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E 6= ∅ with partial order (reflexive and transitive) 4; A ⊆ E .
ā ∈ A is efficient of A if

a ∈ A ,a 4 ā =⇒ ā 4 a.

The set of ā is denoted Min(A,4). Given x ∈ E , lower and
upper section at x ,

Lx
.

= {y ∈ E : y 4 x}, Sx
.

= {y ∈ E : x 4 y},

Set
SA

.
=
⋃
x∈A

Sx .

When 4=≤P , P being a convex cone, then

(x 4 y ⇐⇒ y − x ∈ P) Lx = x − P, Sx = x + P, SA = A + P.
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Property (Z ): each totally ordered (chain) subset of A has
a lower bound in A

m

A is order-totally-complete (it has no covering of form
{(Lx )c : x ∈ D} with D ⊆ A being totally ordered)

m

each maximal totally ordered subset of A has a lower
bound in A.

A 6⊂
⋃
x∈D

Lc
x ⇔ ∅ 6= A ∩

(
X \

⋃
x∈D

Lc
x

)
⇔ ∅ 6= A

⋂ ⋂
x∈D

Lx ⇔ ∃ LB.

Sonntag-Zalinescu, 2000; Ng-Zheng, 2002; Corley, 1987; Luc,
1989; Ferro, 1996, 1997, among others.
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Basic Definitions:
(a) [Ng-Zheng, 2002] A is order-semicompact (resp.

order-s-semicompact) if every covering of A of form
{Lc

x : x ∈ D}, D ⊆ A (resp. D ⊆ E), has a finite subcover.
(b) [Luc, 1989; FB-Hernández-Novo, 2008] A es

order-complete if 6 ∃ covering of form {Lc
xα

: α ∈ I} where
{xα : α ∈ I} is a decreasing net in A.

A directed set (I, >) is a set I 6= ∅ together with a reflexive and
transitive relation >: for any two elements α, β ∈ I there exists
γ ∈ I with γ > α and γ > β.
A net in E is a map from a directed set (I, >) to E . A net
{yα : α ∈ I} is decreasing if yβ 4 yα for each α, β ∈ I, β > α.

Flores-Bazán Overview on Generalized convexity and VO



Vector Optimization
Theorem of the alternative

The positive orthant

Introduction
Setting of the problem
Generalized convexity of vector functions
Asymptotic Analysis/finite dimensional
The convex case/A nonconvex case

Theorem
If A is order-totally-complete then Min A 6= ∅.

Proof. Let P = set of totally ordered sets in A. Since A 6= ∅,
P 6= ∅. Moreover, P equipped with the partial order - inclusion,
becomes a partially ordered set. By standard arguments we
can prove that any chain in P has an upper bound and, by
Zorn’s lemma, we get a maximal set D ∈ P.
Applying a previous equivalence, there exists a lower bound
a ∈ A of D. We claim that a ∈ Min A. Indeed, if a′ ∈ A satisfies
that a′ 4 a then a′ is also a lower bounded of D. Thus, a′ ∈ D
by the maximality of D in P. Hence, a 4 a′ and therefore
a ∈ Min A.
In particular, if A ⊆ E is order-s-semicompact,
order-semicompact or order-complete, then Min A 6= ∅.
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Teorema [Ng-Zheng, 2002; FB-Hernández-Novo, 2008]

The following are equivalent:
(a) Min(A,4) 6= ∅;
(b) A has a maximal totally ordered subset minorized by an

order-s-semicompact subset H of SA;
(c) A has a nonempty section which is order-complete;
(d) A has a nonempty section which is order-totally-complete

(equiv. satisfies property (Z )).

SA
.

=
⋃
x∈A

{y ∈ E : x 4 y}.

(4=≤P , l(P) = {0}); ā ∈ Min A⇐⇒ A ∩ (ā− P) = {ā}.
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Sketch - proof

(a) =⇒ (b): Take a ∈ Min A, and consider

P .
= {D ⊆ E : La ∩ A ⊆ D ⊆ Sa ∩ A and D is totally ordered }.

It is clear La ∩ A is totally ordered, La ∩ A ∈ P. By equipping P
with the partial order - inclusion- we can prove by standard
arguments that any chain in P has an upper bound. Therefore,
there exists a maximal totally ordered element D0 ∈ P, i.e.,

La ∩ A ⊆ D0 ⊆ Sa ∩ A ⊆ Sa.

Set H = {a}. Then D0 is minorized by H which is an
order-s-semicompact subset of SA.
It generalizes and unifies results by Luc 1989, Ng-Zheng 2002
among others.
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Optimization problem

X Hausdorff top. s.p; f : X → (E ,4). Consider

min{f (x) : x ∈ X} (P)

f (X )
.

= {f (x) : x ∈ X}. A sol x̄ ∈ X to (P) is such that
f (x̄) ∈ Min(f (X ),4).

Theorem [FB-Hernández-Novo, 2008]

Let X compact. If f−1(Ly ) closed ∀ y ∈ f (X ) (resp. ∀ y ∈ E),
then f (X )

(a) is order-semicomp. (resp. f (X ) is order-s-semicomp.);
(b) has the domination property, i.e., every lower section of

f (X ) has an efficient point.
As a consequence, Min(f (X ),4) 6= ∅.
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Proof.

We only prove (a) when f−1(Ly ) is closed for all y ∈ f (X ).
Suppose

⋃
d∈D Lc

d is a covering of f (X ) withD ⊆ f (X ). Put

Ud
.

= {x ∈ X : f (x) 6∈ Ld}.

Then, X =
⋃

d∈D Ud . Since f−1(Ld ) is closed, Ud = (f−1(Ld ))c

is open ∀ d ∈ D. Moreover, as X is compact, ∃ finite set
{d1, . . . ,dr} ⊆ D such that

X = Ud1 ∪ · · · ∪ Udr .

Hence, Lc
d1
∪ · · · ∪ Lc

dr
covers f (X ) and therefore f (X ) is

order-semicompact.

