa, Via Cosimo Ridolfi, 10 56124 Pisa, Italy

acambini@ec.unipi.it

Laura Martein

Department of Statistics and Applied Mathematics

University of Pisa, Via Cosimo Ridolfi, 10 56124 Pisa, Italy

lmartein@ec.unipi.it
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Siegfried Schaible

A.G.Anderson Graduate School of Management

University of California, Riverside, CA 92521, USA

siegfried.schaible@ucr.edu

Charnes and Cooper (1962) reduced a linear fractional program to a linear

program with help of a suitable transformation of variables. We show that this

transformation preserves pseudoconvexity of a function. The result is then used

to characterize sums of two linear fractional functions which are still pseudocon-

vex. This in turn leads to a characterization of pseudolinear sums of two linear

fractional functions.

Duality for fractional optimization with set
constraints

Alberto Cambini

Department of Statistics and Applied Mathematics

University of Pisa, Via Cosimo Ridolfi, 10 56124 Pisa, Italy

acambini@ec.unipi.it

Laura Carosi

Department of Statistics and Applied Mathematics

Faculty of Economics, University of Pisa, Italy

lcarosi@ec.unipi.it

Siegfried Schaible

A.G.Anderson Graduate School of Management

University of California, Riverside, CA 92521, USA

siegfried.schaible@ucr.edu

(Abstract to be given later)
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Duality in multiobjective optimization problems
with set constraints

Riccardo Cambini and Laura Carosi

Department of Statistics and Applied Mathematics

Faculty of Economics, University of Pisa, Italy

cambric@ec.unipi.it, lcarosi@ec.unipi.it

We propose four different duality problems for a vector optimization pro-

gram with both set constraints and inequality constraints. For all dual problems

we state weak and strong duality theorems based on various generalized con-

cavity assumptions. The proposed dual problems provide a unified framework

generalizing Wolfe and Mond-Weir results.

On convex relaxations for nonconvex
quadratic programs

Riccardo Cambini and Claudio Sodini

Department of Statistics and Applied Mathematics

Faculty of Economics - University of Pisa

Via Cosimo Ridolfi 10 - 56124 Pisa - Italy

e-mails: csodini@ec.unipi.it - cambric@ec.unipi.it

The aim of this paper is to suggest a branch-and-bound scheme, based on con-

vex relaxations of the objective function, to solve nonconvex quadratic programs

over a compact feasible region.

In order to obtain the various relaxations, the quadratic objective function is

decomposed in different d.c. forms.

To improve the tightness of the relaxations, we finally suggest to use a par-

ticular decomposition and to solve the corresponding relaxed problems with an

algorithm based on the so called ˝optimal level solutions˝ parametric approach.
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Convexifactors, approximate Jacobians and
optimality conditions

S. Chandra
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chandras@maths.iitd.ernet.in

(Abstract to be given later)

Characterizing invex and related properties

Bruce Craven

University of Melbourne, Australia

A characterization of invex, given by Glover and Craven, is extended to func-

tions in abstract spaces. Pseudoinvex for a vector function coincides with invex

in a restricted set of directions. The V-invex property of Jeyakumar and Mond

is also characterized. Some differentiability properties of the invex scale function

are also obtained.

Convex Minty vector variational inequality

Giovanni P. Crespi

University of Bocconi, I.M.Q., v.le Isonzo 25, 20137 Milano, Italia

e-mail: giovanni.crespi@uni-bocconi.it

Angelo Guerraggio
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e-mail: angelo.guerraggio@uni-bocconi.it

Matteo Rocca
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In the past decade, the results concerning variational inequalities, both of

Minty and Stampacchia type, have been adapted to the vector inequalities in-

troduced by Giannessi in [3] (Stampacchia type) and in [4] (Minty type).

Since the early beginning, they have been applied to the study of vector op-

timization problems. However some lacks arise when comparing the results ob-

tained for scalar inequalities and the new ones presented in [4]. Mainly it is

possible to see that some more convexity assumptions are due to prove a (inte-

grable) Minty vector inequality is a sufficient condition for efficiency, while the

same results hold trivially without assumptions for scalar Minty inequalities.

We will first show that such a gap could not be filled, and we deduce that a

stronger solution concept is what we need to solve the problem. To do that we

apply some convexification starting from the definition of solution given in [4]

to get a new Minty type vector variational inequality which shows to be, in the

integrable case, a sufficient condition for efficient minimizers without convexity

of the objetive function. Moreover we prove the result in [4] follows from our as

a special case.
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Mollified derivatives and second-order
optimality conditions
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In this talk we present an extension to the second-order of the approach intro-

duced by Craven [3] and by Ermoliev, Norkin and Wets [4] to define generalized

derivatives even for discontinuous functions, which often arise in applications

(see [4] for references). To deal with such problems a number of approaches have

been proposed to develop a subdifferential calculus for nonsmooth and even dis-

continuous functions. Among the many possibilities, let us remember the notions

due to Aubin [1], Clarke [2], Ioffe [6], Michel and Penot [10], Rockafellar [12],

in the context of Variational Analysis. The previous approaches are based on

the introduction of first-order generalized derivatives. Extensions to higher-order

derivatives have been provided for instance by Hiriart-Hurruty, Strodiot and Hien

Nguyen [5], Jeyakumar and Luc [7], Klatte and Tammer [8], Michel and Penot [9],

Yang and Jeyakumar [15], Yang [16]. Most of these higher-order approaches as-

sume that the functions involved are of class C1,1, that is once differentiable with

locally Lipschitz gradient, or at least of class C1. Anyway, another possibility,

concerning the differentiation of nonsmooth functions dates back to the 30�sand

is related to the names of Sobolev [14], who introduced the concept of ˝weak

derivative˝ and later of Schwartz [13] who generalized Sobolev�sapproach with

the ˝theory of distributions˝. These tecniques are widely used in the theory of

partial differential equations, in Mathematical Physics and in related problems,

but they have not been applied to deal with optimization problems involving

nonsmooth functions, until the work of Ermoliev, Norkin and Wets.

