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E = () with partial order (reflexive and transitive) <; A C E.
a € Ais efficient of Aiif

acAagxa—a<a.

The set of ais denoted Min(A, ). Given x € E, lower and
upper section at x,

Ly={yecE: y<xx}, Sx={ycE: xxy},

&iU&

xX€A
When <x=<p, P being a convex cone, then

Set

(Xsy<=y—-xeP)Ly=x—P,Sx=x+P, Spy=A+P.

Flores-Bazan Overview on Generalized convexity and VO




Introduction
Vector Optimization Setting of the problem
Generalized convexity of vector functions

Asymptotic Analysis/finite dimensional
The convex case/A nonconvex case

@ Property (Z): each totally ordered (chain) subset of A has
a lower bound in A
)

@ Ais order-totally-complete (it has no covering of form
{(Lx)¢: x € D} with D C A being totally ordered)

0

@ each maximal totally ordered subset of A has a lower
bound in A.

Ag ULﬁ@@#Aﬁ(X\ULﬁ)@@#AﬂﬂLX@HLB.

xeD xeD xeD
Sonntag-Zalinescu, 2000; Ng-Zheng, 2002; Corley, 1987; Luc,
1989; Ferro, 1996, 1997, among others.

Flores-Bazan Overview on Generalized convexity and VO




Introduction

Vector Optimization Setting of the problem
Generalized convexity of vector functions
Asymptotic Analysis/finite dimensional
The convex case/A nonconvex case

Basic Definitions:

(a) [Ng-Zheng, 2002] A is order-semicompact (resp.
order-s-semicompact) if every covering of A of form
{LS: x € D}, D C A(resp. D C E), has a finite subcover.

(b) [Luc, 1989; FB-Hernandez-Novo, 2008] A es
order-complete if A covering of form {L$ : o € I} where
{Xo: a € I} is a decreasing net in A.

A directed set (/,>) is a set | # () together with a reflexive and
transitive relation >: for any two elements «, ¢ € I there exists
~v € lwithy > aand v > .

A netin E is a map from a directed set (/,>) to E. A net

{Va : € l}is decreasingif yz < y, foreach o, 8 € I, 5 > a.
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If Ais order-totally-complete then Min A # ().

Proof. Let P = set of totally ordered sets in A. Since A # 0,

P # (). Moreover, P equipped with the partial order - inclusion,
becomes a partially ordered set. By standard arguments we
can prove that any chain in P has an upper bound and, by
Zorn’s lemma, we get a maximal set D € P.

Applying a previous equivalence, there exists a lower bound

a c Aof D. We claim that a € Min A. Indeed, if & € A satisfies
that & < athen &' is also a lower bounded of D. Thus, & € D
by the maximality of D in P. Hence, a < & and therefore

a € Min A.

In particular, if A C E is order-s-semicompact,
order-semicompact or order-complete, then Min A # ().
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Teorema [Ng-Zheng, 2002; FB-Hernandez-Novo, 2008]

The following are equivalent:

(a) Min(A, <) # 0;

(b) Ahas a maximal totally ordered subset minorized by an
order-s-semicompact subset H of Sy;

(c) Ahas a nonempty section which is order-complete;

(d) Ahas a nonempty section which is order-totally-complete
(equiv. satisfies property (2)).

Sa=|J{yreE: x<y}

XEA
(x=<p, I(P) ={0});2eMin A<= An(a— P) = {a}. L)
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Sketch - proof

(a) = (b): Take a € Min A, and consider
P={DCE:L;nACDC S;nAand D is totally ordered }.

It is clear LN Ais totally ordered, LN A € P. By equipping P
with the partial order - inclusion- we can prove by standard
arguments that any chain in P has an upper bound. Therefore,
there exists a maximal totally ordered element Dy € P, i.e.,

LanAC Dy CS3NAC S,

Set H = {a}. Then Dy is minorized by H which is an
order-s-semicompact subset of Su.

It generalizes and unifies results by Luc 1989, Ng-Zheng 2002
among others.
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Optimization problem

X Hausdorff top. s.p; f : X — (E, <). Consider

min{f(x) : x € X} (P)
f(X)={f(x): x € X}. Asol x € X to (P) is such that
f(X) € Min(f(X), ).
Theorem [FB-Hernandez-Novo, 2008]
Let X compact. If f~1(L,) closed V y € f(X) (resp.V y € E),
then f(X)
(a) is order-semicomp. (resp. f(X) is order-s-semicomp.);
(b) has the domination property, i.e., every lower section of

f(X) has an efficient point.

As a consequence, Min(f(X), <) # 0.
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Proof.

We only prove (a) when f=1(L,) is closed for all y € f(X).
Suppose [Jyep LG is a covering of f(X) withD C f(X). Put

Ug={xe X: f(x) & Lg}.

Then, X = Uyep Ug- Since f~1(Ly) is closed, Uy = (f~1(Lg))¢
is open vV d € D. Moreover, as X is compact, 3 finite set
{di,...,dr} C D such that

X:Ud1U---UUd,.

Hence, L U ---U Lg covers f(X) and therefore f(X) is
order-semicompact. R

. &,
A |4
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We introduce the following new

Definition [FB-Hernandez-Novo, 2008]: Let xp € X.

We say f is decreasingly lower bounded at xg if for each net
{X.: a € I} convergent to xp such that {f(x,): « € I} is
decreasing, the following holds

Vael: f(Xo) € Lf(Xa).

