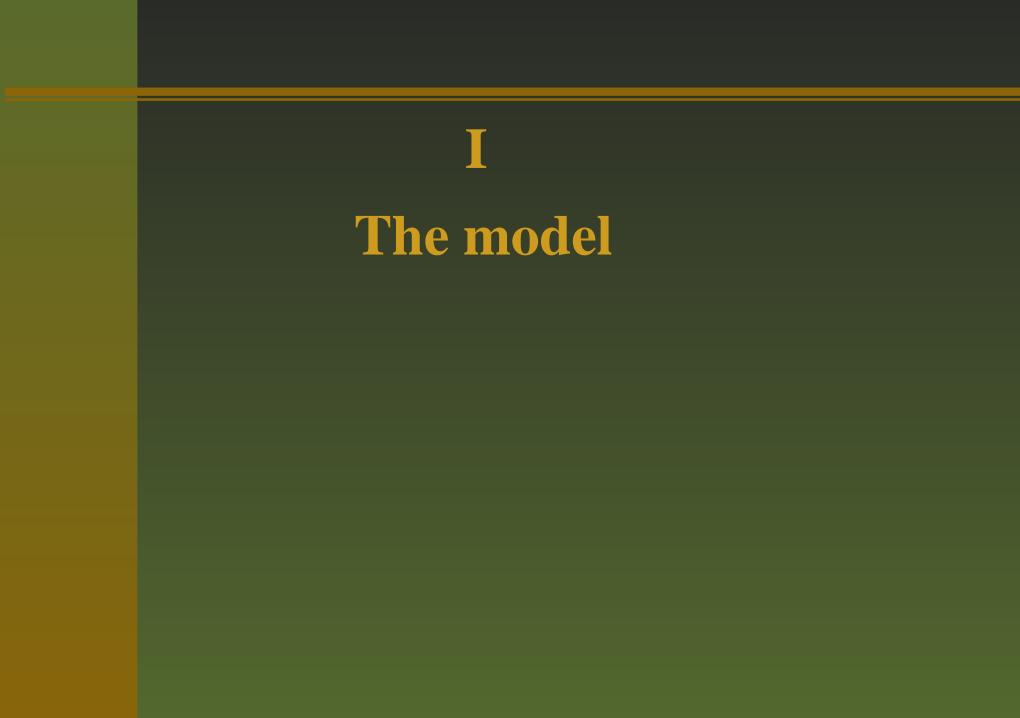
Lecture 16 (second part) Generalized Nash Equilibrium Problem

Didier Aussel

Univ. de Perpignan

Outline of lecture 16 (second part)

- I- The model
- II- Motivation
- III- Reformulations of GNEP
 - Classical ones
 - An extented reformulation
- IV- Special important cases
 - Bilevel problems
 - MPEC problems



The generalized Nash equilibrium problem (GNEP) is a noncooperative game is which each player's admissible strategy set depends on the other players' strategies. More precisely, assume that there are N players and each player ν controls variables $x^{\nu} \in \mathbb{R}^{n_{\nu}}$. In fact x^{ν} is a strategy of the player ν . Let us denote by x the following vector

$$x = \left(\begin{array}{c} (x^1) \\ \vdots \\ (x^N) \end{array}\right)$$

and let us set $n = n_1 + n_2 + \cdots + n_N$. Thus $x \in \mathbb{R}^n$.

Denote by $x^{-\nu}$ the vector formed of all players decision variables except the one of the player ν . So we can also write

$$x = (x^{\nu}, x^{-\nu}).$$

The strategy of the player ν belongs to a strategy set

 $x^{\nu} \in X_{\nu}(x^{-\nu})$

which depends on the decision variables of the other players.

Aim of the player ν , given the strategy $x^{-\nu}$, is to choose a strategy x^{ν} such that x^{ν} solves the following optimization problem

$$(P_{\nu}) \quad \min_{x^{\nu}} \theta_{\nu}(x^{\nu}, x^{-\nu}), \quad \text{subject to} \quad x^{\nu} \in X_{\nu}(x^{-\nu}),$$

where $\theta_{\nu}(\cdot, x^{-\nu}) : \mathbb{R}^{\nu} \to \mathbb{R}$ is the decision function for player ν .