The tools which allow to link the ˝modern˝ and the ˝ancient˝ approaches to Non-

smooth Analysis are those of ˝mollifier˝ and of ˝mollified functions˝. More specif-

ically, the approach followed by Ermoliev, Norkin and Wets appeals to some of
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the results of the theory of distributions. They associate with a point x ∈ R
n a

family of mollifiers (density functions) whose support tends toward x and con-

verges to the Dirac function. Given such a family, say {ψε, ε > 0}, one can define

a family of mollified functions associated to a function f : R
n → R as the convo-

lution of f and ψε (mollified functions will be denoted by fε). Hence a mollified

function can be viewed as an averaged function. The mollified functions possess

the same regularity of the mollifiers ψε and hence, if they are at least of class C2,

one can define first and second-order generalized derivatives as the cluster points

of all possible values of first and second-order derivatives of fε. For more details

one can see [4].

We remember also that an approach based on similar techniques has beeen used

to solve nonsmooth equations, with the introduction of smoothing functions and

smoothing Newton methods [11].
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In this paper, we discuss the relationship among the concepts of an S-strictly

quasiconcave vector-valued function introduced by Benson and Sun, a C-strongly

quasiconcave vector-valued function and a C-strictly quasiconcave vector-valued

function in a topological vector space with a lattice ordering. We generalize a main

result obtained by Benson and Sun about the closedness of an efficient solution

set in multiple objective programming. We prove that an efficient solution set

is closed and connected when the objective function is a continuous S-strictly

quasiconcave vector-valued function, the objective space is a topological vector

lattice and the ordering cone has a nonempty interior.

Convexity and the core for set games and
cooperative games: an equivalence theorem

Theo S. H. Driessen
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E-mail: t.s.h.driessen@math.utwente.nl

Let the universe U denote an abstract set which is fixed throughout the remain-

der. Following various introductory papers, a set game is a pair 〈N, v〉, where

N is a nonempty, finite set, called player set, and v : 2N → 2U is a characteristic

mapping, defined on the power set of N , satisfying v(∅) := ∅.

An element i ∈ N and a nonempty subset S ⊆ N (or S ∈ 2N with S �= ∅) is called

a player and coalition respectively, and the associated set v(S) ⊆ U is called the

worth of coalition S, to be interpreted as the (sub)set of items from U that can be

obtained (are needed, preferred, owned) by coalition S if its members cooperate.

Concerning the solution theory for set games, a solution ψ on the class of set games

associates a so-called allocation ψ(N, v) = (ψi(N, v))i∈N ∈ (2U )N with every set

game 〈N, v〉. The so-called set allocation ψi(N, v) ⊆ U to player i in the set game

〈N, v〉 represents the items that are given, according to the solution ψ, to player i

from participating in the game.

Concerning the yet undeveloped solution theory for set games, the paper focuses

on the core concept for a special family of set games called convex set games. The

main equivalence theorem states that, for the convexity of a monotonic set game,



30 The 7th International Symposium on Generalized Convexity/Monotonicity

it is necessary and sufficient that a large number of appropriately chosen set allo-

cations belong to the core of the set game. These so-called marginalistic worth set

allocations are constructed with the help of orderings of the fixed player set, the

orderings of which may be classified in two types, called even or odd orderings.

The main equivalence theorem resembles a similar one in the context of convex

cooperative games with transferable utility. Recall that a cooperative TU-game

with player set N is described by a characteristic mapping w : 2N → R, where the

(positive) real number w(S) usually is interpreted as the monetary worth of the

benefits achieved by coalition S if its members cooperate (e.g., in a joint venture).

The convexity notion for cooperative TU-games is very well established since its

introduction in 1971 by Shapley.

Some Applications of Generalized
Convexity/Nonsmooth Analysis techniques to

Second Order PDE�s

Andrew Eberhard

Department of Mathematics and Statistics

RMIT University

GPO Box 2476V, Melbourne, Australia 3001

A central theme of the theory of second order elliptic partial differential is the

so-called comparison principle. A general second order elliptic partial differential

equation is of the form

F (x, u(x), Du(x), D2u(x)) = 0 for x ∈ Ω

u(x) = g(x) for x ∈ δΩ (1)

where Du(x), D2u(x) are the first and second order derivatives of u (possi-

bly in a generalized sense) and g denotes the boundary condition which the

solution u must satisfy on the boundary δΩ of the domain Ω. The function

F (x, r, p, Q) : 
n × 
 × 
n × S(n) → 
 usually has to satisfy some �structure

condition�.Unfortunately such a nonlinear equation may not admit classical so-

lution (i.e. a function u ∈ C2 (
n) that satisfies the equation pointwise). Thus

an array of generalized solution have been proposed by a number of authors.

One such concept is the so-called viscosity solution which (when it exists) may be
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constructed as the supremum of the class of subsolutions of (1) which also satisfy

the boundary condition. We say u is a sub (super) solution of (1) when

F (x, u(x), p, Q) ≤ ( ≥ ) 0 for x ∈ Ω

for all (p, Q) ∈ ∂2,+u(x) = −∂2,−(−u)(x) (or (p, Q) ∈ ∂2,−u(x) for super solution).

Here ∂2,−w denotes the so called subjet (or second order viscosity subdifferential)

defined by

∂2,−w(x) :=
{
(p, Q) = (∇ϕ(x),∇2ϕ(x)) | f − ϕ has a local minimum at x

}
.