Flores-Bazán Overview on Generalized convexity and VO



Vector Optimization
Theorem of the alternative

The positive orthant

Introduction
Setting of the problem
Generalized convexity of vector functions
Asymptotic Analysis/finite dimensional
The convex case/A nonconvex case

We introduce the following new

Definition [FB-Hernández-Novo, 2008]: Let x0 ∈ X .
We say f is decreasingly lower bounded at x0 if for each net
{xα : α ∈ I} convergent to x0 such that {f (xα) : α ∈ I} is
decreasing, the following holds

∀ α ∈ I : f (x0) ∈ Lf (xα).

We say that f is decreasingly lower bounded (in X ) if it is for
each x0 ∈ X .

Flores-Bazán Overview on Generalized convexity and VO



Vector Optimization
Theorem of the alternative

The positive orthant

Introduction
Setting of the problem
Generalized convexity of vector functions
Asymptotic Analysis/finite dimensional
The convex case/A nonconvex case

Proposition [FB-Hernández-Novo, 2008]

If f−1(Ly ) is closed ∀ y ∈ f (X ), then f is decreasingly lower
bounded.

Theorem [FB-Hernández-Novo, 2008]
Let X compact. If f is decreasingly lower bounded, then
(a) f (X ) is order-complete;
(b) f (X ) has the domination property;
(c) Minf (X ) 6= ∅.
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Special situation

Y top. vec. space ordered by a closed convex cone P ⊆ Y .
Define 4l in 2Y . If A,B ∈ 2Y then

A 4l B ⇐⇒ B ⊆ A + P.

This is partial order: reflexive and transitive [Jahn, 2003;
Kuroiwa, 1998, 2003].
Kuroiwa introduces the notion of efficient set for a family of F ⊆
of nonempty subsets of Y . We say A ∈ F is a l-minimal set
(A ∈ lMinF) if

B ∈ F , B 4l A =⇒ A 4l B.

Flores-Bazán Overview on Generalized convexity and VO
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X real Hausd. top. vect. spac.; Y real normed vect. spac.;
P ⊆ Y a convex cone, int P 6= ∅, l(P)

.
= P ∩ (−P);

K ⊆ X a closed set; F : K → Y a vector function.

E = the set of x̄ such that

x̄ ∈ K : F (x)− F (x̄) 6∈ −P \ l(P) ∀ x ∈ K .

Its elements are called efficient points;
EW = the set of x̄ such that

x̄ ∈ K : F (x)− F (x̄) 6∈ −int P ∀ x ∈ K .

Its elements are called weakly efficient points.

E ⊆ EW =
⋂

x∈K

{
x̄ ∈ K : F (x̄)− F (x) 6∈ int P

}
.

Flores-Bazán Overview on Generalized convexity and VO
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How we can compute the efficient points?

Theorem: Consider P = Rn
+, F (x) = Cx (linear), K polyhedra.

x̄ is efficient⇐⇒ ∃ p∗ > 0 such that x̄ solves

min{〈p∗,F (x)〉 : Ax ≥ b, x ≥ 0}.

In a standar notation x̄ ∈ argminK 〈p∗,F (·)〉,
K .

= {x ∈ Rn : Ax ≥ b, x ≥ 0}.
Does the previous theorem remains valid for non linear F?

x̄ ∈ E ⇐⇒ x̄ ∈
⋃

p∗∈Rm
++

argminK 〈p∗,F (·)〉 (⇐= always!!);

=⇒ weighting method
How to choice p∗ ∈ Rm

++ ?
Flores-Bazán Overview on Generalized convexity and VO
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Example 1.1.

Let F (x1, x2) = (x1, x2), x ∈ K .
= {(x1, x2) ∈ R2 : x1 + x2 ≥ 1}.

Here, E = EW = {(x1, x2) ∈ R2 : x1 + x2 = 1}. However,

«ınf
x∈R
〈p∗,F (x)〉 = −∞, p∗ = (p∗1,p

∗
2), p∗1 6= p∗2.

Example 1.2.

Let F (x) = (
√

1 + x2, x), x ∈ K = R. Here,
E = EW = ]−∞,0]. However, if p∗2 > p∗1 > 0, and

«ınf
x∈R
〈p∗,F (x)〉 = −∞, p∗ = (p∗1,p

∗
2).

A lot of work to do !!!

Flores-Bazán Overview on Generalized convexity and VO
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Let h : X → R ∪ {+∞}. It is
quasiconvex if

h(x) ≤ h(y) =⇒ h(ξ) ≤ h(y) ∀ξ ∈ (x , y);

or equivalently, {x : h(x) ≤ t} is convex for all t ∈ R.
semistrictly quasiconvex if

h(x) < h(y) =⇒ h(ξ) < h(y) ∀ ξ ∈ (x , y).

Proposition

If h : X → R ∪ {+∞} is semistrictly quasiconvex and lower
semicontinuous, then it is quasiconvex.

Flores-Bazán Overview on Generalized convexity and VO
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Theorem [Malivert-Boissard, 1994] K ⊆ Rn convex
each fi (i = 1, . . . ,m) is quasiconvex, semistrictly quasiconvex,
and lsc along lines in K . Then

EW =
⋃
{E(J) : J ⊆ {1, . . . ,m}, J 6= ∅}.

Example 2.

Consider F = (f1, f2), K = [0,+∞[,

f1(x) =

{
2, if x 6∈ [1,2]

1, if x ∈ [1,2]
f2(x) = |x − 5|.

Here, E = {2,5}, EW = [1,8].
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Some notations

Gλ .
= {x ∈ K : F (x)−λ ∈ −P}; Gλ

.
= {x ∈ K : F (x)−λ 6∈ int P};

G(y)
.

= {x ∈ K : F (x)− F (y) 6∈ int P};

epi F .
= {(x , y) ∈ K × Y : y ∈ F (x) + P}.

There is no relationship between the closedness of Gλ for all
λ ∈ Y and the closedness of G(y) for all y ∈ K even when P is
additionally closed.

