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I

The model
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Noncooperative multi-leader-follower games

The generalized Nash equilibrium problem (GNEP) is a

noncooperative game is which each player’s admissible strategy set

depends on the other players’ strategies.

More precisely, assume that there areN players and each playerν

controls variablesxν ∈ R
nν . In factxν is a strategy of the playerν.

Let us denote byx the following vector

x =









(x1)
...

(xN)









and let us setn = n1 + n2 + · · · + nN . Thusx ∈ R
n.
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Denote byx−ν the vector formed of all players decision variables

except the one of the playerν. So we can also write

x = (xν , x−ν).

The strategy of the playerν belongs to a strategy set

xν ∈ Xν(x
−ν)

which depends on the decision variables of the other players.
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Aim of the playerν, given the strategyx−ν , is to choose a strategy

xν such thatxν solves the following optimization problem

(Pν) min
xν

θν(x
ν , x−ν), subject to xν ∈ Xν(x

−ν),

whereθν(·, x
−ν) : IRν → IR is the decision function for playerν.

In fact, θν(x
ν , x−ν) denotes the loss the playerν suffers when the

rival players have chosen the strategyx−ν .
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For any given strategy vectorx−ν of the rival players the solution set

of the problem(Pν) is denoted bySν(x
−ν).

Thus a vector̄x is a solution of the Generalized Nash Equilibrium if

for anyν, x̄ν ∈ Sν(x̄
−ν).
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A particular case

Whenever the strategy set of each player does not depend on the

choice of the rival players, that is,

for anyν, Xν(x
−ν) is constant:= Xν

then the noncooperative game reduces to

Find x̄ ∈
∏

ν Xν such that

∀ ν, θν(x̄
ν , x̄−ν) = min θν(u, x−ν)

s.t. u ∈ Xν

– p.8/36



A particular case

Whenever the strategy set of each player does not depend on the

choice of the rival players, that is,

for anyν, Xν(x
−ν) is constant:= Xν

then the noncooperative game reduces to

Find x̄ ∈
∏

ν Xν such that

∀ ν, θν(x̄
ν , x̄−ν) = min θν(u, x−ν)

s.t. u ∈ Xν

that is, aNash game.
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II

Motivation
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Power allocation in telecommunication

Consider a DSL network (Digital Subscriber Line)

DSL customers connected to the central by dedicaced lines

wires are bundled together in telephone cables

electromagnetic coupling⇒ degradation of quality

control variables:

for each wireq and each subcarrierk, p
q
k= power allocated for

transmission

constraints:

for each wireq: maximum achievable transmission rateRq

(transmission quality)

It depends of(pk)k=1,N (power allocations across available subcarri-

ers forq) and ofp−q = (pr)r 6=q (strategies of the other wires) – p.10/36



Power allocation in telecommunication

control variables:

Rq(p
q, p−q) =

N
∑

k=1

log(1 + sinr
q
k)

where

sinr
q
k =

|Hqq
k |2.pk

σ2
q

(k) +
∑

r 6=q

|Hqr
k |.pr

k.

(Signal-t-Interference Noise Ratio)

Garantee of minimal transmission rateRq(p
q, p−q) ≥ R∗

q .
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Power allocation in telecommunication

Model:

each wire wants is a player of the game whose objective is to

minimize to total power used for transmission, with the constraint

that the maximum transmission rate is at leastR∗
q , that is

for anyq, solve(Pq)

min
∑

k = 1kp
q
k

s.t.







Rq(p
q, p−q) ≥ R∗

q

p
q
k ≥ 0
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II

Reformulations of GNEP
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a- Classical reformulations

Suppose that for anyν and anyx−ν ∈ IRn−ν

, functionθν(·, x
−ν) is

continuously differentiableand convexandXν(x
−ν) is convex.
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a- Classical reformulations

Suppose that for anyν and anyx−ν ∈ IRn−ν

, functionθν(·, x
−ν) is

continuously differentiableand convexandXν(x
−ν) is convex.