We say comparison holds if whenever u is a super solution and v is a subso-

lution with u(x) ≥ v(x) for x ∈ δΩ then u ≥ v on all of Ω. To establish this

results one need to investigate the maximizing point of v − u (and show it is

non-positive). In this talk we will discuss two different ways of establishing com-

parison. One approach uses composite supremal and infimal convolutions, like

the Lasry-Lions double convolution, to provide a C1,1(
n) approximation of the

possibly nonsmooth functions u and v. Unlike earlier work we provide explicit

formula describing how the subdifferential information of the function is effected

by such a smoothing processes, correcting an error in the literature. The second

method takes its motivation form the study of the subdifferential of the difference

of two functions to provide a new proof a fuzzy sum formula for the difference

of two nonsmooth functions. This has some novel character and allows compar-

ison to be established under weaker assumptions than are usually used. Some

discussion of applications will be given and future directions for research.

Criteria for the convexity behavior of
homogeneous functions

Rosalind Elster

Universitat Autònoma de Barcelona
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E-08193 Bellaterra (Barcelona), Spain
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Homogeneous functions with certain differentiability properties satisfy a sys-

tem of partial differential equations. For such functions being twice continuously

differentiable on open convex sets we give necessary and/or sufficient conditions
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for different kinds of convexity. Homogeneous functions are extensively used

not only in the economics literature but also in the theory of inequalities and

optimization. Relationships to these subjects will be presented.

Epsilon-optimality for nonsmooth programming
on a Banach space

Misha G. Govil and Aparna Mehra

Department of Mathematics
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Delhi-110007, India

We establish Lagrange multiplier rule, in terms of generalized gradient, that

characterizes the epsilon-efficiency of a nonsmooth programming problem(s) on

a real Banach space. This rule is then utilized to establish relationship between

epsilon-efficient solution of program(s) and generalized saddle point under ap-

propriate conditions.

Approximate Optimization of
Convex Set Functions

Pankaj Gupta, Aparna Mehra and D. Bhatia
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We introduce the notion of epsilon-subdifferential for convex set function and

discuss some of its properties. These properties are then utilized to derive epsilon-

Pareto optimality conditions of Karush-Kuhn-Tucker type for non-differentiable

multiobjective optimization problem with convex set functions.
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epsilon-optimality without constraint
qualification for multiobjective

fractional program

Pankaj Gupta

Department of Mathematics, Deen Dayal Upadhyaya College

University of Delhi, Shivaji Marg, Karampura, New Delhi-110015, India

Aparna Mehra

Department of Operational Research, Faculty of Mathematical Sciences

University of Delhi, Delhi-110007, India

Shiraishi K. Yokoyama

Faculty of Economics, Toyama University

Toyama, Japan

In this paper, we concentrate on a non-differentiable multiobjective fractional

programming problem subject to convex inequality constraints, equality con-

straints, and abstract constraints. Epsilon-parametric technique is used to trans-

form the given problem into non-differentiable multiobjective programming prob-

lem. Subsequently, we employ the exact penalty function approach to derive the

Karush-Kuhn-Tucker type necessary and sufficient optimality conditions for the

given problem without using any constraint qualification.

Invexity of supremum and infimum functions and
applications

Nguyen Xuan Ha

Institute of Cryptographic Technology, Hanoi, Vietnam

Do Van Luu

Institute of Mathematics, Hanoi, Vietnam

Let Q be a metricable compact topological space, and for all α ∈ Q, let fα be

a real-valued function defined on R
n. Consider the following functions

f(x) = sup
α∈Q

fα(x), g(x) = inf
α∈Q

fα(x).
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Under suitable assumption we derive the results ensuring the functions f and

g are invex when all the functions fα(α ∈ Q) are invex. Applying these results

to a class of mathematical programs, optimality coditions are established under

suitable invexity hypotheses.

On maximality, continuity and single-valuedness
of pseudomonotone maps

Nicolas Hadjisavvas

Department of Mathematics

University of the Aegean, 83200 Karlovassi, Samos, Greece

We define the concept of ˝D-maximal pseudomonotone map˝, where ˝D˝ stands

for ˝domain˝. Conditions for a pseudomonotone map to be D-maximal are given;

in particular, it is shown that the Clarke subdifferential of a locally Lipschitz

pseudoconvex function is D-maximal pseudomonotone. Finally, the continuity

and single-valuedness of pseudomonotone maps are investigated.

Boundedness and continuity of γ-convex
functions in normed spaces

Nguyen Ngoc Hai
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For a fixed positive number γ, a real-valued function f defined on a convex

subset D of a normed space X is said to be γ-convex if it satisfies the inequality

f(x′
0) + f(x′

1) ≤ f(x0) + f(x1) for x′
i ∈ [x0, x1], ‖x′

i − xi‖ = γ, i = 0, 1,

whenever x0, x1 ∈ D and ‖x0 − x1‖ ≥ γ. This condition implies that the Jensen

inequality

f(xλ) ≤ (1 − λ)f(x0) + λf(x1), xλ := (1 − λ)x0 + λx1 (1)
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holds at xλ = x′
0 or xλ = x′

1. This condition is rather weak, nevertheless γ-convex

functions possess some interesting analytical properties, which are presented in

our talk. For instance,

- if there is some x∗ ∈ D such that f is bounded below on D ∩ B̄(x∗, γ), then

so is it on each bounded subset of D;

- if f is bounded on some closed ball B̄(x∗, γ/2) ⊂ D and D′ is a bounded

subset of D, then f is bounded on D′ iff it is bounded above on the boundary of

D′;

- if dimX > 1 and the interior of D contains a closed ball of radius γ then f

is either locally bounded or nowhere locally bounded on the interior of D;

- if D contains some open ball B(x∗, γ/2) in which f has at most countably

many discontinuities, then f possesses at most countably many discontinuities

on each line through x∗, which implies that the set of all points at which f is

continuous is dense in D.

As a particular kind, f is called symmetrically γ-convex if it satisfies the Jensen

inequality (1) at both xλ = x′
0 and xλ = x′

1. Such a function has stronger analytical

properties. For example, if X is a finite-dimensional normed space then a sym-

metrically γ-convex function f on D ⊂ X is locally Lipschitzian at any so-called

γ-interior point x of D defined by B(x, r) ⊂ D for some r > γ.