F : K → Y is [Penot-Therá, 1979] P-lower semicontinuous
(P-lsc) at x0 ∈ K if ∀ open set V ⊆ Y st F (x0) ∈ V ∃ an
open neighborhood U ⊆ X of x0 st F (U ∩ K ) ⊆ V + P. We
shall say that F is P-lsc (on K ) if it is at every x0 ∈ K .
F is Rm

+-lsc if and only if each fi is lsc.
Flores-Bazán Overview on Generalized convexity and VO
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Proposition [FB, 2003; Bianchi-Hadjisavvas-Schaible, 1997;
The Luc, 1989]
P ⊆ Y is convex cone, K ⊆ X and S ⊆ Y be closed sets such
that S + P ⊆ S and S 6= Y ; F : K → Y . The following hold.
(a) If F is a P-lsc function, then {x ∈ K : F (x) ∈ λ− S} is

closed for all λ ∈ Y ;
(b) Assume int P 6= ∅ and P closed: F is P-lsc if and only if
{x ∈ K : F (x)− λ 6∈ int P} is closed for all λ ∈ Y ;

(c) Assume int P 6= ∅ and P closed: epi F is closed if and only
if {x ∈ K : F (x)− λ ∈ −P} is closed for all λ ∈ Y ;

(d) Assume int P 6= ∅ and P closed: if F is P-lsc then epi F is
closed.

Flores-Bazán Overview on Generalized convexity and VO
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Theorem [Ferro, 1982; (set-valued) Ng-Zheng, 2002]

P convex cone; K compact; Gλ closed for all λ ∈ Y (⇐⇒ epi F
is closed if int P 6= ∅). Then E 6= ∅.

Proof. We know Min F (X ) 6= ∅, thus E 6= ∅.

Gλ .
= {x ∈ K : F (x)− λ ∈ −P}.

Flores-Bazán Overview on Generalized convexity and VO



Vector Optimization
Theorem of the alternative

The positive orthant

Introduction
Setting of the problem
Generalized convexity of vector functions
Asymptotic Analysis/finite dimensional
The convex case/A nonconvex case

Theorem: P convex cone, int P 6= ∅; K compact;

G(y)
.

= {x ∈ K : F (x)− F (y) 6∈ int P} closed ∀ y ∈ K . Then
EW 6= ∅.

Proof. Notice that EW = E(F (K )|C) for C = (int P) ∪ {0}. The
closedness of EW is obvious; it suffices to show that EW 6= ∅. If
it is not order-complete for C, let {F (xα)} be a decreasing net
with {(F (xα)− C)c}α forming a covering of F (K ). By
compactness, (assume) xα → x0 for some x0 ∈ K . If EW = ∅, ∃
y ∈ K such that F (y)− F (x0) ∈ −int P. For F (y), ∃ α0 such
that F (y)− F (xα0) 6∈ −C. This implies

F (y)− F (xα) = F (y)− F (xα0) + F (xα0)− F (xα0)

∈ (Y \ −C) + C ⊆ Y \ −C ⊆ Y \ −int P ∀ α > α0.

G(y) closed implies F (x0)− F (y) 6∈ int P, a contradiction.
This proves necessarily that EW is nonempty.Flores-Bazán Overview on Generalized convexity and VO
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Since int P 6= ∅, take ȳ ∈ int P. Then the set

B = {y∗ ∈ P∗ : 〈y∗, ȳ〉 = 1}

is a w∗-compact convex base for P∗, i.e., 0 6∈ B and
P∗ =

⋃
t≥0 tB. In this case,

p ∈ P ⇐⇒ 〈p∗,p〉 ≥ 0 ∀ p∗ ∈ B;

p ∈ int P ⇐⇒ 〈p∗,p〉 > 0 ∀ p∗ ∈ B.

The set E∗ of the extreme points of B is nonempty by the
Krein-Milman theorem.

Flores-Bazán Overview on Generalized convexity and VO
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Definitions: Let ∅ 6= K ⊆ X , F : K → Y is said to be:

1. P-convex if, x , y ∈ K ,

tF (x) + (1− t)F (y) ∈ F (tx + (1− t)y) + P, ∀ t ∈ ]0,1[;

F is Rm
+-convex if and only if each fi is convex.

2. properly P-quasiconvex [Ferro, 1982] if, x , y ∈ K , t ∈ ]0,1[,

F (tx + (1− t)y) ∈ F (x)−P or F (tx + (1− t)y) ∈ F (x) + P,

or equivalently, {ξ ∈ K : F (ξ) 6∈ λ+ P} is convex ∀ λ ∈ Y .
F (x) = (x ,−x2), K = ]−∞,0], satisfies 2 but not 1;
F (x) = (x2,−x), K = R, satisfies 1 but not 2;

Flores-Bazán Overview on Generalized convexity and VO
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More Definitions

3. naturally P-quasiconvex [Tanaka, 1994] if, x , y ∈ K ,
t ∈ ]0,1[

F (tx+(1−t)y) ∈ µF (x)+(1−µ)F (y)−P, for some µ ∈ [0,1],

or equivalently, F ([x , y ]) ∈ co{F (x),F (y)} − P.
F (x) = (x2,1− x2), K = [0,1], satisfies 3 but not 2 or 1.

4. scalarly P-quasiconvex [Jeyakumar-Oettli-Natividad, 1993]
if, for p∗ ∈ P∗ \ {0}, x ∈ K 7→ 〈p∗,F (x)〉 is quasiconvex.

Both are equivalent [FB-Hadjisavvas-Vera, 2007] if int P 6= ∅.

=⇒ F (K ) + P is convex.

Flores-Bazán Overview on Generalized convexity and VO
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More Definitions

5. P-quasiconvex [Ferro, 1982] if,

{ξ ∈ K : F (ξ)− λ ∈ −P} is convex ∀ λ ∈ Y .

F is Rm
+-quasiconvex if and only if each fi is quasiconvex.

[Benoist-Borwein-Popovici, 2003] This is equivalent to:
given any p∗ ∈ E∗, x ∈ K 7→ 〈p∗,F (x)〉 is quasiconvex.

6. semistrictly-P-quasiconvex at y [Jahn-Sachs, 1986] if,

x ∈ K , F (x)−F (y) ∈ −P =⇒ F (ξ)−F (y) ∈ −P ∀ ξ ∈ ]x , y [.

[R. Cambini, 1998] When X = Rn, Y = R2, P ⊆ R2 polyhedral,
int P 6= ∅, F : K → R2 continuous, both are equivalent.