In fact, $\theta_{\nu}(x^{\nu}, x^{-\nu})$ denotes the loss the player ν suffers when the rival players have chosen the strategy $x^{-\nu}$.

For any given strategy vector $x^{-\nu}$ of the rival players the solution set of the problem (P_{ν}) is denoted by $S_{\nu}(x^{-\nu})$.

Thus a vector \bar{x} is a solution of the Generalized Nash Equilibrium if

for any ν , $\bar{x}^{\nu} \in S_{\nu}(\bar{x}^{-\nu})$.

A particular case

Whenever the strategy set of each player does not depend on the choice of the rival players, that is,

for any
$$\nu$$
, $X_{\nu}(x^{-\nu})$ is constant $:= X_{\nu}$

then the noncooperative game reduces to

Find $\bar{x} \in \prod_{\nu} X_{\nu}$ such that

$$\forall \nu, \quad \theta_{\nu}(\bar{x}^{\nu}, \bar{x}^{-\nu}) = \min \quad \theta_{\nu}(u, x^{-\nu})$$
s.t. $u \in X_{\nu}$

A particular case

Whenever the strategy set of each player does not depend on the choice of the rival players, that is,

for any
$$\nu$$
, $X_{\nu}(x^{-\nu})$ is constant $:= X_{\nu}$

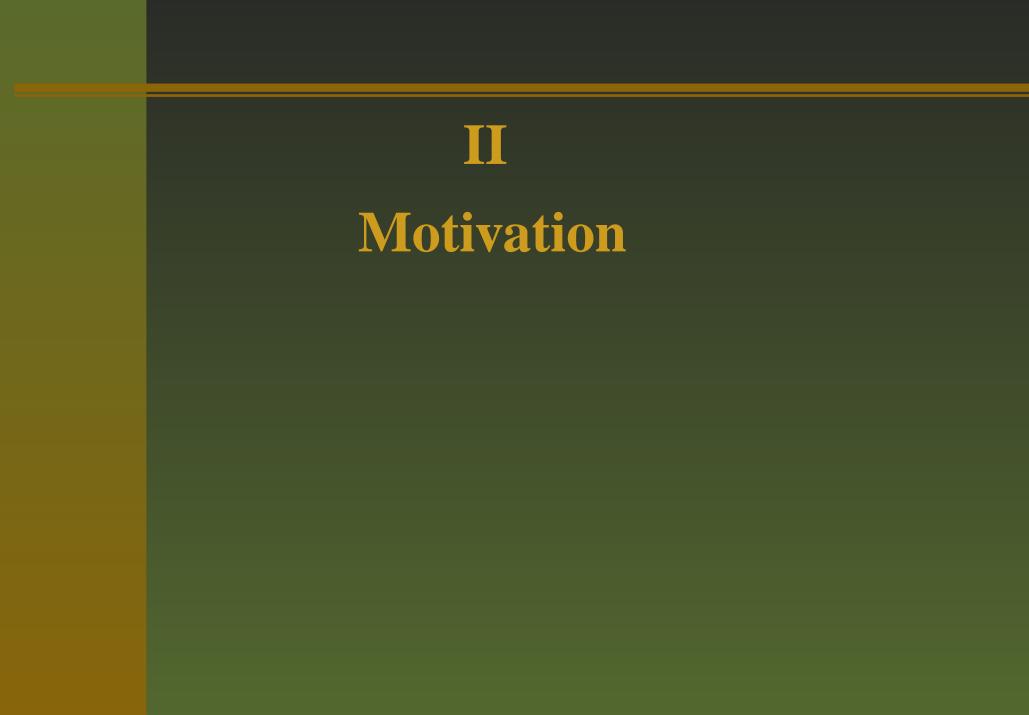
then the noncooperative game reduces to

Find $\bar{x} \in \prod_{\nu} X_{\nu}$ such that

$$\forall \nu, \quad \theta_{\nu}(\bar{x}^{\nu}, \bar{x}^{-\nu}) = \min \quad \theta_{\nu}(u, x^{-\nu})$$

s.t. $u \in X_{\nu}$

that is, a Nash game.