We say that f is decreasingly lower bounded (in X) if it is for
each xp € X.
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Proposition [FB-Hernandez-Novo, 2008]

If f=1(L,) is closed V y € f(X), then f is decreasingly lower
bounded.

Theorem [FB-Hernandez-Novo, 2008]

Let X compact. If f is decreasingly lower bounded, then
(a) f(X) is order-complete;

(b) f(X) has the domination property;

(c) Minf(X) # 0.

* ok k kK

" "
W
At

Flores-Bazan Overview on Generalized convexity and VO



Introduction

Vector Optimization Setting of the problem
Generalized convexity of vector functions
Asymptotic Analysis/finite dimensional
The convex case/A nonconvex case

Special situation

Y top. vec. space ordered by a closed convex cone P C Y.
Define </ in2Y.1f A, B € 2" then

A<'B <« BCA+P.

This is partial order: reflexive and transitive [Jahn, 2003;
Kuroiwa, 1998, 2003].

Kuroiwa introduces the notion of efficient set for a family of 7 C
of nonempty subsets of Y. We say A € F is a [-minimal set

(A € IMinF) if

Ber, Bs'A = A<'B.

Flores-Bazan Overview on Generalized convexity and VO




Introduction
Vector Optimization Setting of the problem
Generalized convexity of vector functions

Asymptotic Analysis/finite dimensional
The convex case/A nonconvex case

@ X real Hausd. top. vect. spac.; Y real normed vect. spac.;
@ P C Y aconvex cone, int P # (), I(P) = PN (—P);
@ K C X aclosed set; F : K — Y a vector function.

E = the set of X such that
xeK: F(x)— F(x)¢ —-P\I(P) VxeK.

Its elements are called efficient points;
Ew = the set of X such that

xeK: F(x)—F(Xx)¢ —int P Vx € K.
Its elements are called weakly efficient points.

ECEw=) {)‘(GK: F()'()—F(X)gZintP}.

xeK
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How we can compute the efficient points?

Theorem: Consider P = R”, F(x) = Cx (linear), K polyhedra.

X is efficient < 3 p* > 0 such that x solves

min{(p*, F(x)) : Ax > b, x > 0}.

In a standar notation x € argmin,(p*, F(-)),
K={xeR": Ax > b, x > 0}.
Does the previous theorem remains valid for non linear F?

xecE<=Xxc¢ U argming (p*, F(-)) (<= always!!);
prERT,

— weighting method
How to choice p* € R, ?
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Example 1.1.

Let F(xq,X2) = (X1, %), X € K = {(X1,%2) ER?: x; +xo > 1}.
Here, E = Eyy = {(X1,X) € R?: x; + xo = 1}. However,

anf (p*, F(x)) = —o0, p* = (b}, P3), P} # P

XER

Example 1.2.

Let F(x) = (V1 + x2,x), x € K =R. Here,
E = Ew = | — o0,0]. However, if p5 > p; > 0, and

f(p", F(x)) = —co, p* = (p7, P2).

A lot of work to do !!! QL
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Leth: X — RU{+oo}. ltis
@ quasiconvex if

h(x) < h(y) = h(§) < h(y) V¢ € (x,y);

or equivalently, {x : h(x) <t} is convex for all t € R.

@ semistrictly quasiconvex if

h(x) < h(y) = h(§) < h(y) V&€ (xy)

Proposition
If h: X - RU {+o0} is semistrictly quasiconvex and lower
semicontinuous, then it is quasiconvex. S
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Theorem [Malivert-Boissard, 1994] K C R"” convex

each f; (i =1,..., m) is quasiconvex, semistrictly quasiconvex,
and Isc along lines in K. Then

Ew=|HEW): JC{1,...,m},J #0}.

Example 2.
Consider F = (fi, ), K = [0, +o0],

2, ifx¢g[1,2]
fi(x) = _ fo(x) =[x —5].
1, ifxe[1,2]

* % % % k.

Here, E = {2,5}, Ew = [1.8]. 1)

LY
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Some notations
G*={xeK:F(x)=A € —P};Gy={x e K: F(x)=\ ¢ int P};

Gly)={xe K: F(x)— F(y) € int P};

epi F={(x,y) e KxY: yeF(x)+ P}

There is no relationship between the closedness of G* for all
A € Y and the closedness of G(y) for all y € K even when P is
additionally closed.

@ F: K — Yis[Penot-Thera, 1979] P-lower semicontinuous
(P-Isc)at xp € Kif Vopenset VC YstF(x) e V3an
open neighborhood U C X of xg st F(UNK) C V + P. We
shall say that F is P-Isc (on K) if it is at every xg € K.

@ Fis R-Isc if and only if each f; is Isc.
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Proposition [FB, 2003; Bianchi-Hadjisavvas-Schaible, 1997;

The Luc, 1989]

P C Yis convex cone, K C X and S C Y be closed sets such

that S+ PC Sand S# Y; F: K — Y. The following hold.

(a) If Fis a P-Isc function, then {x € K: F(x) e A— S} is
closed forall A € Y;

(b) Assume int P # () and P closed: F is P-Isc if and only if
{xeK: F(x)— X ¢int P} isclosedforall A € Y;

(c) Assume int P # () and P closed: epi F is closed if and only
if {xe K: F(x)— A€ —P}isclosedforall A € Y;

(d) Assume int P # () and P closed: if F is P-Isc then epi F is
closed.
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Theorem [Ferro, 1982; (set-valued) Ng-Zheng, 2002]

P convex cone; K compact; G* closed for all A € Y (<= epi F
is closed if int P # (). Then E # ().

Proof. We know Min F(X) # (), thus E # 0.

