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The model




The generalized Nash equilibrium problem (GNEP) is a
noncooperative game is which each player’'s admissibléeglyaset
depends on the other players’ strategies.

More precisely, assume that there Arglayers and each player
controls variablesg” € R™. In factz” Is a strategy of the playex.
Let us denote by the following vector

and letusset = n; +n9 +---+ny. Thusz € R™.
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Denote byz~" the vector formed of all players decision variables
except the one of the player So we can also write

r=(x" x7").
The strategy of the playerbelongs to a strategy set

e X, (x7")

which depends on the decision variables of the other players
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Aim of the playerv, given the strategy ", is to choose a strategy
x” such that:” solves the following optimization problem
(P,) minf,(x",27"), subjectto z” € X, (x7"),

xl/

wherefd, (-, x7") : R” — IR is the decision function for playexr.

In fact, 0, (z”,z~") denotes the loss the playersuffers when the

rival players have chosen the strategy .
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For any given strategy vectar” of the rival players the solution set
of the problem(P,) is denoted b5, (7).

Thus a vector is a solution of the Generalized Nash Equilibrium if

foranyy, =z e S, (z77).
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Whenever the strategy set of each player does not depen@ on th
choice of the rival players, that is,

foranyr, X,(z7")is constant:= X,
then the noncooperative game reduces to

Findz € [ [, X, such that

Vv, 0,(2¥,27%) = min 0,(u,xz™")

s.t. ueX,
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Whenever the strategy set of each player does not depen@ on th
choice of the rival players, that is,

foranyr, X,(z7")is constant:= X,
then the noncooperative game reduces to

Findz € [ [, X, such that

Vv, 0,(2¥,27%) = min 0,(u,xz™")

s.t. ueX,

that is, a
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Motivation




Consider a DSL network (Digital Subscriber Line)
DSL customers connected to the central by dedicaced lines
wires are bundled together in telephone cables
electromagnetic coupling- degradation of quality

control variables:

for each wireg and each subcarriér, p, = power allocated for
transmission

constraints:

for each wireg: maximum achievable transmission rdig
(transmission quality)

It depends ofpx)r—1 v (POwer allocations across available subcarri-

ers forg) and ofp=7 = (p"),, (strategies of the other wires) -0



Power allocation In telecommunication

control variables:

Ry(p%,p™%) = log(1 + sinr)
k=1

where

qu 2
sinry = | ’ pk ) + Z |H|.pr.
r#q
(Signal-t-Interference Noise Ratio)

Garantee of minimal transmission rake(p?,p~?) > R;.

— 9
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Model:
each wire wants Is a player of the game whose objective is to

minimize to total power used for transmission, with the ¢cmst
that the maximum transmission rate Is at le@Stthat is

min 3, = 1"pj
(
for anyq, solve(F,) _ R,(p?,p™?) > R;
S.U.
Py >0

\

—p.12/36



1
Reformulations of GNEP



al reformulations

e that for any and anyz=* € IR™ ", functiond, (-, z7") is
ously differentiabland convexand X, (z~") is convex



a- Classical reformulations

Suppose that for any and anyz=> € IR™ *, functiond, (-, z7") is
continuously differentiabland convexand X, (™) is convex

Denoting by
X(x)=|1X,(z7"), VzelR"

— (z) H (z7")

F(x‘) — (qu%(:z:), e ,vath(x)) c IR"

we have the reformulation

v

T € X(z)and

z gene. Nash equil< <
(F(z),y—7) >0, Vye X(7)

N
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a- Classical reformulations

Suppose that for any and anyz=> € IR™ *, functiond, (-, z7") is
continuously differentiabland convexand X, (™) is convex

Denoting by
X(x)=|1X,(z7"), VzelR"

— (z) H (z7")

F(x‘) — (qu%(:z:), e ,vaeN(x)) c IR"

we have the reformulation

v

T € X(z)and

z gene. Nash equil< <
(F(z),y—7) >0, Vye X(7)

N

that is a svariational inequality.
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Let us consider a special form of the s&ts(xz~"). This form was
originally used by Rosen in his fundamental paper (1965):

Given a nonempty. subsetX of R”, for anyv, the set
X, (xz™") is given as

X (z7")={z" e R™ : (a2, 27") € X}
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Let us consider a special form of the s&ts(xz~"). This form was
originally used by Rosen in his fundamental paper (1965):

Given a nonempty. subsetX of R”, for anyv, the set
X, (xz™") is given as

X (z7")={z" e R™ : (a2, 27") € X}

Define the Nikaido-lsoda (or Ky Fan) functioin: IR" x IR" — IR
defined by
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Then the GNEP can be reformulated in the following form
V)

whereV (z) = sup,c x V(z,9).