Consider a DSL network (Digital Subscriber Line)

- **DS**L customers connected to the central by dedicaced lines
- wires are bundled together in telephone cables
- electromagnetic coupling \Rightarrow degradation of quality

control variables:

for each wire q and each subcarrier k, p_k^q = power allocated for transmission

constraints:

for each wire q: maximum achievable transmission rate R_q (transmission quality)

It depends of $(p_k)_{k=1,N}$ (power allocations across available subcarriers for q) and of $p^{-q} = (p^r)_{r \neq q}$ (strategies of the other wires) -p.10/36

Power allocation in telecommunication

control variables:

$$R_q(p^q, p^{-q}) = \sum_{k=1}^N log(1 + sinr_k^q)$$

where

$$sinr_{k}^{q} = \frac{|H_{k}^{qq}|^{2}.p_{k}}{\sigma_{q}^{2}}(k) + \sum_{r \neq q} |H_{k}^{qr}|.p_{k}^{r}.$$

(Signal-t-Interference Noise Ratio)

Garantee of minimal transmission rate $R_q(p^q, p^{-q}) \ge R_q^*$.

Power allocation in telecommunication

Model:

each wire wants is a player of the game whose objective is to minimize to total power used for transmission, with the constraint that the maximum transmission rate is at least R_a^* , that is

for any q, solve
$$(P_q)$$
 solve (P_q) solve $R_q(p^q, p^{-q}) \ge R_q^*$
 $s.t.$ solve $p_q^q \ge 0$

II Reformulations of GNEP

Suppose that for any ν and any $x^{-\nu} \in \mathbb{R}^{n^{-\nu}}$, function $\theta_{\nu}(\cdot, x^{-\nu})$ is continuously differentiable and convex and $X_{\nu}(x^{-\nu})$ is convex.

Suppose that for any ν and any $x^{-\nu} \in \mathbb{R}^{n^{-\nu}}$, function $\theta_{\nu}(\cdot, x^{-\nu})$ is continuously differentiable and convex and $X_{\nu}(x^{-\nu})$ is convex.

Denoting by

and

$$X(x) = \prod_{\nu} X_{\nu}(x^{-\nu}), \quad \forall x \in \mathbb{R}^{n}$$
$$F(x) = (\nabla_{x^{1}}\theta_{1}(x), \dots, \nabla_{x^{N}}\theta_{N}(x)) \quad \in \mathbb{R}^{n}$$

we have the reformulation

 \bar{x} gene. Nash equil. $\Leftrightarrow \begin{cases} \bar{x} \in X(\bar{x}) \text{ and} \\ \langle F(\bar{x}), y - \bar{x} \rangle \ge 0, \quad \forall y \in X(\bar{x}) \end{cases}$

Suppose that for any ν and any $x^{-\nu} \in \mathbb{R}^{n^{-\nu}}$, function $\theta_{\nu}(\cdot, x^{-\nu})$ is continuously differentiable and convex and $X_{\nu}(x^{-\nu})$ is convex.

Denoting by

and

$$X(x) = \prod_{\nu} X_{\nu}(x^{-\nu}), \quad \forall x \in \mathbb{R}^{n}$$
$$F(x) = (\nabla_{x^{1}}\theta_{1}(x), \dots, \nabla_{x^{N}}\theta_{N}(x)) \quad \in \mathbb{R}^{n}$$

we have the reformulation

$$\bar{x}$$
 gene. Nash equil. $\Leftrightarrow \begin{cases} \bar{x} \in X(\bar{x}) \text{ and} \\ \langle F(\bar{x}), y - \bar{x} \rangle \ge 0, \quad \forall y \in X(\bar{x}) \end{cases}$

that is a quasi-variational inequality.