Some quasi-physical algorithm on
optimization research

Zhifeng Hao
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(Abstract to be given later)

Generalized variational inclusions with
generalized m-accretive mappings

Nan-Jing Huang
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(Abstract to be given later)
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Contractibility of the solution set of a
semistrictly quasiconcave vector maximization

problem
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(Abstract to be given later)

Non-Archimedean Solutions for Linear
Inequality Systems

Kiyoshi Ikeda
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Let S be an arbitrary set of vectors in Rn+1. Our problem is to find a necessary

and sufficient condition for the existence of a solution (x1, x2, · · · , xn) to the

following system of linear inequalities :

a1x1 + a2x2 + · · · + anxn < b for all (a1, a2, · · · , an, b) ∈ S . (A)

If S is a finite set, the separating hyperplane lemma gives the well-known con-

dition : there exists a solution to (A) if and only if 0 is not a linear convex

combination of the vectors in S ∪ { (0, · · · , 0, 1) } . In this talk we show that the

same condition can also be applied to the infinite case if we adopt a suitable non-

Archimedean structure as the domain of solutions to linear inequality systems.

For this purpose we introduce an extended structure of the reals R with an

infinitesimal ε , that is, a solution of the system ˝−x < 0 and x < 1/k for all

k ∈ N .˝ We show that this extended structure coincides with the set of lexico-

graphically ordered vectors. The main result is derived as a consequence of the

lexicographical separation theorem (see [1], [2]) that any two disjoint convex sets

in Rn can be separated lexicographically.
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Some applications in utility theory are also presented.
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We study some variants of the proximal point method for finding zeroes of

operators. We are interested in the case of procedures with inexact iterates, which

allow for constant relative errors, in the line of the recently proposed hybrid

proximal-extragradient algorithm. We consider the case of nonmonotone oper-

ators. Generalizing the recent work of Pennanen, who dealt only with the case

of exact solution of the proximal subproblems, we establish local convergence

when the operator is ρ-hypomonotone, provided the regularization coefficients

are greater than 2ρ. We also prove linear convergence rate when, additionally,
1The work of this author was partially supported by CNPq grant no. 301280/86.
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the inverse of the operator is locally Lipschitz continuous near 0. Finally, as an ap-

plication of these results, we present new inexact multiplier methods for a rather

general family of problems, including variational inequalities and constrained op-

timization problems.

Convergence of interation processes for
nonexpansive mappings in Banach spaces
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Let E be a reflexive Banach space with a uniformly G�ateaux differentiable

norm, and S a mapping of the form

S = α0I + α1T1 + α2T2 + · · ·αkTk,

where αi ≥ 0, α0 > 0,
∑k

i=0 αi = 1 and Ti : E → E (i = 1, 2, · · · , k) is a

nonexpansive mapping. For an arbitrary x0 ∈ E, let {xn} be a sequence in E

defined by an iteration xn+1 = Sxn, n = 0, 1, 2, · · · . We establish a dual weak

almost convergence result of {xn} in a reflexive Banach space with a uniformly

G�ateaux differentiable norm. As a consequences of the result, a weak convergence

result of {xn} is also given.

Generalized semi-pseudomonotone set-valued
variational-type inequality
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In [1], Chen considered the following variational inequality (P-1) for a semi-

monotone single-valued map A : K × K → E∗, where K is a bounded closed

convex subset of E∗∗, the second dual of a real Banach space E.

(P-1) Find an x ∈ K such that

〈A(x, x), y − x〉 ≥ 0 for all y ∈ K.

And then, very recently Fang and Huang [2] considered the following gen-

eralized variational-type inequality (P-2) for a semi-monotone single-valued map

A : K × K → E∗.

(P-2) Find an x ∈ K such that

〈A(x, x), η(y, x)〉 + f(y) − f(x) ≥ 0 for all y ∈ K,

where η : K × K → E∗∗ is a map and f : K → R ∪ {∞} is a function.

In 2000, Kassay and Kolumban [4] considered the existence of solutions to

the following variational inequalities (P-3) and (P-4) for semi-pseudomonotone

set-valued maps A : K × K → 2E , where K is a nonempty convex subset of E∗.

(P-3) Find an x ∈ K such that

sup
u∈A(x,x)

〈u, y − x〉 ≥ 0 for all y ∈ K.

(P-4) (Minty-type problem)

Find an element x ∈ K such that

sup
u∈A(y,x)

〈u, y − x〉 ≥ 0 for all y ∈ K.

In this paper, we consider the existence of solutions to the following variational-

type inequality for a relaxed α-semi-pseudomonotone set-valued map A : K×K →
2E∗

, where K is a nonempty closed convex subset of E∗∗;

Find x ∈ K such that for each y ∈ K there exists u ∈ A(x, x) satisfying

〈u, η(y, x)〉 + f(y, x) ≥ 0. (1)

Definition 1 Let K be a nonempty subset of E∗∗. A set-valued map A : K ×K →
2E∗

is said to be relaxed α-semi-pseudomonotone if the following conditions hold;
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(a) for each fixed w ∈ K, A(w, ·) : K → 2E∗
is relaxed α-pseudomonotone, i.e.,

there exists a function α : E∗∗ → R with α(tz) = k(t)α(z) for z ∈ E∗∗, where

k : (0, 1) → (0, 1) is a function with lim
t→0

k(t)
t

= 0, such that for every pair of

points x, y ∈ K and for all u ∈ A(w, x), v ∈ A(w, y), we have

〈u, η(y, x)〉 + f(y, x) ≥ 0

implies

〈v, η(y, x)〉 + f(y, x) ≥ α(y − x),

where η : K × K → E∗∗ is a map and f : K × K → R is a function.