Flores-Bazán Overview on Generalized convexity and VO
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One more Definition

7. semistrictly-(Y \ −int P)-quasiconvex at y [FB, 2004] if,
x ∈ K ,

F (x)− F (y) 6∈ int P =⇒ F (ξ)− F (y) 6∈ int P ∀ ξ ∈ ]x , y [.

Teorema [FB, 2004]. Sean X ,Y ,K ,P,F as above. We have:

Flores-Bazán Overview on Generalized convexity and VO
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P-quasiconv. implies semistrictly (Y \ −int P)-quasiconv.
Proof. Take any x , y ∈ K such that F (x)− F (y) 6∈ int P, and
suppose ∃ ξ ∈ ]x , y [ satisfying F (ξ)− F (y) ∈ int P. If
F (x)− F (ξ) ∈ P, the latter inclusion implies
F (x)− F (y) ∈ int P which cannot happen by the choice of x , y .
Hence F (x)− F (ξ) 6∈ P. By a Lemma due to
Bianchi-Hadjisavvas-Schaible (1997) (a 6≥ 0 b < 0⇒ ∃c 6≥ 0,
a ≤ c, b ≤ c) there exists c 6∈ P such that

F (x)− F (ξ)− c ∈ −P and F (y)− F (ξ)− c ∈ −P.

By the P-quasiconvexity of F , we conclude in particular
F (ξ)− F (ξ)− c = −c ∈ −P giving a contradiction.
Consequently F (ξ)− F (y) 6∈ int P for all ξ ∈ ]x , y [, proving the
desired result.

Flores-Bazán Overview on Generalized convexity and VO
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Definition
Given S ⊆ Y , K ⊆ X convex. The function F : K → Y is
semistrictly (S)-quasiconvex at y ∈ K , if for every x ∈ K , x 6= y ,
F (x)− F (y) ∈ −S =⇒ F (ξ)− F (y) ∈ −S ∀ ξ ∈ ]x , y [.
We say that F is semistrictly (S)-quasiconvex (on K ) if it is at
every y ∈ K .

F1(x) = (e−x2
, x2), x ∈ R; F2(x) = (

1
1 + |x |2

, |x |), x ∈ R;

F3(x1, x2) =
( x2

1

1 + x2
1
, x3

2

)
, (x1, x2) ∈ R2,

are semistrictly (R2 \ −int R2
+)-quasiconvex.

Flores-Bazán Overview on Generalized convexity and VO
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Particular cases
Y = R, R+

.
= [0,+∞[, R++

.
= ]0,+∞[:

semistrict (R+)-quasiconvexity = quasiconvexity;
semistrict (R++)-quasiconvexity = semistrict quasiconvexity.

The previous definition is related to the problem of finding
x̄ ∈ X satisfying

x̄ ∈ K such that F (x)− F (x̄) ∈ S ∀ x ∈ K .

The set of such x̄ is denoted by ES.

Flores-Bazán Overview on Generalized convexity and VO
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Set Ly
.

= {x ∈ K : F (x)− F (y) ∈ −S}.

Proposition

Assume 0 ∈ S (for instance S = Y \ −int P, S = Y \ −P \ l(P));
K convex; F : K → Y , y ∈ K . The FAE:
(a) F is semistrictly (S)-quasiconvex at y ;
(b) Ly is starshaped at y .
If X = R, (b) may be substituted by the convexity of Ly .

Proposition
Let S,K as above, and x̄ ∈ K be a local S-minimal for F on K .
Then, x̄ ∈ ES ⇐⇒ F is semistrictly (Y \ −S)-quasiconvex at x̄ .
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To fix ideas let X = Rn, the asymptotic cone of C is

C∞ .
= {v ∈ X : ∃ tn ↓ 0, ∃ xn ∈ C, tnxn → v},

When C is closed and starshaped at x0 ∈ C, one has

C∞ =
⋂
t>0

t(C − x0).

If C is convex the above expression is independent of x0 ∈ C.

ES
.

=
⋂

y∈K

{
x ∈ K : F (x)− F (y) ∈ −S

}
,

(ES)∞ ⊆
⋂

y∈K

{
x ∈ K : F (x)− F (y) ∈ −S

}∞
(ES)∞ ⊆

⋂
y∈K

{
v ∈ K∞ : F (y+λv)−F (y) ∈ −S ∀ λ > 0

}
.

= RS.
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We introduce the following cones in order to deal with the case
when K unbounded. Here S ⊆ Y ,

RP
.

=
⋂

y∈K

{
v ∈ K∞ : F (y + λv)− F (y) ∈ −P ∀ λ > 0

}
,

RS
.

=
⋂

y∈K

{
v ∈ K∞ : F (y + λv)− F (y) ∈ −S ∀ λ > 0

}
.

We recall that ES denotes the set of x̄ ∈ X satisfying

x̄ ∈ K such that F (x)− F (x̄) ∈ S ∀ x ∈ K .

ES 6= ∅ =⇒ 0 ∈ S.
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Ly
.

= {x ∈ K ; F (x)− F (y) ∈ −S}.

Theorem
K closed convex; P convex cone; S ⊆ Y such that S + P ⊆ S;
F : K → Y semistrictly (S)-quasiconvex and Ly is closed
∀ y ∈ K . The following hold:

ES + RP = ES, RP ⊆ (ES)∞ ⊆ RS;
if ES 6= ∅ and either X = R or Y = R (with P = [0,+∞[),
=⇒ ES is convex and (ES)∞ = RS;

EP 6= ∅ =⇒ (ES)∞ = RS, (EP)∞ = RP .

Models: S = P, S = Y \ −(P \ l(P)), S = Y \ −intP.
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Proposition [FB-Vera, 2006]

K ⊆ Rn closed convex; S ⊆ Y ; F : K → Y semistrictly
(S)-quasiconvex and Ly closed for all y ∈ K .

If RS = {0} =⇒ (Kr
.