G'={xeK:F(x)—\e—-P}
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Theorem: P convex cone, int P # (); K compact;
G(y)={xe K: F(x)— F(y) € int P} closed V y € K. Then
Ew # 0.

Proof. Notice that Eyy = E(F(K)|C) for C = (int P) U {0}. The
closedness of Ey is obvious; it suffices to show that Eyy # 0. If
it is not order-complete for C, let { F(x,)} be a decreasing net
with {(F(x,) — C)°}. forming a covering of F(K). By
compactness, (assume) x, — xo for some xy € K. If Eyy = 0, 3
y € K such that F(y) — F(xo) € —int P. For F(y), 3 o such
that F(y) — F(Xa,) € —C. This implies

F(y) = F(Xa) = F(y) = F(Xao) + F(Xas) = F(Xao)
ce(Y\-C)+CCY\-CCY\—-intP Ya>a.
G(y) closed implies F(xg) — F(y) ¢ int P, a contradiction.
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Since int P # (), take y € int P. Then the set
B={y e P :(y"y)=1}

is a w*-compact convex base for P*,i.e., 0 ¢ B and
P* = U0 tB. In this case,

pe P« (p*,p) >0 Vp*eB,

peEint P<— (p*,p) >0 Vp* €B.

The set E* of the extreme points of B is nonempty by the
Krein-Milman theorem.
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Definitions: Let ) # K C X, F : K — Y is said to be:

1. P-convex if, x,y € K,
tFx)+(1—-HF(y) e F(tx+ (1 —t)y)+ P, Yte |0, 1];

F is R"-convex if and only if each f; is convex.
2. properly P-quasiconvex [Ferro, 1982] if, x,y € K, t € ]0,1],

Fitx+(1—-ty)e F(x)—P or F(tx+(1—-1t)y) € F(x)+ P,

or equivalently, {¢ € K : F(§) ¢ A+ P}isconvex ¥V \ € Y.
F(x) = (x, x2), K = ] — o0, 0], satisfies 2 but not 1;
F(x) = (x?, —x), K = R, satisfies 1 but not 2;

Flores-Bazan Overview on Generalized convexity and VO



Introduction

Vector Optimization Setting of the problem
Generalized convexity of vector functions
Asymptotic Analysis/finite dimensional
The convex case/A nonconvex case

More Definitions

3. naturally P-quasiconvex [Tanaka, 1994] if, x, y € K,
te ]0,1[

F(tx+(1-t)y) € uF(x)+(1—p)F(y)—P, for somep € [0,1],

or equivalently, F([x, y]) € co{F(x), F(y)} — P.

F(x) = (x?,1 — x?), K = [0, 1], satisfies 3 but not 2 or 1.
4. scalarly P-quasiconvex [Jeyakumar-Oettli-Natividad, 1993]

if, for p* € P*\ {0}, x € K — (p*, F(x)) is quasiconvex.

Both are equivalent [FB-Hadjisavvas-Vera, 2007] if int P # ().

= F(K) + P is convex.
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More Definitions

5. P-quasiconvex [Ferro, 1982] if,
{£eK:F()—Xe —P} isconvexVAeY.

F is R"-quasiconvex if and only if each f; is quasiconvex.

[Benoist-Borwein-Popovici, 2003] This is equivalent to:

given any p* € E*, x € K — (p*, F(x)) is quasiconvex.
6. semistrictly-P-quasiconvex at y [Jahn-Sachs, 1986] if,

xeK, Fx)-F(y) e =P = F({)-F(y) e —P V¢ € Ix,y[.

[R. Cambini, 1998] When X = R", Y = R?, P C R? polyhedral,
int P # 0, F : K — R? continuous, both are equivalent.

Flores-Bazan Overview on Generalized convexity and VO




Introduction

Vector Optimization Setting of the problem
Generalized convexity of vector functions
Asymptotic Analysis/finite dimensional

The convex case/A nonconvex case

One more Definition

7. semistrictly-(Y \ —int P)-quasiconvex at y [FB, 2004] if,
xeK,

F(x)—F(y)¢int P= F(§) — F(y) ¢int P V¢ € |x,y|.

Teorema [FB, 2004]. Sean X, Y, K, P, F as above. We have:

P-convex properly P- quasi
semistr (Y\-intP)- quasis— naturally P -quaesi
rp closed it Py g
Pelosed
rx_m Pilosed —— scalarly P-gqussi
, Feont.

semistr (.P) ~ uasi

4
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P-quasiconv. implies semistrictly (Y \ —int P)-quasiconv.
Proof. Take any x, y € K such that F(x) — F(y) ¢ int P, and
suppose 3¢ € |x, y| satisfying F(§) — F(y) € int P. If

F(x) — F(&) € P, the latter inclusion implies

F(x) — F(y) € int P which cannot happen by the choice of x, y.
Hence F(x) — F(¢) ¢ P. By a Lemma due to
Bianchi-Hadjisavvas-Schaible (1997) (a2 0 b < 0 =3¢ 2 0,
a<c, b <c)there exists ¢ ¢ P such that

F(x)—F()—ce—P and F(y)—F(&)—ce —P.

By the P-quasiconvexity of F, we conclude in particular

F(¢) — F(¢) — ¢ = —c € —P giving a contradiction.
Consequently F(&) — F(y) ¢ int P for all £ € ]x, y|[, proving the
desired result.
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Definition

Given S C Y, K C X convex. The function F: K — Y'is
semistrictly (S)-quasiconvex at y € K, if for every x € K, x # y,
F(x)— F(y) e -8 = F(§)- F(y)e-S V¢€ Ixyl.