Let us consider a special form of the sets $X_{\nu}(x^{-\nu})$. This form was originally used by Rosen in his fundamental paper (1965):

Given a nonempty convex subset X of \mathbb{R}^n , for any ν , the set $X_{\nu}(x^{-\nu})$ is given as

$$X_{\nu}(x^{-\nu}) = \{ x^{\nu} \in \mathbb{R}^{n_{\nu}} : (x^{\nu}, x^{-\nu}) \in X \}.$$

Let us consider a special form of the sets $X_{\nu}(x^{-\nu})$. This form was originally used by Rosen in his fundamental paper (1965):

Given a nonempty convex subset X of \mathbb{R}^n , for any ν , the set $X_{\nu}(x^{-\nu})$ is given as

$$X_{\nu}(x^{-\nu}) = \{ x^{\nu} \in \mathbb{R}^{n_{\nu}} : (x^{\nu}, x^{-\nu}) \in X \}.$$

Define the Nikaido-Isoda (or Ky Fan) function $\Psi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$\Psi(x,y) = \sum_{i=1}^{N} \left[\theta_{\nu}(x^{\nu}, x^{-\nu}) - \theta_{\nu}(y^{\nu}, x^{-\nu}) \right]$$

Reformulation by V.I.

Then the GNEP can be reformulated in the following form

 $\lim_{x \in X} V(x)$

where $V(x) = \sup_{y \in X} \Psi(x, y)$.

Proposition 1 If the decision functions θ_{ν} are C^1 , then any solution of the Stampacchia variational inequality defined by X and

 $F(x) = (\nabla_{x^1} \theta_1(x), \dots, \nabla_{x^N} \theta_N(x)) \in \mathbb{R}^n$

is a solution of the GNEP.

To simplify the notations, we will denote, for any ν and any $x \in \mathbb{R}^n$, by $S_{\nu}(x)$ and $A_{\nu}(x^{-\nu})$ the subsets of $\mathbb{R}^{n_{\nu}}$

$$S_{\nu}(x) = S^{a}_{\theta_{\nu}(\cdot, x^{-\nu})}(x^{\nu}) \text{ and } A_{\nu}(x^{-\nu}) = \arg\min_{\mathbb{R}^{n_{\nu}}} \theta_{\nu}(\cdot, x^{-\nu}).$$

In order to construct the variational inequality problem we define the following set-valued map $N_{\theta}^{a}: \mathbb{R}^{n} \to 2^{\mathbb{R}^{n}}$ which is described, for any $x = (x^{1}, \dots, x^{p}) \in \mathbb{R}^{n_{1}} \times \dots \times \mathbb{R}^{n_{p}}$, by

$$N^a_{\theta}(x) = F_1(x) \times \ldots \times F_p(x),$$

where $F_{\nu}(x) = \begin{cases} \overline{B}_{\nu}(0,1) & \text{if } x^{\nu} \in A_{\nu}(x^{-\nu}) \\ \cos(N^{a}_{\theta_{\nu}}(x^{\nu}) \cap S_{\nu}(0,1)) & \text{otherwise} \end{cases}$

The set-valued map N_{θ}^{a} has nonempty convex compact values.

Lemma 2 Let $\nu \in \{1, \ldots, p\}$. If the function θ_{ν} is continuous quasiconvex with respect to the ν -th variable, then,

$$0 \in F_{\nu}(\bar{x}) \iff \bar{x}^{\nu} \in A_{\nu}(\bar{x}^{-\nu}).$$

Proof. It is sufficient to consider the case of a point \bar{x} such that $\bar{x}^{\nu} \notin A_{\nu}(\bar{x}^{-\nu})$. Since $\theta_{\nu}(\cdot, \bar{x}^{-\nu})$ is continuous at \bar{x}^{ν} , the interior of $S_{\nu}(\bar{x})$ is nonempty. Let us denote by K_{ν} the convex cone

$$K_{\nu} = N^{a}_{\theta_{\nu}}(\bar{x}^{\nu}) = (S_{\nu}(\bar{x}) - \bar{x}^{\nu})^{\circ}.$$