(b) for each fixed y ∈ K, A(·, y) is completely continuous, i.e., for any net {xβ},

if xβ ⇀ x0 and u0 ∈ A(x0, y), then there exists a net {uβ} in E∗ such that

uβ ∈ A(xβ, y) for each β, which has a convergent subnet to u0 in the norm

topology of E∗, where ⇀ denotes the weak∗ convergence in E∗∗.

Theorem 1 Let E be a real Banach space and K a nonempty bounded closed

convex subset of E∗∗. Let A : K ×K → 2E∗
be a relaxed α-semi-pseudomonotone

set-valued map, and f : K × K → R ∪ {+∞} a proper function such that

(i) for fixed v ∈ E∗, x �→ 〈v, η(x, ·)〉 + f(x, ·) is linear, weakly lower semicon-

tinuous,

(ii) η(x, y) + η(y, x) = 0̄ and f(x, y) + f(y, x) = 0 for x, y ∈ K,

(iii) α : E∗∗ → R is convex, weakly lower semicontinuous, and

(iv) for each x ∈ K, A(x, ·) : K → 2E∗
is finite dimensional continuous.

Then problem (1) is solvable.

Theorem 2 Let E be a real Banach space and K a nonempty unbounded closed

convex subset of E∗∗. Let A : K ×K → 2E∗
be a relaxed α-semi-pseudomonotone

set-valued map, and f : K × K → R ∪ {+∞} a proper function such that

(i) for fixed v ∈ E∗, x �→ 〈v, η(x, ·)〉 + f(x, ·) is linear, lower semicontinuous,

(ii) η(x, y) + η(y, x) = 0̄ and f(x, y) + f(y, x) = 0 for x, y ∈ K,

(iii) α : E∗∗ → R is convex, weakly lower semicontinuous,

(iv) for each x ∈ K, A(x, ·) : K → 2E∗
is finite dimensional continuous, and

(v) there exists an x0 ∈ K such that

lim ‖x‖→∞〈u, η(x, x0)〉 + f(x, x0) > 0
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for all x ∈ K and for all u ∈ A(x, x). Then problem (1) is solvable.
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(Abstract to be given later)

On the existence and upper semicontinuity of
solutions to quasivariational inequalities

Phan Quoc Khanh
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Le Minh Luu

University of Dalat

Let X and Y be Hausdorff topological vector spaces, U be a Hausdorff topo-

logical space and A ⊂ X be a nonempty, closed and convex subset. Let C : A →
2Y , T : U → 2L(X,Y ) and K : U×A → 2X be multifunctions with values of C being
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closed convex cones with nonempty interiors. Let g : U ×A → A be a continuous

mapping. Consider the two quasivariational inequality problems with parameters

(QVI) : find ū ∈ U and x̄ ∈ A ∩ clK(ū, x̄) such that

∀x ∈ K(ū, x̄),∃ t̄ ∈ T (ū, x̄),

(t̄, x − g(ū, x̄)) ∈ Y \ − intC(x̄),

(SQVI) : find ū ∈ U and x̄ ∈ A ∩ clK(ū, x̄) such that

∀x ∈ K(ū, x̄),∀ t ∈ T (ū, x̄),

(t, x − g(ū, x̄)) ∈ Y \ − intC(x̄).

With relaxed assumptions on semicontinuity and pseudomonotonicity of involved

multifunctions (for (QVI) even without pseudomonotonicity) we prove theorems

simultaneously on the existence of solutions and its upper semicontinuity with

respect to parameter u.

Applications to quasi-complementarity problems and traffic equilibrium problems

are also presented. Note that the theorems for (QVI) generalize and improve

several recent results in the literature, while the ones for (SQVI) are new, since to

our knowledge this problem has never been considered.

Higher - order optimality conditions for
isolated local minima

Pham Trung Kien

Fianncial Institute, Hanoi, Vietnam

Do Van Luu

Institute of Mathematics, Hanoi, Vietnam

Let C be a subset of Banach space X , and let S be a closed convex cone of

another Banach Space Y . Let f be an extended - real - valued funtion defined on

X , and g be a mapping from X to Y . Consider the optimization problem:

(P): { minimize f(x) | − g(x) ∈ S and x ∈ C}

Higher - order necessary and sufficient optimality conditions for isolated local

minima of problem (P) are established in terms of higher - order counterparts of

lower and upper Dini directional derivatives.
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This paper gives a necessary condition for the Hartley proper efficiency in a

vector optimization problem whose objectives and constraints are described by

multifunctions F and G. This condition is established under a quasiconvexity

requirement of the support function of F and G or a generalized cone-convexity

of a multifunction constructed from F and G.

Generalized Derivatives and Generalized
Convexity
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(Abstract to be given later)

Convexity of Set-Valued Maps
on Set Optimization
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Let (E,≤) be an ordered topological vector space, and F be a set-valued map

from a nonemptyset X to E. We consider an optimization problem whose objec-

tive map is a set-valued map as follows:

(SP) Minimize F (x)
subject to x ∈ X.

We know that there are two criteria of solutions in these set-valued optimization

problems. One is a vector optimization sence (see, for example [3]); x0 is a solution

if F (x0) has a minimal element of Min
⋃

x∈X F (x), that is, there exists an element

y0 of F (x0) such that

x ∈ X, y ∈ F (x), y ≤ y0 ⇒ y0 ≤ y,

and the other is a set optimization sence (see, [1]); x0 is a solution if F (x0) is a

minimal element for some set-relation �, that is,

x ∈ X, F (x) � F (x0) ⇒ F (x0) � F (x).

The former is a usual set-valued optimization problem, and notions of cone-

convexity of set-valued maps have been defined and investigated, see [2]. In

this paper we consider notions of convexity of set-valued maps in the latter set

optimization sence.
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We study concave minimization problems over the efficient and weakly effi-

cient sets of a multi-objective programming problem. They are formulated as d.c.