We say that F is semistrictly (S)-quasiconvex (on K) if it is at

every y € K.
_ 1
F‘I(X):(e X’Xz)v XER; FZ(X):(Wa’X|)> XGR;
F3(X1 X2) = ( X12 X3> (X1 X2) S Rz
| 12 2) ’

are semistrictly (R? \ —int R2 )-quasiconvex.
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Particular cases

Y = R, RJr = [0, +OO[, RJrJr = ]0, +OO[
semistrict (R )-quasiconvexity = quasiconvexity;
semistrict (R 4 )-quasiconvexity = semistrict quasiconvexity.

The previous definition is related to the problem of finding
X € X satisfying

X € K such that F(x) — F(x) € S Vx € K.

The set of such X is denoted by Eg.
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SetL, ={xeK: F(x)—- F(y) e -S}.

Proposition

Assume 0 € S (forinstance S= Y\ —int P, S= Y\ —P\ I(P));
K convex; F : K — Y, y € K. The FAE:

(a) F is semistrictly (S)-quasiconvex at y;
(b) Ly is starshaped at y.
If X =R, (b) may be substituted by the convexity of £,,.

Proposition

Let S, K as above, and x € K be a local S-minimal for F on K.
Then, x € Es <= F is semistrictly (Y \ —S)-quasiconvex at X.
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To fix ideas let X = R", the asymptotic cone of C is
C*={veX: 3t 10,3 xy€C, thxn — v},
When C is closed and starshaped at xo € C, one has

= () #(C - xo).

t>0
If C is convex the above expression is independent of x € C.

Es= ) {xeK; F(x)—F(y)e—s},

yeK
(Es* < N {x eK: F(x)- F(y) e —s}“
yek
(Es)™ C ﬂ {v eEK>®: F(y+Av)—F(y)e =S VA> 0} = Rs. B

yekK
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We introduce the following cones in order to deal with the case
when K unbounded. Here SC Y,

Re =) {VEKOO: F(y + \v)— F(y) e —P V)\>0},
yeK

Rs= {VGKOO: F(y +\v)— F(y) € -S V)\>0}.
yekK

We recall that Es denotes the set of x € X satisfying
X € K such that F(x) — F(Xx) e S Vx € K.

Es#0 = 0¢€¢S.
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L, ={xe K;F(x)— F(y) e -S}.

Theorem

K closed convex; P convex cone; S C Y suchthat S+ P C S;
F : K — Y semistrictly (S)-quasiconvex and Ly, is closed
vV y € K. The following hold:
@ Es+ Rp=Egs, Rp C (Es)™ C Rs;
@ if Es # () and either X =R or Y = R (with P = [0, +o0),
— Egis convex and (Eg)*> = Rg;
® Ep # 0 = (Es)> = Rs, (Ep)> = Rp.

Models: S= P, S= Y\ —(P\ I(P)), S= Y\ —intP.
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Proposition [FB-Vera, 2006]
K C R" closed convex; SC Y; F: K — Y semistrictly
(S)-quasiconvex and Ly, closed for all y € K.

@ If Rg = {0} = (K, = KN B(0,r))

dr>0Vxe K\K,3yeK :Fly)—-Fx)¢S;, (%)
@ if X = R then (without the closedness of L),

Rs = {0} <= (*) holds.

when S = Y\ —int P, we denote Eg = Eyy, Rs = Rw.
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Theorem

K C R" closed convex; P C Y closed cone; F: K — Y

semistrictly (Y \ —int P)-quasiconvex with

Gly)={xeK:F(x)—F(y) £int P} closed V¥ y € K. Then
Ry = {0} = Ey # 0 and compact.

@ Unfortunately, we do not know whether the condition
Rw = {0} is also necessary for the nonemptines and
compactness of Eyy in this general setting.

@ convex case If P =R/ and each component of F is convex
and Isc, the equivalence holds [Deng, 1998]. It will be
extended for general cones latter on. e

. &8,
A 1K

@ anonconvexcaselfn=1orY =R ...
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Weset X =R" Y =R",

Hypothesis on the cone P

P C R™is a closed convex cone, int P # () (thus P* = | J;.o 1B
for some compact convex set B). We require that the set B, of
extreme points of B is closed.

Obviously the polhyedral and the ice-cream cones satisfy the
previous hypothesis.
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Set (S§=R"\ —int P)

Ev= U {xeK: <q,F(x)—F(y)>§0},

yeK qeBy

Re= N N {vrek=: (q.Fly+rv) - Fy) <o},

yEK A>0qgeB,

Additionally, we also consider the cone

Rv= U {veK‘x’: (q,Fly+ v)—F(y)) <0 V)\>O}.
yeK geBy
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Corollary: hy(x) = (q, F(x)), g€ P*,x € K.
Assume hg is convex for all g € By; F : K — R P-Isc. Then,

o if Ey #0,
N {vek=: hyv) <0} C(Ew)™C
qeBy
U {v € K®: hP(v) < o};
q€By
@ if argminy hy # () for all g € By,
(Ew)* = | {veK=: hy(v)<o} =R
qeBo i M
et/
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Examples showing optimality of the assumptions

Example 3.1.