By quasiconvexity of θ_{ν} , K_{ν} is not reduced to $\{0\}$. Let us first observe that, since $S_{\nu}(\bar{x})$ has a nonempty interior, K_{ν} is a pointed cone, that is $K_{\nu} \cap (-K_{\nu}) = \{0\}$. Now let us suppose that $0 \in F_{\nu}(\bar{x})$. By Caratheodory theorem, there exist vectors $v_i \in [K_{\nu} \cap S_{\nu}(0, 1)], i = 1, ..., n + 1$ and scalars $\lambda_i \ge 0, i = 1, ..., n + 1$ with

$$\sum_{i=1}^{n+1} \lambda_i = 1 \text{ and } 0 = \sum_{i=1}^{n+1} \lambda_i v_i.$$

Since there exists at least one $r \in \{1, ..., n+1\}$ such that $\lambda_r > 0$ we have

$$v_r = -\sum_{i=1, i \neq r}^{n+1} \frac{\lambda_i}{\lambda_r} v_i$$

which clearly shows that v_r is an element of the convex cone $-K_{\nu}$. But $v_r \in S_{\nu}(0,1)$ and thus

 $v_r \neq 0$. This contradicts the fact that K_{ν} is pointed and the proof is complete.

Sufficient condition

In the following we assume that X is a given nonempty subset X of \mathbb{R}^n , such that for any ν , the set $X_{\nu}(x^{-\nu})$ is given as

$$X_{\nu}(x^{-\nu}) = \{ x^{\nu} \in \mathbb{R}^{n_{\nu}} : (x^{\nu}, x^{-\nu}) \in X \}.$$

Theorem 4 Let us assume that, for any ν , the function θ_{ν} is continuous and quasiconvex with respect to the ν -th variable. Then every solution of $VI(N_{\theta}^{a}, X)$ is a solution of the GNEP.

Sufficient condition

In the following we assume that X is a given nonempty subset X of \mathbb{R}^n , such that for any ν , the set $X_{\nu}(x^{-\nu})$ is given as

$$X_{\nu}(x^{-\nu}) = \{ x^{\nu} \in \mathbb{R}^{n_{\nu}} : (x^{\nu}, x^{-\nu}) \in X \}.$$

Theorem 5 Let us assume that, for any ν , the function θ_{ν} is continuous and quasiconvex with respect to the ν -th variable. Then every solution of $VI(N_{\theta}^{a}, X)$ is a solution of the GNEP.

Note that the link between GNEP and variational inequality is valid even if the constraint set X is neither convex nor compact.

Sufficient optimality condition

Proposition 6 $f: X \to \mathbb{R} \cup \{+\infty\}$ quasiconvex, radially cont. on dom f $C \subseteq X$ such that $conv(C) \subset \text{dom } f$. Suppose that $C \subset int(\text{dom } f)$.

Then $\bar{x} \in S(N_f^a \setminus \{0\}, C) \implies \forall x \in C, f(\bar{x}) \leq f(x).$

where $\bar{x} \in S(N_f^a \setminus \{0\}, K)$ means that there exists $\bar{x}^* \in N_f^a(\bar{x}) \setminus \{0\}$ such that

$$\langle \bar{x}^*, c - x \rangle \ge 0, \qquad \forall c \in C.$$

Proof. Let us consider \bar{x} to be a solution of $VI(N^a_{\theta}, X)$. There exists $v \in N^a_{\theta}(\bar{x})$ such that

$$\langle v, y - \bar{x} \rangle \ge 0, \quad \forall y \in X.$$
 (*)

Let $\nu \in \{1, \ldots, p\}$. If $\bar{x}^{\nu} \in A_{\nu}(\bar{x}^{-\nu})$ then obviously $\bar{x}^{\nu} \in Sol_{\nu}(\bar{x}^{-\nu})$. Otherwise $v^{\nu} \in F_{\nu}(\bar{x}) = \operatorname{co}(N^{a}_{\theta_{\nu}}(\bar{x}^{\nu}) \cap S_{\nu}(0,1))$. Thus, according to Lemma 2, there exist $\lambda > 0$ and $u^{\nu} \in N^{a}_{\theta_{\nu}}(\bar{x}^{\nu}) \setminus \{0\}$ satisfying $v^{\nu} = \lambda u^{\nu}$. Now for any $x^{\nu} \in X_{\nu}(\bar{x}^{-\nu})$, consider $y = (\bar{x}^{1}, \ldots, \bar{x}^{\nu-1}, x^{\nu}, \bar{x}^{\nu+1}, \ldots, \bar{x}^{p})$. From (*) one immediately obtains that $\langle u^{\nu}, x^{\nu} - \bar{x}^{\nu} \rangle \geq 0$. Since x^{ν} is an arbitrary element of $X_{\nu}(\bar{x}^{-\nu})$, we have that \bar{x}^{ν} is a solution of $VI(N^{a}_{\theta_{\nu}} \setminus \{0\}, X_{\nu}(\bar{x}^{-\nu}))$ and therefore, according to Prop. 4,