Denoting by

X(x) =
∏

ν

Xν(x
−ν), ∀x ∈ IRn

and

F (x) = (∇x1θ1(x), . . . ,∇xN θN (x)) ∈ IRn

we have the reformulation

x̄ gene. Nash equil.⇔







x̄ ∈ X(x̄) and

〈F (x̄), y − x̄〉 ≥ 0, ∀ y ∈ X(x̄)
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a- Classical reformulations

Suppose that for anyν and anyx−ν ∈ IRn−ν

, functionθν(·, x
−ν) is

continuously differentiableand convexandXν(x
−ν) is convex.

Denoting by

X(x) =
∏

ν

Xν(x
−ν), ∀x ∈ IRn

and

F (x) = (∇x1θ1(x), . . . ,∇xN θN (x)) ∈ IRn

we have the reformulation

x̄ gene. Nash equil.⇔







x̄ ∈ X(x̄) and

〈F (x̄), y − x̄〉 ≥ 0, ∀ y ∈ X(x̄)

that is aquasi-variational inequality.
– p.14/36



The jointly convex case

Let us consider a special form of the setsXν(x
−ν). This form was

originally used by Rosen in his fundamental paper (1965):

Given a nonemptyconvexsubsetX of R
n, for anyν, the set

Xν(x
−ν) is given as

Xν(x
−ν) = {xν ∈ R

nν : (xν , x−ν) ∈ X}.
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The jointly convex case

Let us consider a special form of the setsXν(x
−ν). This form was

originally used by Rosen in his fundamental paper (1965):

Given a nonemptyconvexsubsetX of R
n, for anyν, the set

Xν(x
−ν) is given as

Xν(x
−ν) = {xν ∈ R

nν : (xν , x−ν) ∈ X}.

Define the Nikaido-Isoda (or Ky Fan) functionΨ : IRn × IRn → IR

defined by

Ψ(x, y) =

N
∑

i=1

[

θν(x
ν , x−ν) − θν(y

ν , x−ν)
]
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Reformulation by V.I.

Then the GNEP can be reformulated in the following form

min
x∈X

V (x)

whereV (x) = supy∈X Ψ(x, y).

Proposition 1 If the decision functionsθν areC1, then any

solution of the Stampacchia variational inequality definedbyX and

F (x) = (∇x1θ1(x), . . . ,∇xN θN (x)) ∈ IRn

is a solution of the GNEP.
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b- An extended reformulation

To simplify the notations, we will denote, for anyν and anyx ∈ R
n, by

Sν(x) andAν(x−ν) the subsets ofRnν

Sν(x) = Sa
θν(·,x−ν)(x

ν) and Aν(x−ν) = arg min
Rnν

θν(·, x
−ν).

In order to construct the variational inequality problem wedefine the

following set-valued mapNa
θ : R

n → 2R
n

which is described, for any

x = (x1, . . . , xp) ∈ R
n1 × . . . × R

np , by

Na
θ (x) = F1(x) × . . . × Fp(x),

whereFν(x) =







Bν(0, 1) if xν ∈ Aν(x−ν)

co(Na
θν

(xν) ∩ Sν(0, 1)) otherwise

The set-valued mapNa
θ has nonempty convex compact values.
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Lemma 2 Letν ∈ {1, . . . , p}. If the functionθν is continuous

quasiconvex with respect to theν-th variable, then,

0 ∈ Fν(x̄) ⇐⇒ x̄ν ∈ Aν(x̄
−ν).

Proof. It is sufficient to consider the case of a pointx̄ such that̄xν 6∈ Aν(x̄−ν). Sinceθν(·, x̄−ν) is

continuous at̄xν , the interior ofSν(x̄) is nonempty. Let us denote byKν the convex cone

Kν = Na
θν

(x̄ν) = (Sν(x̄) − x̄ν)◦.

By quasiconvexity ofθν , Kν is not reduced to{0}. Let us first observe that, sinceSν(x̄) has a

nonempty interior,Kν is a pointed cone, that isKν ∩ (−Kν) = {0}.