Take P = Ri, K= Rz, fi(x1,X2) = X12, fo(x1,X2) = €*2. Then
fe(vi,v2) =0if vy =0, £°(v4, Vo) = 400 elsewhere;
13°(v4,v2) =0 if vo <0, £3°(vq, v2) = 400 elsewhere. Thus,

Re = {0} x ]~ o0,0], Aw = ({0} xR) U (R x ] - o0,0]),

while Eyy = {0} x R = (Ey)°°. Notice that argmin, f, = ().
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The convex case

Theorem [Deng, 1998; FB-Vera, 2006]

K C R" closed convex; P closed convex cone as above.
Assume F : K — R™is P-Isc such that (g, F(-)) : K — Ris
convexV q € By. The FAE:

(a) Ew is nonempty and compact;
(b) argmin(q, F(-)) is nonempty and compact for all g € By;
(¢) Rw= {0}
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The nonconvex case: non quasiconvexity

Theorem [FB-Vera, 2006]

K C R closed convex; P C Y convex cone, int P # ();

F : K — Y is semistrictly (Y \ —int P)-quasiconvex such that
Ly is closed V y € K. Then, Eyy is closed convex, and the FAE:

(a) Aw = {0};

(b) 3r>0,Vvxe K\K,, 3y e K, : F(y)— F(x) € —int P,
where Ky = [-r,r] N K;

(c) Ew # 0 and bounded (it is already closed and convex).

When P = R some of the components of F may be not
quasiconvex.
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The nonconvex case: quasiconvexity

Theorem [FB, 2004; FB-Vera, 2006]

Y =R", K C Ris closed convex; P C R™ closed convex cone

as above. Assume (q, F(-)) : K — R is Isc and semistrictly
quasiconvex V g € By. The FAE:

(a) Ew is a nonempty compact convex set;

(b) argmink(q, F(-)) is a nonempty compact convex set for all
q € By;

(c) 3r>0,Vxe K\ K, 3y e K (K =[-r,r]NK):

(q,F(y) — F(x)) <0 Vg€ Bp.
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Examples showing optimality of the assumptions

Example 4.1.

Consider P=R2, K =R, F(x) = (/|x], i) X € R. Here,
EW = ] — O0,0]

Example 4.2.
Consider P =R2, F = (f;, k), K = [0, +oo[ where,

2, ifx¢[1,2] —e > ifx>5
1, ifxe[1,2]

4 — X, if x <5

Here, Eyy = [1, +o0|.
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Conjecture:
Assume that each f; : K C R” — R is semistrictly quasiconvex
andlsc,i=1,...,m. The FAE:

@ Eyy is nonempty and compact;

@ each argminy f; is nonempty and compact.

ey
-
&,
A2
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Althernative theorems
Characterization through linear scalarization

Theorem of the alternative

The starting point: linear case

Theorem [Gordan Paul, 1873] Let A matrix.

Then, exactly one of the following sistems has solution:
(I) Ax <0;

(Ih ATp=0,p>0,p#0.
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Althernative theorems
Characterization through linear scalarization

Theorem of the alternative

The convex case

Theorem [Fan-Glicksberg-Hoffman, 1957] Let K C R" convex,

fi:K—R,i=1,...,m, convex. Then, exactly one of the
following two sistems has solution:

() filx)<0,i=1,....,m, x € K;
(/1) peRT\ {0}, s pifi(x) > 0V x € K.

Sketch of Proof. Set F = (fi, ..., fm).

Not (/) <= F(K)N(=intR7) =0 < (F(K)+R])N(—intRT) =0
$ (F(K)+RT isconvex = (/I))
cone(F(K) +RT) N (—int RT) =0




Theorem of the alternative AiETENYD {TSeiEis

Characterization through linear scalarization

Let P closed convex cone with int P ## ()

F(Ky~ACY, R~ P

(I) An(—int P) # 0,

(1) co(A) N (—int P) = (.
Trivial part (/) y (/) = absurd.
Non trivial part: Hipothesis (¢, ?)

AN (—int P) = ) = co(A) N (—int P) = 0.
AN (—int P) = ) «< cone(A+ P) N (—int P) = (.

It suffices the convexity of cone(A + P)!!
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Althernative theorems
Characterization through linear scalarization

Theorem of the alternative

Definition: Let P C Y closed convex cone, int P # ).

The set AC Yis:

(a) generalized subconvexlike [Yang-Yang-Chen, 2000] if
JueintP, Vxq, o€ A, Vae |0,1[, Ve >0,3p>0
such that

eu+axs + (1 —a)xe € pA+ P; (1)
(b) presubconvexlike [Zeng, 2002] if
JueY,Vxy, o€ A Vae ]0,1[, Ve > 0,3 p>0such
that (1) holdse;

(c) nearly subconvexlike [Sach, 2003; Yang-Li-Wang, 2001] if
cone(A + P) is convex.

(a), (b), (c) are equiv. [FB-Hadjisavvas-Vera, 2007].



Theorem of the alternative AiETENYD {TSeiEis

Characterization through linear scalarization

cone; (A + int P) is convex <= cone(A + int P) is convex.
— cone(A + int P) = cone(A + int P) = cone(A + int P) =
cone(A + P) = cone; (A+ P) is convex.
Also,
int(cone (A + P)) = int(cone (A) + P) = cone, (A) + int P =
cone; (A + int P) is convex. Consequently,

cone(A + P) is convex <= cone(A + int P) is convex.

Here, cone(M) = cone(M).

cone(M) = U tM, cone (M) = U tM, cone(M) = cone(M).
>0 t>0
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Characterization through linear scalarization

Theorem of the alternative

Theorem [Yang-Yang-Chen, 2000; Yang-Li-Wang, 2001]
P C Y as above, A C Y. Assume cone(A + P)is convex. Then

AN (—int P) = ) = co(A) N (—int P) = 0.