1 If the decision functiong, are C*, then any
solution of the Stampacchia variational inequality defilbgdX and

F(:I?) — (vaﬂ@l(x),...,vaeN(x)) c IR"

IS a solution of the GNEP.
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To simplify the notations, we will denote, for amyand anyx € R"”, by
Sy(x) and A, (x~") the subsets dR™

Sv(@) = Sp, (. .—(@”) and A,(z7") = arg %17}11 0,(-,x7").

In order to construct the variational inequality problemaedine the
following set-valued magv¢ : R® — 28" which is described, for any
r=(z',...,2P) € R™ x ... x R, by

Ng(x) = Fi(z) x ... X Fp(x),

B,(0,1) if x¥ € A,(x™")
whereF), (x) = <

co(Ng (z) N S,(0,1)) otherwise

N

The set-valued mapy;’ has nonempty convex compact values.
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2 Letv € {1,...,p}. Ifthe functiond, is continuous
guasiconvex with respect to theth variable, then,

0e F () <— "€ A, (7).

It is sufficient to consider the case of a painsuch thatt” ¢ A, (z—"). Sinced, (-,z~") is
continuous af”, the interior ofS, () is nonempty. Let us denote #y, the convex cone

K, = N§ (") = (S, (z) — *)°.

By quasiconvexity of),,, K, is not reduced td0}. Let us first observe that, sinég, (z) has a
nonempty interiorK, is a pointed cone, that K, N (—K,) = {0}.

Now let us suppose théte F, (z). By Caratheodory theorem, there exist vectors

v; € [K, NS,(0,1)],i=1,...,n+1andscalars; > 0,i=1,...,n+ 1 with

n-+1 n-+1

Z)\z — 1 and0 = Z)\zvz
i=1 i=1
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Since there exists at least one {1,...,n + 1} such that\, > 0 we have

n—+1 s
(A

Vpy = — Z )\_Ui
i=1,i#%r ="

which clearly shows that, is an element of the convex coreK,. Butv, € S,(0,1) and thus

vr # 0. This contradicts the fact thdt, is pointed and the proof is completa.

— p.19/36



In the following we assume that is a given nonempty subsat of R™, such that for any, the set
X, (z—")Is given as
Xp(x™")={z" e R"™ : (¥, 27") € X}.

4 Let us assume that, for amy the functiory,, is
continuous and quasiconvex with respect to:tkté@ variable. Then
every solution of/I(Ng, X) is a solution of the GNEP.
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In the following we assume that is a given nonempty subsat of R™, such that for any, the set
X, (z—")Is given as
Xp(x™")={z" e R"™ : (¥, 27") € X}.

5 Let us assume that, for amy the functiory,, is
continuous and quasiconvex with respect to:tkté@ variable. Then
every solution of/I(Ng, X) is a solution of the GNEP.

Note that the link between GNEP and variational inequastyalid

even If the constraint seX is neither convex nor compact.
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Sufficient optimality condition

Proposition 6
f: X — IRU {400} quasiconvex, radially cont. omhom f

C' C X such thatconv(C') C domf.
Suppose that’ C int(domf).

Thenz € S(N¢\ {0},C) = Vazel, f(7) < f(z).

wherez € S(N¥ \ {0}, K) means that there exists € N¢(z) \ {0} such
that
(2%, c—x) > 0, Veed.
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Let us considef to be a solution o¥ I(IVJ, X). There exists € N (Z) such that
(v,y—x) >0, VyeX. (*)

Letv € {1,...,p}.

If z¥ € A, (z—") then obviouslyz” € Sol, (z7").