= K ∩ B̄(0, r))

∃ r > 0, ∀ x ∈ K \ Kr ,∃ y ∈ Kr : F (y)− F (x) 6∈ S; (∗)

if X = R then (without the closedness of Ly ),

RS = {0} ⇐⇒ (∗) holds.

when S = Y \ −int P, we denote ES = EW , RS = R̃W .
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Theorem
K ⊆ Rn closed convex; P ⊆ Y closed cone; F : K → Y
semistrictly (Y \ −int P)-quasiconvex with
G(y) = {x ∈ K : F (x)− F (y) 6∈ int P} closed ∀ y ∈ K . Then

R̃W = {0} =⇒ EW 6= ∅ and compact.

Remarks
Unfortunately, we do not know whether the condition
R̃W = {0} is also necessary for the nonemptines and
compactness of EW in this general setting.
convex case If P = Rm

+ and each component of F is convex
and lsc, the equivalence holds [Deng, 1998]. It will be
extended for general cones latter on.
a nonconvex case If n = 1 or Y = R ...
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We set X = Rn, Y = Rm,

Hypothesis on the cone P

P ⊆ Rm is a closed convex cone, int P 6= ∅ (thus P∗ =
⋃

t>0 tB
for some compact convex set B). We require that the set B0 of
extreme points of B is closed.

Obviously the polhyedral and the ice-cream cones satisfy the
previous hypothesis.
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Set (S = Rm \ −int P)

EW
.

=
⋂

y∈K

⋃
q∈B0

{
x ∈ K : 〈q,F (x)− F (y)〉 ≤ 0

}
,

RP =
⋂

y∈K

⋂
λ>0

⋂
q∈B0

{
v ∈ K∞ : 〈q,F (y + λv)− F (y)〉 ≤ 0

}
,

Additionally, we also consider the cone

R̃W =
⋂

y∈K

⋃
q∈B0

{
v ∈ K∞ : 〈q,F (y + λv)− F (y)〉 ≤ 0 ∀ λ > 0

}
.
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Corollary: hq(x) = 〈q,F (x)〉, q ∈ P∗, x ∈ K .

Assume hq is convex for all q ∈ B0; F : K → Rm P-lsc. Then,
if EW 6= ∅,⋂

q∈B0

{
v ∈ K∞ : h∞q (v) ≤ 0

}
⊆ (EW )∞ ⊆

⋃
q∈B0

{
v ∈ K∞ : h∞q (v) ≤ 0

}
;

if argminK hq 6= ∅ for all q ∈ B0,

(EW )∞ =
⋃

q∈B0

{
v ∈ K∞ : h∞q (v) ≤ 0

}
= R̃W .
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Examples showing optimality of the assumptions

Example 3.1.

Take P = R2
+, K = R2, f1(x1, x2) = x2

1 , f2(x1, x2) = ex2 . Then
f∞1 (v1, v2) = 0 if v1 = 0, f∞1 (v1, v2) = +∞ elsewhere;
f∞2 (v1, v2) = 0 if v2 ≤ 0, f∞2 (v1, v2) = +∞ elsewhere. Thus,

RP = {0} × ]−∞,0], R̃W =
(
{0} × R

)
∪
(
R× ]−∞,0]

)
,

while EW = {0} × R = (EW )∞. Notice that argminK f2 = ∅.
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The convex case

Theorem [Deng, 1998; FB-Vera, 2006]

K ⊆ Rn closed convex; P closed convex cone as above.
Assume F : K → Rm is P-lsc such that 〈q,F (·)〉 : K → R is
convex ∀ q ∈ B0. The FAE:
(a) EW is nonempty and compact;
(b) argminK 〈q,F (·)〉 is nonempty and compact for all q ∈ B0;

(c) R̃w = {0};
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The nonconvex case: non quasiconvexity

Theorem [FB-Vera, 2006]
K ⊆ R closed convex; P ⊆ Y convex cone, int P 6= ∅;
F : K → Y is semistrictly (Y \ −int P)-quasiconvex such that
Ly is closed ∀ y ∈ K . Then, EW is closed convex, and the FAE:

(a) R̃W = {0};
(b) ∃ r > 0, ∀ x ∈ K \ Kr , ∃ y ∈ Kr : F (y)− F (x) ∈ −int P,

where Kr = [−r , r ] ∩ K ;
(c) EW 6= ∅ and bounded (it is already closed and convex).

When P = Rm
+ some of the components of F may be not

quasiconvex.
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The nonconvex case: quasiconvexity

Theorem [FB, 2004; FB-Vera, 2006]
Y = Rn, K ⊆ R is closed convex; P ⊆ Rm closed convex cone
as above. Assume 〈q,F (·)〉 : K → R is lsc and semistrictly
quasiconvex ∀ q ∈ B0. The FAE:
(a) EW is a nonempty compact convex set;
(b) argminK 〈q,F (·)〉 is a nonempty compact convex set for all

q ∈ B0;
(c) ∃ r > 0, ∀ x ∈ K \ Kr , ∃ y ∈ Kr (Kr = [−r , r ] ∩ K ):

〈q,F (y)− F (x)〉 < 0 ∀ q ∈ B0.
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Examples showing optimality of the assumptions

Example 4.1.

Consider P = R2
+, K = R, F (x) = (

√
|x |, x

1+|x |), x ∈ R. Here,
EW = ]−∞,0].

Example 4.2.

Consider P = R2
+, F = (f1, f2), K = [0,+∞[ where,

f1(x) =

{
2, if x 6∈ [1,2]

1, if x ∈ [1,2]
f2(x) =

{
−e−x+5, if x ≥ 5

4− x , if x < 5

Here, EW = [1,+∞[.
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Conjecture:

Assume that each fi : K ⊆ Rn → R is semistrictly quasiconvex
and lsc, i = 1, . . . ,m. The FAE:

EW is nonempty and compact;
each argminK fi is nonempty and compact.
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The starting point: linear case

Theorem [Gordan Paul, 1873] Let A matrix.
Then, exactly one of the following sistems has solution:
(I) Ax < 0;

(II) A>p = 0, p ≥ 0, p 6= 0.
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The convex case

Theorem [Fan-Glicksberg-Hoffman, 1957] Let K ⊆ Rn convex,

fi : K → R, i = 1, . . . ,m, convex. Then, exactly one of the
following two sistems has solution:
(I) fi(x) < 0, i = 1, . . . ,m, x ∈ K ;

(II) p ∈ Rm
+ \ {0},

∑m
i=1 pi fi(x) ≥ 0 ∀ x ∈ K .