Example: [FB-Hadjisavvas-Vera, 2007]

co(AN(imt Pz ¢
ane (A+P) nonconvex
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. Althernative theorems
Theorem of the alternative )
Characterization through linear scalarization

Def: A cone K C Y is called “pointed” if
X1 + -+ X, = 0 is impossible for xq, X, ..., X, in K unless
X{=Xo=---=Xx=0. (<= co KN (—co K) = {0}).

Our first main result is the following:

Theorem [FB-Hadjisavvas-Vera, 2007]

0 #£ACY, PC Y convex closed cone, int P # (). The FAE:
(a) cone(A + int P) is pointed;

(b) co(A) N (—int P) = 0.
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Theorem of the alternative ;
Characterization through linear scalarization

Sketch of proof

We first prove cone(A+ int P) is pointed —> AN (—int P) = 0. If
3 x € AN (—int P), then x = 2(x — 3) € cone(A + int P) and
—X = X+ (—2x) € A+int P C cone(A + int P). By pointedness,
0 = x + (—x) implies x = 0 € int P, a contradiction.

Now assume that (a) holds. If (b) does not hold, 3 x € —int P
such that x = Y7, Nja; with 37, A =1, \; > 0, a; € A. Thus,
0=>",)(a — x). Using (a), \i(gi—x)=0Vi=1,...,ma
contradiction. Conversely, assume (b) holds. If cone(A + int P)
is not pointed, then 3 x; € cone(A +int P)\{0}, i =1,2,...n,
ST, x =0.8So0, x; = \i(y; + u;) with \; > 0, y; € Aand

uj € int P. Hence "7, \iyi = — Y1, Aiu;. Setting

pi = Ai/ 271 Aj we get

S0 wiyi = — S0 piu; € co(A) N (—int P), a contradiction.
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Theorem of the alternative Characterization through linear scalarization

The optimal 2D alternative theorem

Theorem [FB-Hadjisavvas-Vera, 2007]

Let P C R? be a cone as before with int P # (}, and A C R? be
satisfying AN (—int P) = (). The following hold:
co(A) N (—int P) = ) <= cone(A + P) is convex <
cone(A + int P) is convex <= cone(A) + P is convex <=

cone(A + P) is convex.

We are in R?, int(cone (A + P)) U {0} = cone(A + int P) C

cone(A + int P) C cone(A + P) C cone(A) + P C cone(A + P).
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Theorem of the alternative

AN(—int P) = () & cone(A+P) is convex <= co(A)N(—int P) = ().

Overview on Generalized convexity and VO
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Theorem of the alternative Characterization through linear scalarization

Theorem [FB-Hadjisavvas-Vera, 2007] Y LCTVS.
P C Y closed convex cone, int P # () and int P* # (). The FAE:
(a) forevery AC Y one has

co(A) N (—int P) = () = cone(A + P) is convex;
(b) for every AC Y one has

co(A) N (—int P) = ) = cone (A) + P is convex;
(c) for every AC Y one has

co(A) N (—int P) = () = cone (A + int P) is convex;

(d) Y is at most two-dimensional.
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Theorem of the alternative AiETENYD {TSeiEis

Characterization through linear scalarization

The assumption int P* # () (which corresponds to pointedness
of P when Y is finite-dimensional) cannot be removed.

Indeed, let P={y € Y : (p*,y) > 0} where p* € Y*\{0}. Then
P* = cone ({p*}), int P* = (). For any nonempty A C Y, the set
cone(A + int P) is convex if AN (—int P) =0

(<= ACP < co(A) N (—int P) = 0).

Thus, the previous implication holds independently of the
dimension of the space Y.
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Theorem of the alternative

Characterization of weakly efficient solutions via linear
scalarization

K C R" convex and P as above. Given F : K — R we
consider

xeK: F(x)— F(X) ¢ —int P, V x € K,
Clearly, x € Eyy < (F(K) — F(X)) N —int P = (.
Teorema[FB-Hadjisavvas-Vera, 2007]: The FAE

(a)

X € U argming (0%, F(-));
p*eP*,p*#0
(b) cone(F(K) — F(X) + int P) is pointed.
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Theorem of the alternative Characterization through linear scalarization

Theorem [FB-Hadjisavvas-Vera, 2007]

Set m = 2. The FAE:
(a)

X € U argmin, (p*, F(+));
prEP*,p*#0

(b) x € Ew and cone(F(K) — F(X) + int P) is convex.

(¢) X € Ew and cone(F(K) — F(x) + P) is convex.

(d) x € Ew and cone(F(K) — F(x)) + P is convex.

cone(A) = U tA.

>0
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Theorem of the alternative Characterization through linear scalarization

Example
Consider F = (fi, ), K = [0, +oc[ where,

2, ifx¢g[1,2]
fi(x) = | f(x) = |x - 5].
1, ifxe[1,2]
Here, Eyy = [1, 8], whereas

p*€R3 ,p*£0
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FK)-FISIHIR |

=3




Althernative theorems

Theorem of the alternative Characterization through linear scalarization

Open problem
to find an assumption convexity of ?? (*) such that

(*) & AN(—=int P) =0 = co(A) N (—int P) = 0.

At least for A ~ G(K) some class of vector functions
G:K—-Y.
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Theorem of the alternative Characterization through linear scalarization

Characterizing the Fritz-John type optimality
conditions in VO

Take X normed space. It is known that if X is a local minimum
point for (differentiable) F : K — R on K, then

VF(x) e (T(K; X))
Here, T(C; x) denotes the contingent cone of C at x € C,
T(C;X) = {ve X:3810, vk € X,V — v, X+ 1tk € C VK}.