(difference of convex functions) programs in the criteria space, and solved by a

d.c. optimization approach called DCA.

Numerical experiments are reported which show the efficiency of the proposed

algorithms.

The predictor-corrector DCA for globally
solving Large Scale Molecular Optimization
from Distance Matrices via reformulations

Le Thi Hoai An and Pham Dinh Tao
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In recent years there has been very active research in the molecular optimiza-

tion, especially in the protein folding framework which is one of the most impor-

tant problems in biophysical chemistry. Molecular optimization problems arise

also in the study of clusters (molecular cluster problems) and of large, confined

ionic systems in plasma physics. The determination of a molecular conformation

can be tackled by either minimizing a potential energy function (if the molecu-

lar structure corresponds to the global minimizer of this function) or solving the

distance geometry problem (when the molecular conformation is determined by

distances between pairs of atoms in the molecule). Both methods are concerned

with global optimization problems.

In this paper we are interested in the large-scale molecular conformation from

the distance geometry problem which can be formulated as follows: Find positions

of n atoms x1, . . . , xn in IR3 such that

‖xi − xj‖ = δij , (i, j) ∈ S, (1)
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where S is a subset of the atom pairs, δij with (i, j) ∈ S is the given distance

between atoms i and j, and ‖ · ‖ denotes the Euclidean norm. Usually, a small

subset of pairwise distances is known, i.e., S is sparse.

The above formulation corresponds to the exact geometry problem. By the

error in the theoretical or experimental data, there may not exist any solution to

this problem, for example, when the triangle inequality

δij ≤ δik + δkj

is violated for atoms i, j, k. Then an ε-optimal solution of (1), namely a configu-

ration x1, . . . , xn satisfying

| ‖xi − xj‖ − δij |≤ ε, (i, j) ∈ S,

is useful in practice.

The general distance geometry problem then is to find positions x1, . . . , xn in

IR3 verifying

lij ≤ ‖xi − xj‖ ≤ uij , (i, j) ∈ S,

where lij and uij are lower and upper bounds of the distance constraints, respec-

tively.

A so-called DCA method based on a d.c. (difference of convex functions) op-

timization approach for solving large-scale distance geometry problems is devel-

oped. Different formulations of equivalent d.c. programs, in the l1−approach, are

stated via Lagrangian duality without gap relative to d.c. programming and new

nonstandard nonsmooth reformulations, in the l∞−approach (resp. the l1 − l∞-

approach) are introduced. Substantial subdifferential calculations permit to com-

pute quite simply sequences of iterations in the DCA. It actually requires matrix-

vector products and only one Cholesky factorization (resp. plus solution of a

convex program) in the l1−approach (resp. the l1 − l∞-approach), and allows

exploiting sparsity in the large-scale setting . Two techniques, using the triangle

inequality to generate a complete approximate distance matrix and the spanning

trees procedure respectively, were investigated in order to compute a good start-

ing point for the DCA. Finally, many numerical simulations of the molecular

optimization problems with up to 12567 variables are reported which prove the

practical usefulness of the nonstandard nonsmooth reformulations, the globality

of found solutions, the robustness, and the efficiency of our algorithms.
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Quality of knowledge Technology, Returns to
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Adopting a discrete time version of the Romer (1986) model, this paper ana-

lyzes optimal paths in a one-sector growth model when the individual production

function is convex-concave and the social production technology exhibits globally

increasing returns. We prove that for a given quality of knowledge technology,

the countries could take-off if their initial stock of capital are above a critical level.

We show that for an economy which wants to take-off by means of knowledge

technology requires three factors: large amount of initial knowledge, small fixed

costs and a good quality of knowledge technology.

On Connectedness of Solution Sets for Affine
Vector Variational Inequality

Gue Myung Lee
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Pukyong National University

Pusan 608-737, South Korea
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The concept of vector variational inequality was introduced by Giannessi in

1980. Since then, many authors have shown that vector variational inequality can

be efficient tools for studying multiobjective optimization problems.

In this talk, we will discuss the boundedness and connectedness of solution

sets for affine vector variational inequalities with noncompact polyhedral con-

straint sets and positive semidefinite (or monotone) matrices. Moreover, we show

that the boundedness and connectedness results can be applied to multiobjective

linear fractional optimization problems and multiobjective convex linear-quadratic

optimization problems.
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Hidden Convex Minimization
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A class of nonconvex minimization problems can be classified as hidden con-

vex minimization problems. A nonconvex minimization problem is called a hid-

den convex minimization problem if there exists an equivalent transformation

such that the equivalent transformation of it is a convex minimization problem.

Sufficient conditions are derived in this paper for identifying such class of seem-

ingly nonconvex minimization problems that are equivalent to convex minimiza-

tion problems. Thus, a global optimality can be achieved for this class of hidden

convex optimization problems by using local search methods. The results pre-

sented in this paper extend the reach of convex minimization by identifying its

equivalent with a nonconvex representation.

Geometric Properties and Coincidence
Theorems with Applications to Generalized

Vector Equilibrium Problems

Lai-Jiu Lin, Qamrul Hassan Ansari and Jai-Yen Wu

Department of Mathematics, National Changhua

University of Education, Changhua, Taiwan

The present paper is divided into two fold, we derive a Fan-KKM type theo-

rem and establish some geometric properties of convex spaces. By applying our

results we also establish some coincidence and fixed point theorems in the setting

of convex spaces. Second fold deals with the applications of our coincidence the-

orems to establish some existence results for a solution to the generalized vector

equilibrium problems.
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On local uniqueness of solutions of general
variational inequalities

Dinh The Luc
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By using Frechet approximate Jacobian matrices, we present some criteria for

the local uniqueness of solutions to the general variational inequalities which

involve continuous, not necessarily locally Lipschitz continuous data.