Sketch of Proof. Set F = (f1, . . . , fm).

Not (I)⇐⇒ F (K )∩(−int Rm
+) = ∅ ⇐⇒ (F (K )+Rm

+)∩(−int Rm
+) = ∅

m (F (K ) + Rm
+ is convex =⇒ (II))

cone(F (K ) + Rm
+) ∩ (−int Rm

+) = ∅
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Let P closed convex cone with int P 6= ∅

F (K ) ≈ A ⊆ Y , Rn
+ ≈ P

(I) A ∩ (−int P) 6= ∅,
(II) co(A) ∩ (−int P) = ∅.
Trivial part (I) y (II) =⇒ absurd.
Non trivial part: Hipothesis (¿ ?)

A ∩ (−int P) = ∅ =⇒ co(A) ∩ (−int P) = ∅.

A ∩ (−int P) = ∅ ⇐⇒ cone(A + P) ∩ (−int P) = ∅.

It suffices the convexity of cone(A + P)!!
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Definition: Let P ⊆ Y closed convex cone, int P 6= ∅.
The set A ⊆ Y is:
(a) generalized subconvexlike [Yang-Yang-Chen, 2000] if
∃ u ∈ int P, ∀ x1, x2 ∈ A, ∀ α ∈ ]0,1[, ∀ ε > 0, ∃ ρ > 0
such that

εu + αx1 + (1− α)x2 ∈ ρA + P; (1)

(b) presubconvexlike [Zeng, 2002] if
∃ u ∈ Y , ∀ x1, x2 ∈ A, ∀ α ∈ ]0,1[, ∀ ε > 0, ∃ ρ > 0 such
that (1) holdse;

(c) nearly subconvexlike [Sach, 2003; Yang-Li-Wang, 2001] if
cone(A + P) is convex.

(a), (b), (c) are equiv. [FB-Hadjisavvas-Vera, 2007].
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cone+(A + int P) is convex ⇐⇒ cone(A + int P) is convex.

=⇒ cone(A + int P) = cone(A + int P) = cone(A + int P) =

cone(A + P) = cone+(A + P) is convex.

Also,

int(cone+(A + P)) = int(cone+(A) + P) = cone+(A) + int P =

cone+(A + int P) is convex. Consequently,

cone(A + P) is convex⇐⇒ cone(A + int P) is convex.

Here, cone(M) = cone+(M).

cone(M) =
⋃
t≥0

tM, cone+(M)
.

=
⋃
t>0

tM, cone(M) = cone(M).
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Theorem [Yang-Yang-Chen, 2000; Yang-Li-Wang, 2001]

P ⊆ Y as above, A ⊆ Y . Assume cone(A + P)is convex. Then

A ∩ (−int P) = ∅ =⇒ co(A) ∩ (−int P) = ∅.

Example: [FB-Hadjisavvas-Vera, 2007]

Clearly, co(A) ∩ (−int P) = ∅ (pointedness of cone(A + int P)),
but cone(A + P) is nonconvex.
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Def: A cone K ⊆ Y is called “pointed” if
x1 + · · ·+ xk = 0 is impossible for x1, x2, . . . , xk in K unless
x1 = x2 = · · · = xk = 0. (⇐⇒ co K ∩ (−co K ) = {0}).

Our first main result is the following:

Theorem [FB-Hadjisavvas-Vera, 2007]

: ∅ 6= A ⊆ Y , P ⊆ Y convex closed cone, int P 6= ∅. The FAE:
(a) cone(A + int P) is pointed;
(b) co(A) ∩ (−int P) = ∅.
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Sketch of proof

We first prove cone(A + int P) is pointed =⇒ A∩ (−int P) = ∅. If
∃ x ∈ A ∩ (−int P), then x = 2(x − x

2 ) ∈ cone(A + int P) and
−x = x + (−2x) ∈ A + int P ⊆ cone(A + int P). By pointedness,
0 = x + (−x) implies x = 0 ∈ int P, a contradiction.
Now assume that (a) holds. If (b) does not hold, ∃ x ∈ −int P
such that x =

∑m
i=1 λiai with

∑m
i=1 λi = 1, λi > 0, ai ∈ A. Thus,

0 =
∑m

i=1 λi(ai − x). Using (a), λi(ai − x) = 0 ∀ i = 1, . . . ,m, a
contradiction. Conversely, assume (b) holds. If cone(A + int P)
is not pointed, then ∃ xi ∈ cone(A + int P)\{0}, i = 1,2, . . .n,∑n

i=1 xi = 0. So, xi = λi(yi + ui) with λi > 0, yi ∈ A and
ui ∈ int P. Hence

∑n
i=1 λiyi = −

∑n
i=1 λiui . Setting

µi = λi/
∑n

j=1 λj we get∑n
i=1 µiyi = −

∑n
i=1 µiui ∈ co(A) ∩ (−int P), a contradiction.
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The optimal 2D alternative theorem

Theorem [FB-Hadjisavvas-Vera, 2007]

Let P ⊆ R2 be a cone as before with int P 6= ∅, and A ⊆ R2 be
satisfying A ∩ (−int P) = ∅. The following hold:

co(A) ∩ (−int P) = ∅ ⇐⇒ cone(A + P) is convex⇐⇒

cone(A + int P) is convex⇐⇒ cone(A) + P is convex⇐⇒

cone(A + P) is convex.

We are in R2, int(cone+(A + P)) ∪ {0} = cone(A + int P) ⊆

cone(A + int P) ⊆ cone(A + P) ⊆ cone(A) + P ⊆ cone(A + P).
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Remark

A∩(−int P) = ∅& cone(A+P) is convex⇐⇒ co(A)∩(−int P) = ∅.

Flores-Bazán Overview on Generalized convexity and VO



Vector Optimization
Theorem of the alternative

The positive orthant

Althernative theorems
Characterization through linear scalarization

Theorem [FB-Hadjisavvas-Vera, 2007] Y LCTVS.