Otherwisev” € F, (z) = co(Ng (z*) NSy (0,1)). Thus, according to Lemma 2, there exist> 0
andu” € Ng (z") \ {0} satisfyingv” = Au".

Now for anyz” € X, (z~"), considery = (z*,...,z" ", o, zv T, ... zP).

From (x) one immediately obtains thatu” , ¥ — z¥) > 0. Sincex” is an arbitrary element of
X, (z™"), we have thag” is a solution of’ I(Ng \ {0}, X (z~")) and therefore, according to
Prop. 4,

7’ € Soly (77Y)

Sincer was arbitrarily chosen we conclude thasolves the GNEP
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[/ Let us suppose that, for amy the loss functiod,, is
continuous and semistrictly quasiconvex with respectéa/tth
variable. Further assume that the sEtis a nonempty convex subset
of R".

Thenz be a solution of the GNEP if and onlyitfis a solution of the
variational inequalityV I(NJ, X).
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8 (Ichiishi 83) Assume that for every player the loss
functionéd, Is continuous oiR™ and quasiconvex with respect to the
v-th variable. If the set-valued map is continuous with nopigm
convex compact vales, then the generalized Nash equribriu
problem admits a solution.
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9 Assume that for every player the loss functiod,, Is

continuous o™ and semistrictly quasiconvex with res
v-th variable. If the sefX Is nonempty, convex and com
the generalized Nash equilibrium problem admits a so

nect to the
nact, then

ution
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IV
Special important cases



In case of a unique leader, the game can be reformulatedeazbll
programming problem:

(BL)  inf fu(z,y)

2

y € S(z)
kgk('CE?y)SO? k‘:]_’...’p

S.L

whereS(x) is the solution set of thiswer level problem

(PL,) i;l/f fi(x,y")

(x,y") € C
hi(x,y') <0, j=1,...,q

S.L.

\
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Let us consider the set-valued mép X — 2* which associates to
any pointz the (possibly empty) solution set of the lower level
problem(PL,) defined by, that is

S(z) = arg i fiz, )

wheref)(x) is the feasible region of the lower level problgiiiL,,),
namely

Q(x) ={(z,y) € XXY : (z,y) € Candh;(z,y) <0, j=1,...,q}.
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11 Letf, : X xY — IR U {400} be alsc quasiconvex function,
radially continuous ordomf,,. Assume that

a) forevery)\ > infxyxy fu, iNt(Sx(fn)) # 0;

b) Gr(S) is alocally finite union of a family K, : a« € A} of closed convex
sets ofX x Y;

c) the functiong (k =1,...,p) are Isc quasiconvex oX x Y;

d) one of the following assumption holds:
) foranya € A, K, is weakly compact and bounded;

i) the setM = {(z,y) : gr(x,y) <0, k=1,...,p}is weakly
compact and bounded,;

e) the feasible region of proble(B L) is nonempty.

Then ifA is finite the bilevel programming proble(# ) admits a global
solution;
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12 Letf, : X xY — IR U {400} be alsc quasiconvex function,
radially continuous ordomf,,. Assume that

a) forevery)\ > infxyxy fu, iNt(Sx(fn)) # 0;
b) Gr(S) is alocally finite union of a family K, : a« € A} of closed convex
sets ofX x Y;
c) the functiong (k =1,...,p) are Isc quasiconvex oX x Y;
d) one of the following assumption holds:
) foranya € A, K, is weakly compact and bounded;
i) thesetM = {(z,y) : gr(z,y) <0, k=1,...,p}is weakly
compact and bounded,;
e) the feasible region of proble(B L) is nonempty.
Then if A is not finite but there exists a local mapping
M = {(pw, Aw) : w e Gr(S)} of Gr(S) such that the set

{w e Gr(S) : card(A,) > 1} isincluded in a weakly compact subseGf(.S),
the bilevel programming probleB L) admits a local solution. ~p.29/36



Let us consider the following particular case of the bilgusiblem
(BL_Lin) inf f,(x,y)

y € S(z)
Li(z,y) <0

S.L.

whereS(z) is the solution set of the linear lower level problem

(PL,_Lin) inf  Ly(z,y’)