$$\bar{x}^{\nu} \in Sol_{\nu}(\bar{x}^{-\nu})$$

Since ν was arbitrarily chosen we conclude that \bar{x} solves the GNEP.

Theorem 7 Let us suppose that, for any ν , the loss function θ_{ν} is continuous and semistricitly quasiconvex with respect to the ν -th variable. Further assume that the set X is a nonempty convex subset of \mathbb{R}^n .

Then \bar{x} be a solution of the GNEP if and only if \bar{x} is a solution of the variational inequality $VI(N^a_{\theta}, X)$.

Theorem 8 (Ichiishi 83) Assume that for every player ν , the loss function θ_{ν} is continuous on \mathbb{R}^n and quasiconvex with respect to the ν -th variable. If the set-valued map is continuous with nonempty convex compact vales, then the generalized Nash equilibrium problem admits a solution.

Theorem 9 Assume that for every player ν , the loss function θ_{ν} is continuous on \mathbb{R}^n and semistricitly quasiconvex with respect to the ν -th variable. If the set X is nonempty, convex and compact, then the generalized Nash equilibrium problem admits a solution.

IV Special important cases

In case of a unique leader, the game can be reformulated as bilevel programming problem:

$$BL) \quad \text{inf} \quad f_u(x, y)$$

s.t.
$$\begin{cases} y \in S(x) \\ g_k(x, y) \le 0, \ k = 1, \dots, p \end{cases}$$

where S(x) is the solution set of the *lower level problem*

$$(PL_x) \qquad \inf_{y'} \quad f_l(x, y')$$

s.t.
$$\begin{cases} (x, y') \in C \\ h_j(x, y') \leq 0, \quad j = 1, \dots, q \end{cases}$$

Let us consider the set-valued map $S : X \to 2^Y$ which associates to any point x the (possibly empty) solution set of the lower level problem (PL_x) defined by x, that is

 $S(x) = \arg\min_{\Omega(x)} f_l(x, \cdot)$

where $\Omega(x)$ is the feasible region of the lower level problem (PL_x) , namely

 $\Omega(x) = \{ (x, y) \in X \times Y : (x, y) \in C \text{ and } h_j(x, y) \le 0, \ j = 1, \dots, q \}.$

Theorem 11 Let $f_u : X \times Y \to \mathbb{R} \cup \{+\infty\}$ be a lsc quasiconvex function, radially continuous on dom f_u . Assume that

- a) for every $\lambda > \inf_{X \times Y} f_u$, $\inf(S_{\lambda}(f_u)) \neq \emptyset$;
- *b)* Gr (S) is a locally finite union of a family $\{K_{\alpha} : \alpha \in A\}$ of closed convex sets of $X \times Y$;
- c) the functions g_k (k = 1, ..., p) are lsc quasiconvex on $X \times Y$;
- *d)* one of the following assumption holds:
 - i) for any $\alpha \in A$, K_{α} is weakly compact and bounded;
 - *ii)* the set $M = \{(x, y) : g_k(x, y) \le 0, k = 1, ..., p\}$ is weakly compact and bounded;
- e) the feasible region of problem (BL) is nonempty.