Now let us suppose that0 ∈ Fν(x̄). By Caratheodory theorem, there exist vectors

vi ∈ [Kν ∩ Sν(0, 1)], i = 1, . . . , n + 1 and scalarsλi ≥ 0, i = 1, . . . , n + 1 with

n+1
X

i=1

λi = 1 and0 =

n+1
X

i=1

λi vi.
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Since there exists at least oner ∈ {1, . . . , n + 1} such thatλr > 0 we have

vr = −
n+1
X

i=1,i6=r

λi

λr

vi

which clearly shows thatvr is an element of the convex cone−Kν . But vr ∈ Sν(0, 1) and thus

vr 6= 0. This contradicts the fact thatKν is pointed and the proof is complete.
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Sufficient condition

In the following we assume thatX is a given nonempty subsetX of R
n, such that for anyν, the set

Xν(x−ν) is given as

Xν(x−ν) = {xν ∈ R
nν : (xν , x−ν) ∈ X}.

Theorem 4 Let us assume that, for anyν, the functionθν is

continuous and quasiconvex with respect to theν-th variable. Then

every solution ofV I(Na
θ , X) is a solution of the GNEP.
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Sufficient condition

In the following we assume thatX is a given nonempty subsetX of R
n, such that for anyν, the set

Xν(x−ν) is given as

Xν(x−ν) = {xν ∈ R
nν : (xν , x−ν) ∈ X}.

Theorem 5 Let us assume that, for anyν, the functionθν is

continuous and quasiconvex with respect to theν-th variable. Then

every solution ofV I(Na
θ , X) is a solution of the GNEP.

Note that the link between GNEP and variational inequality is valid

even if the constraint setX is neither convex nor compact.
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Sufficient optimality condition

Proposition 6
f : X → IR ∪ {+∞} quasiconvex, radially cont. ondomf

C ⊆ X such thatconv(C) ⊂ domf .

Suppose thatC ⊂ int(domf).

Thenx̄ ∈ S(Na
f \ {0}, C) =⇒ ∀x ∈ C, f(x̄) ≤ f(x).

wherex̄ ∈ S(Na
f \ {0},K) means that there exists̄x∗ ∈ Na

f (x̄) \ {0} such

that

〈x̄∗, c − x〉 ≥ 0, ∀ c ∈ C.
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Proof.Let us consider̄x to be a solution ofV I(Na
θ

, X). There existsv ∈ Na
θ
(x̄) such that

〈v, y − x̄〉 ≥ 0, ∀ y ∈ X. (∗)

Let ν ∈ {1, . . . , p}.

If x̄ν ∈ Aν(x̄−ν) then obviouslȳxν ∈ Solν(x̄−ν).

Otherwisevν ∈ Fν(x̄) = co(Na
θν

(x̄ν) ∩ Sν(0, 1)). Thus, according to Lemma 2, there existλ > 0

anduν ∈ Na
θν

(x̄ν) \ {0} satisfyingvν = λuν .

Now for anyxν ∈ Xν(x̄−ν), considery =
`

x̄1, . . . , x̄ν−1, xν , x̄ν+1, . . . , x̄p
´

.

From(∗) one immediately obtains that〈uν , xν − x̄ν〉 ≥ 0. Sincexν is an arbitrary element of

Xν(x̄−ν), we have that̄xν is a solution ofV I(Na
θν

\ {0}, Xν(x̄−ν)) and therefore, according to

Prop. 4,

x̄ν ∈ Solν(x̄−ν)

Sinceν was arbitrarily chosen we conclude thatx̄ solves the GNEP.
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Necessary and sufficient condition

Theorem 7 Let us suppose that, for anyν, the loss functionθν is

continuous and semistrictly quasiconvex with respect to theν-th

variable. Further assume that the setX is a nonempty convex subset

of R
n.

Thenx̄ be a solution of the GNEP if and only ifx̄ is a solution of the

variational inequalityV I(Na
θ , X).