On the mix-efficient points

Anna Marchi
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Via Ridolfi, 10 56124 Pisa (Italy), Italy

In this paper the concepts of mix-efficient point and mix quasi-convex set are

introduced. By means of these concepts we will investigate the connectedness

of the mix-efficient frontier for vector optimization problems defined by quasi-

concave, strictly and strong quasi-concave functions. Conditions under which the

outcome of a vector function is a set mix-efficient are established. Applications

for three critera problems are given.

Increasing quasiconcave production and utility
functions with diminishing returns to scale
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Alexander M.Rubinov
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Siegfried Schaible
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In microeconomic analysis functions with diminishing returns to scale (DRS)

have frequently been employed. Various properties of increasing quasiconcave

aggregator functions with DRS are derived. Furthermore duality in the classical

sense of economic theory as well as a new type of duality are studied for such

aggregator functions both in production and consumer theory. In particular, rep-

resentation theorems for direct and indirect aggregator functions are obtained.

These involve only small sets of generator functions. The study is carried out in

the contemporary framework of abstract convexity and abstract concavity.

Pseudomonotonicity and Variational Inequality
Problems

Monika Mehta

Department of Mathematics, Satyawati College

University of Delhi, Ashok Vihar, Delhi 110052, India
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Department of Mathematics, Rajdhani College

University of Delhi, Raja Garden, New Delhi 110052, India

Variational inequality problem was introduced by Hartman and Stampacchia

while dealing with solutions of partial differential equations. In natural sciences

this problem is mostly studied in infinite dimensional spaces. Economists and

management scientists are particularly interested in the finite dimensional ver-

sion. The equilibrium conditions of virtually every equilibrium problem may be

formulated as a variational inequality problem. Monotonicity and its general-

izations play a crucial role in establishing the solution of variational inequality

problem.

The extremal principle and its applications to
optimization and economics

Boris Mordukhovich

Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

This lecture is devoted to the extremal principle in variational analysis that can

be viewed as a variational analogue of the classical convex separation principle
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in nonconvex settings. We consider two basic versions of the extremal principle

formulated in terms of Fr �echet normals and their sequential limits. Then we

discuss their relationships with variational principles and their applications to

the generalized differential calculus for nonsmooth and set-valued mappings, to

necessary optimality and suboptimality conditions, and to the study of Pareto

optimality in nonconvex models of welfare economics.

On error bounds for inequality systems in
Banach

Huynh Van Ngai

Pedagogy university of Quy Nhon, Vietnam

(Abstract to be given later)

On Inherited Properties and Scalarization
Algorithms for Set-Valued Maps
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This paper consists of two parts which are several inherited properties of set-

valued maps and scalarization algorithms for set-valued maps.

Firstly, we present certain results on inherited properties on convexity and

semicontinuity. Convexity and lower semicontinuity of real-valued functions are
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useful properties for analysis of optimization problems, and they are dual concepts

to concavity and upper semicontinuity, respectively. These properties are related

to the total ordering of Rn. We consider certain generalizations and modifications

of convexity and semicontinuity for set-valued maps in a topological vector space

with respect to a cone preorder in the target space, which have studied in [1]

for generalizing the classical Fan�sinequality. These properties are inherited by

special scalarizing functions;

inf{hC(x, y; k) : y ∈ F (x)} (0.1)

sup{hC(x, y; k) : y ∈ F (x)} (0.2)

where hC(x, y; k) = inf{t : y ∈ tk − C(x)}, C(x) is a closed convex cone with

nonempty interior, x and y are vectors in two topological vector spaces X , Y , and

k ∈ intC(x). Note that hC(x, ·; k) is positively homogeneous and subadditive for

every fixed x ∈ X and k ∈ intC(x); and moreover −hC(x,−y; k) = sup{t : y ∈
tk + C(x)}.

Secondly, we develop computational procedures how to calculate the values of

functions (0.1) and (0.2). In order to find solutions in multicriteria situations, we

use some types of scalarization algorithms such as positive linear functionals and

Tchebyshev scalarization. The function hC(x, y; k) is regarded as a generalization

of the Tchebyshev scalarization. By using the function, we give four types of

characterizations of set-valued maps.
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The analogies between closed proper convex functions and maximal monotone

operators are striking. Among them are: (a) almost convexity of the domains of

such operators, (b) local boundedness on the interiors of their domains, (c) the

Brondsted-Rockafellar theorem, (d) qualification conditions for calculus rules, (e)

single valuedness results, (f) regularization processes, etc... These facts prompt

one to derive the main results about maximal monotone operators from convex

analysis.

Among the possible tools to reach that aim are the representation theorems of

Fitzpatrick [9], Krauss [11] - [14], and their supplements by Burachik and Svaiter

[7], Mart�inez-Legaz and Th �era [16] which characterize maximal monotone oper-

ators. We complete these representations by introducing another natural repre-

sentation which is closely connected with the restriction of the coupling function

c to the graph of the operator. This representation dominates any closed convex

function majorized by c on the graph of the operator. This representation and the

Fitzpatrick representation are simply related by the Fenchel transformation. We

also establish relationships with the Krauss representation which is more complex

since it relies on the theory of saddle functions. It has been recently pointed out

to the author by B. Svaiter that the new representation of [18] mentioned above is

related to the study of enlargements of maximal monotone operators conducted

by him and R. Burachik in the forthcoming paper [8] ; see also [4] - [7], [10], [19],

[20], [21] . Other representations are given in [17], [22] and in the works by S.

Simons.

However, in order to reach our aim, we devise another representation of a

maximal monotone operator M : X ⇒ X∗, where X is a reflexive Banach space.