P ⊆ Y closed convex cone, int P 6= ∅ and int P∗ 6= ∅. The FAE:
(a) for every A ⊆ Y one has

co(A) ∩ (−int P) = ∅ ⇒ cone(A + P) is convex;

(b) for every A ⊆ Y one has

co(A) ∩ (−int P) = ∅ ⇒ cone (A) + P is convex;

(c) for every A ⊆ Y one has

co(A) ∩ (−int P) = ∅ ⇒ cone (A + int P) is convex;

(d) Y is at most two-dimensional.
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The assumption int P∗ 6= ∅ (which corresponds to pointedness
of P when Y is finite-dimensional) cannot be removed.
Indeed, let P = {y ∈ Y : 〈p∗, y〉 ≥ 0} where p∗ ∈ Y ∗\{0}. Then
P∗ = cone ({p∗}), int P∗ = ∅. For any nonempty A ⊆ Y , the set
cone(A + int P) is convex if A ∩ (−int P) = ∅
(⇐⇒ A ⊆ P ⇐⇒ co(A) ∩ (−int P) = ∅).
Thus, the previous implication holds independently of the
dimension of the space Y .
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Characterization of weakly efficient solutions via linear
scalarization

K ⊆ Rn convex and P as above. Given F : K → Rm, we
consider

x̄ ∈ K : F (x)− F (x̄) 6∈ −int P, ∀ x ∈ K ,

Clearly, x̄ ∈ EW ⇐⇒ (F (K )− F (x̄)) ∩ −int P = ∅.

Teorema[FB-Hadjisavvas-Vera, 2007]: The FAE

(a)

x̄ ∈
⋃

p∗∈P∗,p∗ 6=0

argminK 〈p∗,F (·)〉;

(b) cone(F (K )− F (x̄) + int P) is pointed.
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Theorem [FB-Hadjisavvas-Vera, 2007]
Set m = 2. The FAE:

(a)

x̄ ∈
⋃

p∗∈P∗,p∗ 6=0

argminK 〈p∗,F (·)〉;

(b) x̄ ∈ EW and cone(F (K )− F (x̄) + int P) is convex.
(c) x̄ ∈ EW and cone(F (K )− F (x̄) + P) is convex.
(d) x̄ ∈ EW and cone(F (K )− F (x̄)) + P is convex.

cone(A) =
⋃
t≥0

tA.
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Example

Consider F = (f1, f2), K = [0,+∞[ where,

f1(x) =

{
2, if x 6∈ [1,2]

1, if x ∈ [1,2]
f2(x) = |x − 5|.

Here, EW = [1,8], whereas⋃
p∗∈R2

+,p∗ 6=0

argminK 〈p∗,F (·)〉 = [1,5].
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Open problem
to find an assumption convexity of ?? (*) such that

(∗) & A ∩ (−int P) = ∅ =⇒ co(A) ∩ (−int P) = ∅.

At least for A ≈ G(K ) some class of vector functions
G : K → Y .
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Characterizing the Fritz-John type optimality
conditions in VO

Take X normed space. It is known that if x̄ is a local minimum
point for (differentiable) F : K → R on K , then

∇F (x̄) ∈ (T (K ; x̄))∗.

Here, T (C; x̄) denotes the contingent cone of C at x̄ ∈ C,

T (C; x̄) =
{

v ∈ X : ∃ tk ↓ 0, vk ∈ X , vk → v , x̄ + tkvk ∈ C ∀ k
}
.

How to extend to the vector case ?
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K ⊆ X closed; F : K → Rm; P ⊆ Rm, int P 6= ∅, a vector x̄ ∈ K
is a local weakly efficient solution for F on K (x̄ ∈ E loc

W ), if there
exists an open neighborhood V of x̄ such that

(F (K ∩ V )− F (x̄)) ∩ (−int P) = ∅.

We say that a function h : X → R admits a Hadamard
directional derivative at x̄ ∈ X in the direction v if

l«ım
(t ,u)→(0+,v)

h(x̄ + tu)− h(x̄)

t
∈ R.

In this case, we denote such a limit by dh(x̄ ; v).
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If F = (f1, . . . , fm), we set

F(v)
.

= ((df1(x̄ ; v), . . . ,dfm(x̄ ; v)),

F(T (K ; x̄)) = {F(v) ∈ Rm : v ∈ T (K ; x̄)}.

It is known that if dfi(x̄ ; ·), i = 1, . . . ,m do exist in T (K ; x̄), and
x̄ ∈ E loc

W , then

(df1(x̄ ; v), . . . ,dfm(x̄ ; v)) ∈ Rm \ −int P, ∀ v ∈ T (K ; x̄),

or equivalently, F(T (K ; x̄)) ∩ (−int P) = ∅.
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Theorem [FB-Hadjisavvas-Vera, 2007][Y = Rm]
Under the assumptions above, the FAE:

∃(α∗1, . . . , α
∗
m) ∈ P∗ \ {0}, α∗1df1(x̄ , v) + · · ·+α∗mdfm(x̄ , v) ≥

0 ∀ v ∈ T (K ; x̄);

cone(F(T (K ; x̄)) + int P) is pointed.

A more precise formulation may be obtained when m = 2.

Theorem [FB-Hadjisavvas-Vera, 2007][m = 2]
The FAE:

∃ (α∗1, α
∗
2) ∈ P∗ \ {0}, α∗1df1(x̄ , v) + α∗2df2(x̄ , v) ≥ 0 ∀ v ∈

T (K ; x̄);

F(T (K ; x̄)) ∩ (−int P) = ∅ & cone(F(T (K ; x̄)) + int P) is
convex.
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P = Rm
+, fi : Rn → R is diff. for i = 1, . . . ,m. Then

dfi(x̄ , v) = 〈∇fi(x̄), v〉,

F(v) = (〈∇f1(x̄), v〉, . . . , 〈∇fm(x̄), v〉).