– p.23/36



Existence result 1

Theorem 8 (Ichiishi 83) Assume that for every playerν, the loss

functionθν is continuous onRn and quasiconvex with respect to the

ν-th variable. If the set-valued map is continuous with nonempty

convex compact vales, then the generalized Nash equilibrium

problem admits a solution.
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Existence result 2

Theorem 9 Assume that for every playerν, the loss functionθν is

continuous onRn and semistrictly quasiconvex with respect to the

ν-th variable. If the setX is nonempty, convex and compact, then

the generalized Nash equilibrium problem admits a solution.
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IV

Special important cases
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In case of a unique leader, the game can be reformulated as bilevel
programming problem:

(BL) inf fu(x, y)

s.t.







y ∈ S(x)

gk(x, y) ≤ 0, k = 1, . . . , p

whereS(x) is the solution set of thelower level problem

(PLx) inf
y′

fl(x, y′)

s.t.







(x, y′) ∈ C

hj(x, y′) ≤ 0, j = 1, . . . , q
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Let us consider the set-valued mapS : X → 2Y which associates to

any pointx the (possibly empty) solution set of the lower level

problem(PLx) defined byx, that is

S(x) = arg min
Ω(x)

fl(x, ·)

whereΩ(x) is the feasible region of the lower level problem(PLx),

namely

Ω(x) = {(x, y) ∈ X×Y : (x, y) ∈ C andhj(x, y) ≤ 0, j = 1, . . . , q}.
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Existence for bilevel

Theorem 11 Letfu : X × Y → IR ∪ {+∞} be a lsc quasiconvex function,

radially continuous ondomfu. Assume that

a) for everyλ > infX×Y fu, int(Sλ(fu)) 6= ∅;

b) Gr(S) is a locally finite union of a family{Kα : α ∈ A} of closed convex

sets ofX × Y ;

c) the functionsgk (k = 1, . . . , p) are lsc quasiconvex onX × Y ;

d) one of the following assumption holds:
i) for anyα ∈ A, Kα is weakly compact and bounded;

ii) the setM = {(x, y) : gk(x, y) ≤ 0, k = 1, . . . , p} is weakly

compact and bounded;

e) the feasible region of problem(BL) is nonempty.

Then ifA is finite the bilevel programming problem(BL) admits a global

solution;
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Existence for bilevel

Theorem 12 Letfu : X × Y → IR ∪ {+∞} be a lsc quasiconvex function,

radially continuous ondomfu. Assume that

a) for everyλ > infX×Y fu, int(Sλ(fu)) 6= ∅;

b) Gr(S) is a locally finite union of a family{Kα : α ∈ A} of closed convex

sets ofX × Y ;

c) the functionsgk (k = 1, . . . , p) are lsc quasiconvex onX × Y ;

d) one of the following assumption holds:
i) for anyα ∈ A, Kα is weakly compact and bounded;

ii) the setM = {(x, y) : gk(x, y) ≤ 0, k = 1, . . . , p} is weakly

compact and bounded;

e) the feasible region of problem(BL) is nonempty.

Then ifA is not finite but there exists a local mapping

M = {(ρw, Aw) : w ∈ Gr(S)} of Gr(S) such that the set

{w ∈ Gr(S) : card(Aw) > 1} is included in a weakly compact subset ofGr(S),

the bilevel programming problem(BL) admits a local solution. – p.29/36



The linear Bilevel problem

Let us consider the following particular case of the bilevelproblem

(BL_Lin) inf fu(x, y)

s.t.







y ∈ S(x)

L1(x, y) ≤ 0

whereS(x) is the solution set of the linear lower level problem

(PLx_Lin) inf
y′

L2(x, y′)

s.t. L3(x, y′) ≤ 0

whereL1, L2 andL3 are linear continuous functions defined onX×Y

with, respectively, values inIRp, IR andIRq.
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Existence for linear Bilevel problem

Corollary 13 Letfu : X × Y → IR ∪ {+∞} be a lower

semicontinuous quasiconvex function, radially continuous on

domfu. Assume that

a) for everyλ > infX×Y fu, int(Sλ(fu)) 6= ∅;

c) the functionsL1, L2 andL3 are linear continuous functions;

d) the setM = {(x, y) : L3(x, y) ≤ 0, k = 1, . . . , p} is weakly

compact and bounded;

e) the feasible region of problem(BL) is nonempty.