How to extend to the vector case ?
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Characterization through linear scalarization

K C Xclosed; F: K — R™; PCR™ int P # (), a vector X € K
is a local weakly efficient solution for F on K (x € E{,‘f/c), if there
exists an open neighborhood V of x such that

(F(KN V) = F(X)) N (~int P) = 0.

We say that a function h: X — R admits a Hadamard
directional derivative at x € X in the direction v if

un &+ 1) - h(x)

e R.
(t,u)—(0+,v) t

In this case, we denote such a limit by dh(x; v).

Flores-Bazan Overview on Generalized convexity and VO



. rnative theorems
Theorem of the alternative il

Characterization through linear scalarization

If F=(f,...,fm), we set
F(v) = ((dfi(X; v),...,dfn(X; v)),

F(T(K; X)) ={F(v)e R™: ve T(K;X)}.

It is known that if dfi(x;-), i=1,...,mdo existin T(K; X), and
X € E°, then

(dfi(x;v),....dfn(X;v)) € R"\ —int P, Vv e T(K;X),

or equivalently, 7(T(K; X)) N (—int P) = (.
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Vi Characterization through linear scalarization

Theorem [FB-Hadjisavvas-Vera, 2007][Y = R™]
Under the assumptions above, the FAE:

@ J(af,...,ap) € P\ {0}, ajdfi(X,v)+ -+ ap,din(X,v) >
0 VveT(K;X);
@ cone(F(T(K;Xx)) + int P) is pointed.

A more precise formulation may be obtained when m = 2.

Theorem [FB-Hadjisavvas-Vera, 2007][m = 2]

The FAE:
@ J(aj,a3) € P\ {0}, ajdfi(x,v)+ajdh(Xx,v)>0 Vve
T(K; X);
@ F(T(K; X)) N (—int P) = () & cone(F(T(K; X))+ int P) is
convex.
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Characterization through linear scalarization

P=RT, fi:R" — Risdiff. fori=1,...,m. Then
dfl()_(v V): <VfI()_()7V>’

F(v) = ((VH(X),v),....(Vin(X),V)).
Moreover,
Jo* € RT\{0}, ajdfi(X,v)+ - -+ap,dfn(X,v) >0 Vv e T(K;X)
)
co({Vfi(x): i=1,....mHN(T(K; X)) #0

This is not always a necessary optimality condition.
In fact !l
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Characterization through linear scalarization

Example [FB-Hadjisavvas-Vera, 2007]

K = {(x1,X2) : (x1 + 2x2)(2x1 + x2) < 0}. Take fi(x1, X2) = X;,
x =(0,0) € Ew: T(K; X) = K is nonconvex; F(v) = v;
(T(K: X)) = {(0,0)}, and

co({Vfi(x): i=1,2})N(T(K; x))* = 0.

4
K/ / F(%): X

) \s Sx1=0,0)
| \%\ V{"z(R):(O)\)

N/ /7

X
TK;%)= K

(T(K;i))*:{co,m}
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Characterization through linear scalarization

In the example,

cone(F(T(K; X))+ RE) = | J H(T(K;X) + RZ) is nonconvex.
t>0

On the other hand, due to the linearity of 7 (when each f; is
differentiable), if T(K; x) is convex then

cone(F(T(K; X))+ RT) = | J {(F(T(K; X))+ RT) is also convex.
t>0

This fact was point out earlier in [Wang, 1988], i.e., if T(K; X) is
convex the condition above is a necessary optimality condition.
The convexity of T(K; X) is the only case ??
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Theorem of the alternative Characterization through linear scalarization

NO !
Example [FB-Hadjisavvas-Vera, 2007]
K=T(K;R)
L3
/ (Tex;%)) = le,,
4 Fliz x
= o (Hﬁ(g):“)o)

U, Ry = (oM

Thus,
co({Vfi(x): i=1,2})N(T(K;X))" #0. And

U HF(T(K; X)) +R2) = U t(T(K;X) +R2) is convex.
t>0 t>0
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Theorem of the alternative

A non linear scalarization procedure

Def.:Letac Y, e € int P.
Define (g 5: Y — RU {—o0}, by

fealy) =anf{tcR: y c te+a— P}.
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Theorem of the alternative

Def. ACY,éa: Y — RU{—o0}:

Cenly) =anf{tcR: y € te+ A— P}.

Eealy) = 4nf &o a(y).
acA
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Theorem of the alternative

Lemma [Hernandez-Rodriguez, 2007]: Let ) # AC Y and P as
above.
Then,A—P#Y < £ea(y)> -0 VyecY.

By taking into account that
intf(A— P)=int(A— P)=A—intP, A— P=A—intP,

one can prove,
Lemma:Let AC Y, reR,yeY.

Then

(@) enly)<reycre+A—int(P);
(b) tealy) <reycret+A—P;
(€) €enly)=reycre+dA-P).
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Characterization through linear scalarization

Corollary: Let ) £ P C Y closed convex proper cone.

(a) Ifint P # () and Ey # 0, then

Ew = E(efEnof  K) = U E(&ef(x) o f, K).

XEEy

If in addition E(&e r(x) © f, K) # () for some x € K, then

Ew = | E(efx o f, K);
xeK
(b) if E # 0, then
E = U E(fe,f(x) (@) f, K) Q E(ge,f(E) (0] f, K),

X€EE
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The positive orthant

The positive orthant

Example 1.