Then if A is finite the bilevel programming problem (BL) admits a global solution;

Theorem 12 Let $f_u : X \times Y \to \mathbb{R} \cup \{+\infty\}$ be a lsc quasiconvex function, radially continuous on dom f_u . Assume that

- a) for every $\lambda > \inf_{X \times Y} f_u$, $\inf(S_{\lambda}(f_u)) \neq \emptyset$;
- *b)* Gr (S) is a locally finite union of a family $\{K_{\alpha} : \alpha \in A\}$ of closed convex sets of $X \times Y$;
- c) the functions g_k (k = 1, ..., p) are lsc quasiconvex on $X \times Y$;
- *d)* one of the following assumption holds:
 - i) for any $\alpha \in A$, K_{α} is weakly compact and bounded;
 - *ii)* the set $M = \{(x, y) : g_k(x, y) \le 0, k = 1, ..., p\}$ is weakly compact and bounded;
- e) the feasible region of problem (BL) is nonempty.

Then if A is not finite but there exists a local mapping $\mathcal{M} = \{(\rho_w, A_w) : w \in \operatorname{Gr}(S)\}$ of $\operatorname{Gr}(S)$ such that the set $\{w \in \operatorname{Gr}(S) : \operatorname{card}(A_w) > 1\}$ is included in a weakly compact subset of $\operatorname{Gr}(S)$, the bilevel programming problem (BL) admits a local solution. $_{-p.29/36}$ Let us consider the following particular case of the bilevel problem

$$(BL_Lin) \quad \inf \quad f_u(x,y)$$

s.t.
$$\begin{cases} y \in S(x) \\ L_1(x,y) \le 0 \end{cases}$$

where S(x) is the solution set of the linear lower level problem

$$(PL_x_Lin) \qquad \inf_{y'} \quad L_2(x,y')$$

s.t. $L_3(x,y') \le 0$

where L_1 , L_2 and L_3 are linear continuous functions defined on $X \times Y$ with, respectively, values in \mathbb{R}^p , \mathbb{R} and \mathbb{R}^q . **Corollary 13** Let $f_u : X \times Y \to \mathbb{R} \cup \{+\infty\}$ be a lower semicontinuous quasiconvex function, radially continuous on dom f_u . Assume that

- a) for every $\lambda > \inf_{X \times Y} f_u$, $\operatorname{int}(S_{\lambda}(f_u)) \neq \emptyset$;
- c) the functions L_1 , L_2 and L_3 are linear continuous functions;
- *d)* the set $M = \{(x, y) : L_3(x, y) \le 0, k = 1, ..., p\}$ is weakly compact and bounded;
- e) the feasible region of problem (BL) is nonempty.

Then the bilevel programming problem (*BL_Lin*) *admits a global solution*.

Another case

For any $\alpha \in A$, the marginal function $l_{\alpha} : X \to \mathbb{R} \cup \{-\infty, +\infty\}$ of the lower level subproblem on C_{α} will be defined by

$$l_{\alpha}(x) = \inf_{y'} f_l(x, y')$$

s.t.
$$\begin{cases} (x, y') \in C_{\alpha} \\ h_j(x, y') \leq 0, \quad j = 1, \dots, q \end{cases}$$

Theorem 15 Let $f_u : X \times Y \to \mathbb{R} \cup \{+\infty\}$ be a lsc quasiconvex function, radially continuous on dom f_u and $f_l : X \times Y \to \mathbb{R} \cup \{+\infty\}$ be a lsc quasiconvex function. Assume that

- a) for every $\lambda > \inf_{X \times Y} f_u$, $\operatorname{int}(S_{\lambda}(f_u)) \neq \emptyset$;
- b) C is a locally finite union of a family $\{C_{\alpha} : \alpha \in A\}$ of closed convex sets of $X \times Y$;
- *c)* the functions g_k (k = 1, ..., p) and h_j (j = 1, ..., q) are lower semicontinuous quasiconvex on $X \times Y$;
- d) for any $\alpha \in A$, C_{α} is weakly compact and bounded;
- e) for any $\alpha \in A$, for any x, x' such that $(\{x\} \times Y) \cap C_{\alpha} \neq \emptyset$ and $(\{x'\} \times Y) \cap C_{\alpha} \neq \emptyset, l_{\alpha}(x) = l_{\alpha}(x');$
- f) the feasible region of problem (BL) is nonempty.