Yy
s.t. Ls(z,y) <0
whereL, L, andLs are linear continuous functions defined®rx Y

with, respectively, values IlR”, IR andIR".
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13 Letf,: X xY — RU{+o0} be a lower
semicontinuous gquasiconvex function, radially contirsion
domf,. Assume that

a) for every\ > infy .y fu, iNt(Sx(f)) # 0;

c) the functiond.;, L, and L5 are linear continuous functions;

d) thesetM = {(z,y) : L3(z,y) <0, k=1,...,p}isweakly
compact and bounded,;

e) the feasible region of proble(# L) is nonempty.

Then the bilevel programming probleBL_Lin) admits a global
solution.
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For anya € A, the marginal function, : X — IR U {—o00, 400} of
the lower level subproblem ofi, will be defined by

lo(x) = inf  fi(x,y)
y/
;
(x,y') € C,
]’Lj([lij/) < 07 .]: 17"'7q

S.1.

N
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15 Letf, : X x Y — IR U {400} be alsc quasiconvex function,
radially continuous odomf, andf; : X x Y — IRU {+o00} be alsc
guasiconvex function. Assume that

a) for every\ > infx .y fu, iNt(Sx(fu)) # 0;
b) C'is alocally finite union of a familyC,, : a € A} of closed convex sets of
X XY;

c) the functiongy (k=1,...,p)andh; (j =1,...,q) are lower
semicontinuous quasiconvex &nx Y,

d) foranya € A, C, is weakly compact and bounded,;

e) for anya € A, for anyz, 2’ such that{z} x Y)nC, # 0 and
{2’} xY)NCy #£ 0, lo(x) = lo(2));

f) the feasible region of probleifB L) is nonempty.

Then if A is finite the bilevel programming problem (BL) admits a globalution;
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16 Letf,: X xY — IR U {400} be alsc quasiconvex function,
radially continuous odomf, andf; : X x Y — IRU {+o00} be alsc
guasiconvex function. Assume that

a) for every\ > inf x .y fu, Int(Sx(f.)) # 0;

b) C'is alocally finite union of a familyC,, : a € A} of closed convex sets of
X XY;

c) the functiongy (k=1,...,p)andh; (j =1,...,q) are lower
semicontinuous quasiconvex &nx Y,

d) foranya € A, C, is weakly compact and bounded,;

e) for anya € A, for anyz, 2’ such that{z} x Y)nC, # 0 and
{2’} xY)NCy #£ 0, lo(x) = lo(2));

f) the feasible region of probleifB L) is nonempty.

Then if A is infinite but there exists a local mappiogl = {(p(4,y), A(2,4)) : (x,y) € C}of C
such that the sef(z,y) € C : card(A(;,)) > 1} is included in a weakly compact subsetgfthen

the bilevel programming probleB L) admits a local solution. _p.33/36



If there is a unique leader and the decision functiénare
differentiable and convex, writing optimality conditigritbe GNEP
can be reformulated as a Mathematical Programming with

Equilibrium constraints (MPEC)
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If there is a unique leader and the decision functiénare
differentiable and convex, writing optimality conditigritbe GNEP
can be reformulated as a Mathematical Programming with

Equilibrium constraints (MPEC)

(MPEC) inf f(z)

[ g(2) <0
ot | =0
G(z) >0,H(z) >0
| (G(2),H(z)) =0
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An existence result for MPEC

(MPEC) inf f(2)

g9(z) <0

h(z) =0

G(z) 2 0,H(z) >0
(G(2),H(z)) =0

S. t. <

f: X —- IRU{+00}, g : X — IRP quasiconvex
h: X — IR? andG, H : X — IR™ quasiaffine (i.e. each coordinate function is quasiaffine)
Proposition 17

f: X — IR U {400} quasiconvex
+ Isc, radial'¥ continuous orom( f)
+forany A > infx f, int(Sy) # 0.
+ C C int(domf)
+ g quasiconvex continuous
+ h, H and G quasiaffine continuous
+ coercivity condition

Then the Quasiconvex-quasiaffine MPEC problem admits aagtomimizer.
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