Consider F(x) = (x, V1 + x?), x € K = R. Here,
Ew = ] — o0, 0]. However, if p; > p3 > 0, then

af (p*, F(x)) = —oo, p* = (b}, P3).

XER

Example 2.

Consider F = (fi, ), K = [0, +oc[ where,

2, ifx¢[1,2]
fi(x) = { fo(x) = |x — 5|. Here Eyy = [1, 8].
1, ifxe[1,2]
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The positive orthant

Theorem [FB-Vera, 2008]

K C R is closed convex; fi : K — R is Isc and quasiconvex for
alli=1,..., m. The following assertions hold:

(a) if 0 # Ew # R, then there exists j such that argmin, f; # 0;
(b) if K #R:then Eyy # ) <= 3, argmin,f; # 0.

Theorem [FB-Vera, 2008]

K C R is closed convex; f; : K — R is Isc and semistrictly
quasiconvex for all i = 1,..., m. Assume Ey # 0. Then, either

Ew=R or Eyy = co( U argminKI}-) + Rw.
jed
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The positive orthant

The bicriteria case

We consider F : K C R — R? such that
[aq, B1] = argmingfy, [ap, Bo] = argminyfy,

—o0 <ay <P <ap < P2 < +oo.

Set
Ar ={x € [B1,a2] : fi(X) = fi(a2)},
A ={x € [Br.az]: B(x)=K(B)}
hlal), A, = Jat,
e { 2(ag), At = Jag, a2 Ao = b b(ad — 1)
At Ay = [Oé(JL az] to

Flores-Bazan Overview on Generalized convexity and VO



The positive orthant

/ fa
\ / fi
S N /, ;_/
- - “\\ / /
- N iy

fl(o-"g :l \\ \\ // , S
i S MEOMS 46
o 5 af  as 32 max F,

M ={xeK: x> p, fi(x) = fi(az)},
My ={xeK: x> p2,h(x) =4}
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The positive orthant

Theorem [FB-Vera, 2008]

K C R is closed convex; fi : K — R is Isc and quasiconvex for

alli=1,2. Then A, and A_ are convex and nonempty.
Moreover, we also have:

(a) X > Borif Ay = ]aar,ag], aar > 34, then
)_(EEw<:>f2( )<f2(ao)f1( ) f(ag)
(b) X > Bo:if Ay = [ozar,ozg], ozar > (4, then

X e Ey<— fg()_() < A4, fi ()_() =fi (042);

where Ay = kmy o h(ag —t) = anfy o fo()-
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Theorem [continued...]

(c) X <ay:if AL =[B1,04[, o < az, then

X € Ew = fi(x) < fi(ag ), R(X) = R(61)}
(d) x <ay:if AL =[B1,0q], oy < ap, then

X € Ew < fi(X) < fi(A2), f(X) = h(B1)}

where A_ = kmy¢ g (g + 1).
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Theorem [FB-Vera, 2008]

K C R convex closed; f; : K — R be Isc and quasiconvex for
i=1,2.

(a) If f, is semistrictly quasiconvex and M, N M, # 0, then
Ey = [a1, X], where X € K solves the system

x> o fi(X) = fi(az), f(X) =7+

(b) If fy is semistrictly quasiconvex and M;” N M, # (), then
Ew = [X, 2], here X € K solves the system

X <ar B(X)=R(B), H(X)=7-.
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Example.
Consider F = (f1, ), K = [0, +o0],

2, ifx¢g[1,2]
n(x):{ | f(x) = x — 5.
1, ifxe[1,2]

Here, E = {2,5}, Ew =[1,8].
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Fil

MM+ ¢

| .
1 2 5 & = max Fy,
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TABLE 1

error | total cpu time ~. /iterations maxE /iterations
10=3 [ 0.0150000000 | 2.9992675781/12 | 7.9993314775/40
10~% | 0.0160000000 | 2.9999084430/15 | 7.9999226491/42
107° [ 0.0160000000 | 2.9999942780/19 | 7.9999965455/45
105 | 0.0160000000 | 2.9999992847/22 | 7.9999993877/49
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Example.

Let K = [0, +o0],
2 six<1,
1 it xe[l,2],
F) =19 2 it x€]2,7],
VX—=T7+2 if x>7,
con_ [ 68-x if x <4,
2= e 4% 13 it x >4,

Here E,, = [0,7].
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TABLE2

error | total cpu time ~. /iterations maxE /iterations
10=3 [ 0.0140000000 | 3.9990234375/11 | 6.9999681538/40
10~% | 0.0160000000 | 3.9999389648/15 | 6.9999908912/42
10~° [ 0.0160000000 | 3.9999923706/18 | 6.9999997729/48
105 | 0.0160000000 | 3.9999990463/21 | 6.9999997729/48
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Multicriteria case

We describe Ey in the multicriteria case, that is when m > 2,
since

Ew = J{Ew(l): 1C{1,2....m}, || <2}, (1)
where Ey (/) is the set of x solutions to the subproblem

xeK: Fi(x)—F(x) ¢ —int R vx e K.
Here, F; = (f;);c; and ]R'l| is the positive orthant in R/'l. One
inclusion in (1) trivially holds since Ey/(/) € Ey/(I') if I C I'; the

other is a consequence of the following Helly’s theorem since
each f; is quasiconvex.
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Helly’s theorem

Let C;, i =1,...,m, be a collection of convex sets in R". If
every subcollection of n+ 1 or fewer of these C; has a
nonempty intersection, then the entire collection of the m sets
has a nonempty intersection.
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