Then the bilevel programming problem(BL_Lin) admits a global

solution.
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Another case

For anyα ∈ A, the marginal functionlα : X → IR ∪ {−∞,+∞} of

the lower level subproblem onCα will be defined by

lα(x) = inf
y′

fl(x, y′)

s.t.







(x, y′) ∈ Cα

hj(x, y′) ≤ 0, j = 1, . . . , q
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Theorem 15 Letfu : X × Y → IR ∪ {+∞} be a lsc quasiconvex function,

radially continuous ondomfu andfl : X × Y → IR ∪ {+∞} be a lsc

quasiconvex function. Assume that

a) for everyλ > infX×Y fu, int(Sλ(fu)) 6= ∅;

b) C is a locally finite union of a family{Cα : α ∈ A} of closed convex sets of

X × Y ;

c) the functionsgk (k = 1, . . . , p) andhj (j = 1, . . . , q) are lower

semicontinuous quasiconvex onX × Y ;

d) for anyα ∈ A, Cα is weakly compact and bounded;

e) for anyα ∈ A, for anyx, x′ such that({x} × Y ) ∩ Cα 6= ∅ and

({x′} × Y ) ∩ Cα 6= ∅, lα(x) = lα(x′);

f) the feasible region of problem(BL) is nonempty.

Then ifA is finite the bilevel programming problem (BL) admits a global solution;
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Theorem 16 Letfu : X × Y → IR ∪ {+∞} be a lsc quasiconvex function,

radially continuous ondomfu andfl : X × Y → IR ∪ {+∞} be a lsc

quasiconvex function. Assume that

a) for everyλ > infX×Y fu, int(Sλ(fu)) 6= ∅;

b) C is a locally finite union of a family{Cα : α ∈ A} of closed convex sets of

X × Y ;

c) the functionsgk (k = 1, . . . , p) andhj (j = 1, . . . , q) are lower

semicontinuous quasiconvex onX × Y ;

d) for anyα ∈ A, Cα is weakly compact and bounded;

e) for anyα ∈ A, for anyx, x′ such that({x} × Y ) ∩ Cα 6= ∅ and

({x′} × Y ) ∩ Cα 6= ∅, lα(x) = lα(x′);

f) the feasible region of problem(BL) is nonempty.

Then ifA is infinite but there exists a local mappingM = {(ρ(x,y), A(x,y)) : (x, y) ∈ C} of C

such that the set{(x, y) ∈ C : card(A(x,y)) > 1} is included in a weakly compact subset ofC, then

the bilevel programming problem(BL) admits a local solution. – p.33/36



Convex differentiable game with unique leader

If there is a unique leader and the decision functionsθν are

differentiable and convex, writing optimality conditions, the GNEP

can be reformulated as a Mathematical Programming with

Equilibrium constraints (MPEC)
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Convex differentiable game with unique leader

If there is a unique leader and the decision functionsθν are

differentiable and convex, writing optimality conditions, the GNEP

can be reformulated as a Mathematical Programming with

Equilibrium constraints (MPEC)

(MPEC) inf f(z)

s. t.



























g(z) ≤ 0

h(z) = 0

G(z) ≥ 0, H(z) ≥ 0

〈G(z), H(z)〉 = 0
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An existence result for MPEC

(MPEC) inf f(z)

s. t.

8

>

>

>

>

>

<

>

>

>

>

>

:

g(z) ≤ 0

h(z) = 0

G(z) ≥ 0, H(z) ≥ 0

〈G(z), H(z)〉 = 0

f : X → IR ∪ {+∞}, g : X → IRp quasiconvex

h : X → IRq andG, H : X → IRm quasiaffine (i.e. each coordinate function is quasiaffine)

Proposition 17

f : X → IR ∪ {+∞} quasiconvex

+ lsc, radial ly continuous ondom(f)

+ for any λ > infX f , int(Sλ) 6= ∅.

+ C ⊆ int(domf)

+ g quasiconvex continuous

+ h, H andG quasiaffine continuous

+ coercivity condition

Then the Quasiconvex-quasiaffine MPEC problem admits a global minimizer.
– p.35/36
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