It is not unique, but it is invariant under the conjugacy obtained by composing

the Fenchel conjugacy with a permutation of the variables in X × X∗. In order

to prove the existence of such a representation, we use the Zorn lemma, so that

our existence result is non constructive. For obtaining calculus rules, we rely on

a nice result of R. Burachik and B. Svaiter [7] which characterizes closed convex

functions which are Fitzpatrick representations of maximal monotone operators.
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Rough Convexity

Hoang Xuan Phu

Institute of Mathematics

P.O. Box 631 - Bo Ho, Hanoi, Vietnam

hxphu@thevinh.ncst.ac.vn

A set M is called roughly convex (in some sense) with respect to a given

roughness degree r > 0 if certain points of the segment [x0, x1] belong to M

whenever x0, x1 ∈ M and ‖x0 − x1‖ ≥ r.

A function f : M → R is said to be roughly convex (in some sense) with

respect to a given roughness degree r > 0 provided that some convexity property
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holds true at certain points of the segment [x0, x1] whenever x0, x1 ∈ M and

‖x0 − x1‖ ≥ r.

We will present some kinds of rough convexity and their application to global

optimization.
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Fractional Programming - a recent survey

Siegfried Schaible

University of California, Riverside, USA

Fractional programming is concerned with the optimization of one or several

ratios of functions, usually subject to constraints. After about fourty years of

research well over one thousand articles have appeared, in addition to the mono-

graphs by Schaible (1978), Craven (1988) and Stancu-Minasian (1997) dealing with

applications, theory and solution methods.

The purpose of this survey is to identify some recent developments in frac-

tional programming. To make the survey somewhat self-contained we provide

briefly the necessary background from the known literature.

We consider single-ratio as well as multi-ratio fractional programs. In the

latter case, we focus on the maximization of the smallest of several ratios and the

maximization of a sum of ratios with an emphasis on the difficult sum-of-ratios

fractional problem.

Some recent results on (nonconvex) quadratic
programming

Nguyen Nang Tam

Department of Mathematics

Hanoi Pedagogical Institute No. 2, Vietnam

ngntam@yahoo.com

(Abstract to be given later)
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Equilibrium in an exchange economy and
quasiconvex duality

Phan Thien Thach

Hanoi Institute of Mathematics

P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam

hha@hn.vnn.vn

(Abstract to be given later)

Convergence of duality bound methods for
programming problems dealing with partly

convex functions

Nguyen Van Thoai

Department of Mathematics

University of Trier D-54286 Trier, Germany

We discuss the convergence of a decomposition branch and bound algorithm

using Lagrangian duality for partly convex programs in the general form. It is

shown that this decomposition algorithm has all useful convergence properties

for solving the underlying problem class under usual assumptions. Thus, some

strict assumptions discussed in the literature are avoidable.

Monotonicity in a Framework
of Generalized Convexity

Hoang Tuy

Institute of Mathematics

P.O. Box 631, Bo Ho, Hanoi, Vietnam

Given a family L of real-valued functions on Rn a set G ⊂ Rn is said to be

convex w.r.t. L or L-convex if for any point a ∈ Rn \ G there exists a function

� ∈ L separating a from G, i.e. such that �(a) ≥ 0 and �(x) ≤ 0 ∀x ∈ G. A

function f : Rn → R ∪ {+∞} is said to be L-convex if for any α ∈ R the set

{x ∈ Rn| f(x) ≤ α} is L-convex.
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An increasing function f : Rn → R∪{+∞} is a function such that f(x′) ≥ f(x)
whenever x′ ≥ x (i.e. x′

i ≥ xi ∀i). A downward set G ⊂ Rn is a set such that x′ ∈ G

whenever x′ ≤ x for some x ∈ G. We present a geometric theory of monotonicity in

which increasing functions and downward sets are convex functions and convex

sets w.r.t. the family L of functions of the form �(x) = mini{xi − ai}, a ∈ Rn. In

particular, the concepts of L-convex hull (downward hull), L-polytope (polyblock)

and extreme point are introduced such that several properties hold that remind

similar facts from convex analysis : any closed L-convex (downward) set is the

intersection of a family of L-polytopes, any closed L-convex set is the L-convex

hull of the set of its extreme points, a L-polytope is the L-hull of a finite set, the

set of extreme points of the L-convex hull of a compact set K is a subset of K,

etc.

We also discuss applications to the study of systems of monotonic inequalities

and optimization problems of the form: max{f(x)| g(x) ≤ 0 ≤ h(x)} where f, g, h

are increasing.

Generalized distance and its applications

Jeong Sheok Ume

Department of Applied Mathematics

Changwon National University

Changwon 641-773, South Korea, South Korea

jsume@changwon.ac.kr

(Abstract to be given later)

Duality methods via augmented
Lagrangian functions

Xiaoqi Yang

Department of Applied Mathematics

The Hong Kong Polytechnic University

Kowloon, Hong Kong

mayangxq@polyu.edu.hk

There are a number of augmented Lagrangian schemes in the literature, which

provide the zero duality gap and the exact penalty property. In this talk, a gen-

eralized augmented Lagrangian scheme is discussed. Under weaker conditions,
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this new scheme is also able to provide the zero duality gap and the exact penalty

property. Moreover, the equivalences among the zero duality gap results which

are obtained using various duality functions are reviewed.

Mordukhovich’s Coderivative for
Multifunctions and Implicit Function Theorems

Nguyen Dong Yen

Hanoi Institute of Mathematics

P.O. Box 631 - Bo Ho Hanoi, Vietnam

Email: ndyen@thevinh.ncst.ac.vn

In the first part of this talk, I would like to present some remarks about the

history and the role of B. Mordukhovich�stheory of coderivative for multifunc-

tions.

In the second part of this talk, I shall outline a way to obtain new implicit

function theorems for set-valued maps by using the above-mentioned theory of

coderivative.

Generalized equilibrium for quasimonotone and
pseudomonotone bifunctions

Jafar Zafarani

Department of Mathematics

University of Isfahan, Isfahan, 81745-163, Iran

By using quasimonotone and pseudomonotone bifunctions, we drive sufficient

conditions which include weak coercivity conditions for existence of equilibrium

points. As consequences we generalize various recent results on the existence of

such solutions and for variational inequalities.
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