Then if A is finite the bilevel programming problem (BL) admits a global solution;

Theorem 16 Let $f_u : X \times Y \to \mathbb{R} \cup \{+\infty\}$ be a lsc quasiconvex function, radially continuous on dom f_u and $f_l : X \times Y \to \mathbb{R} \cup \{+\infty\}$ be a lsc quasiconvex function. Assume that

- a) for every $\lambda > \inf_{X \times Y} f_u$, $\operatorname{int}(S_{\lambda}(f_u)) \neq \emptyset$;
- b) C is a locally finite union of a family $\{C_{\alpha} : \alpha \in A\}$ of closed convex sets of $X \times Y$;
- *c)* the functions g_k (k = 1, ..., p) and h_j (j = 1, ..., q) are lower semicontinuous quasiconvex on $X \times Y$;
- d) for any $\alpha \in A$, C_{α} is weakly compact and bounded;
- e) for any $\alpha \in A$, for any x, x' such that $(\{x\} \times Y) \cap C_{\alpha} \neq \emptyset$ and $(\{x'\} \times Y) \cap C_{\alpha} \neq \emptyset, l_{\alpha}(x) = l_{\alpha}(x');$
- f) the feasible region of problem (BL) is nonempty.

Then if A is infinite but there exists a local mapping $\mathcal{M} = \{(\rho_{(x,y)}, A_{(x,y)}) : (x,y) \in C\}$ of C such that the set $\{(x,y) \in C : card(A_{(x,y)}) > 1\}$ is included in a weakly compact subset of C, then the bilevel programming problem (BL) admits a local solution. If there is a unique leader and the decision functions θ_{ν} are differentiable and convex, writing optimality conditions, the GNEP can be reformulated as a Mathematical Programming with Equilibrium constraints (MPEC)

If there is a unique leader and the decision functions θ_{ν} are differentiable and convex, writing optimality conditions, the GNEP can be reformulated as a Mathematical Programming with Equilibrium constraints (MPEC)

> (MPEC) $\inf f(z)$ s. t. $\begin{cases} g(z) \le 0\\ h(z) = 0\\ G(z) \ge 0, H(z) \ge 0\\ \langle G(z), H(z) \rangle = 0 \end{cases}$

$$(\text{MPEC}) \quad \inf f(z) \\ \text{s. t.} \quad \begin{cases} g(z) \leq 0 \\ h(z) = 0 \\ G(z) \geq 0, H(z) \geq 0 \\ \langle G(z), H(z) \rangle = 0 \end{cases}$$

 $f: X \to \mathbb{R} \cup \{+\infty\}, g: X \to \mathbb{R}^p$ quasiconvex

 $h: X \to \mathbb{R}^q$ and $G, H: X \to \mathbb{R}^m$ quasiaffine (i.e. each coordinate function is quasiaffine) **Proposition 17**

 $f: X \to \mathbb{R} \cup \{+\infty\} \text{ quasiconvex} \\ + \text{lsc, radial}^{ly} \text{ continuous on } \text{dom}(f) \\ + \text{for any } \lambda > \inf_X f, \text{int}(S_\lambda) \neq \emptyset. \\ + C \subseteq \text{int}(\text{dom } f) \\ + g \text{ quasiconvex continuous} \\ + h, H \text{ and } G \text{ quasiaffine continuous} \\ + \text{coercivity condition} \end{cases}$

Then the Quasiconvex-quasiaffine MPEC problem admits a global minimizer.

References

- J.-S. Pang & M. Fukushima, *Quasivariational enequalities*, *Generalized Nash Equilibrium*, and multi-leader-follower games CMS (2005).
- F. Facchinei & C. Kanzow, *Generalized Nash Equilibrium Problem* 40R5 (2007).
- D. Aussel & J. Dutta, Generalized Nash Equilibrium Problem, Variational inequalities and Quasiconvexity, Oper. Reasearch Letter (2008).
- D. Aussel & J. Ye, *Quasiconvex programming on locally finite union* of convex sets, JOTA, to appear, 19 pp.
- D. Aussel & J. Ye, *Quasiconvex programming with starshaped constraint region and application to quasiconvex MPEC*, Optimization 55 (2006), 433-457.