Moreover,

∃α∗ ∈ Rm
+\{0}, α∗1df1(x̄ , v)+· · ·+α∗mdfm(x̄ , v) ≥ 0 ∀ v ∈ T (K ; x̄)

m

co({∇fi(x̄) : i = 1, . . . ,m}) ∩ (T (K ; x̄))∗ 6= ∅

This is not always a necessary optimality condition.
In fact !!
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Example [FB-Hadjisavvas-Vera, 2007]

K = {(x1, x2) : (x1 + 2x2)(2x1 + x2) ≤ 0}. Take fi(x1, x2) = xi ,
x̄ = (0,0) ∈ EW : T (K ; x̄) = K is nonconvex; F(v) = v ;
(T (K ; x̄))∗ = {(0,0)}, and

co({∇fi(x̄) : i = 1,2}) ∩ (T (K ; x̄))∗ = ∅.
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In the example,

cone(F(T (K ; x̄)) + R2
+) =

⋃
t≥0

t(T (K ; x̄) + R2
+) is nonconvex.

On the other hand, due to the linearity of F (when each fi is
differentiable), if T (K ; x̄) is convex then

cone(F(T (K ; x̄))+ Rm
+) =

⋃
t≥0

t(F(T (K ; x̄))+ Rm
+) is also convex.

This fact was point out earlier in [Wang, 1988], i.e., if T (K ; x̄) is
convex the condition above is a necessary optimality condition.

The convexity of T (K ; x̄) is the only case ??
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NO !

Example [FB-Hadjisavvas-Vera, 2007]

Thus,

co({∇fi(x̄) : i = 1,2}) ∩ (T (K ; x̄))∗ 6= ∅. And⋃
t≥0

t(F(T (K ; x̄)) + R2
+) =

⋃
t≥0

t(T (K ; x̄) + R2
+) is convex.
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A non linear scalarization procedure

Def.: Let a ∈ Y , e ∈ int P.
Define ξe,a : Y −→ R ∪ {−∞}, by

ξe,a(y) = «ınf{t ∈ R : y ∈ te + a− P}.
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Def. A ⊆ Y , ξe,A : Y → R ∪ {−∞}:

ξe,A(y) = «ınf{t ∈ R : y ∈ te + A− P}.

ξe,A(y) = «ınf
a∈A

ξe,a(y). (1)
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Lemma [Hernández-Rodriguez, 2007]: Let ∅ 6= A ⊆ Y and P as
above.
Then, A− P 6= Y ⇐⇒ ξe,A(y) > −∞ ∀ y ∈ Y .

By taking into account that

int(A− P) = int(A− P) = A− intP, A− P = A− intP,

one can prove,

Lemma: Let A ⊆ Y , r ∈ R, y ∈ Y .
Then
(a) ξe,A(y) < r ⇔ y ∈ re + A− int(P);

(b) ξe,A(y) ≤ r ⇔ y ∈ re + A− P;

(c) ξe,A(y) = r ⇔ y ∈ re + ∂(A− P).
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Corollary: Let ∅ 6= P ⊆ Y closed convex proper cone.

(a) If int P 6= ∅ and EW 6= ∅, then

EW = E(ξe,f (EW ) ◦ f ,K ) =
⋃

x∈EW

E(ξe,f (x) ◦ f ,K ).

If in addition E(ξe,f (x) ◦ f ,K ) 6= ∅ for some x ∈ K , then

EW =
⋃

x∈K

E(ξe,f (x) ◦ f ,K );

(b) if E 6= ∅, then

E =
⋃
x∈E

E(ξe,f (x) ◦ f ,K ) ⊆ E(ξe,f (E) ◦ f ,K );
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Example 1.

Consider F (x) = (x ,
√

1 + x2), x ∈ K = R. Here,
EW = ]−∞,0]. However, if p∗1 > p∗2 > 0, then

«ınf
x∈R
〈p∗,F (x)〉 = −∞, p∗ = (p∗1,p

∗
2).

Example 2.

Consider F = (f1, f2), K = [0,+∞[ where,

f1(x) =

{
2, if x 6∈ [1,2]

1, if x ∈ [1,2]
f2(x) = |x − 5|. Here EW = [1,8].
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Theorem [FB-Vera, 2008]
K ⊆ R is closed convex; fi : K → R is lsc and quasiconvex for
all i = 1, . . . ,m. The following assertions hold:
(a) if ∅ 6= EW 6= R, then there exists j such that argminK fj 6= ∅;
(b) if K 6= R: then EW 6= ∅ ⇐⇒ ∃ j , argminK fj 6= ∅.

Theorem [FB-Vera, 2008]
K ⊆ R is closed convex; fi : K → R is lsc and semistrictly
quasiconvex for all i = 1, . . . ,m. Assume EW 6= ∅. Then, either

EW = R or EW = co
(⋃

j∈J

argminK fj
)

+ RW .
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The bicriteria case

We consider F : K ⊆ R→ R2 such that

[α1, β1]
.

= argminK f1, [α2, β2]
.

= argminK f2,

−∞ < α1 ≤ β1 < α2 ≤ β2 < +∞.

Set
A+

.
= {x ∈ [β1, α2] : f1(x) = f1(α2)},

A−
.

= {x ∈ [β1, α2] : f2(x) = f2(β1)}.

γ+ =

{
f2(α+

0 ), A+ = ]α+
0 , α2]

λ+, A+ = [α+
0 , α2]

λ+
.

= l«ım
t↓0

f2(α+
0 − t).
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M+
1
.

= {x ∈ K : x > β2, f1(x) = f1(α2)},

M+
2
.

= {x ∈ K : x > β2, f2(x) = γ+}.
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Theorem [FB-Vera, 2008]
K ⊆ R is closed convex; fi : K → R is lsc and quasiconvex for
all i = 1,2. Then A+ and A− are convex and nonempty.
Moreover, we also have:
(a) x̄ > β2: if A+ = ]α+

0 , α2], α+
0 ≥ β1, then

x̄ ∈ EW ⇐⇒ f2(x̄) ≤ f2(α+
0 ), f1(x̄) = f1(α2);

(b) x̄ > β2: if A+ = [α+
0 , α2], α+

0 > β1, then

x̄ ∈ EW ⇐⇒ f2(x̄) ≤ λ+, f1(x̄) = f1(α2);

where λ+
.

= l«ımt↓0 f2(α+
0 − t) = «ınfy<α+

0
f2(y).
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Theorem [continued...]

(c) x̄ < α1: if A− = [β1, α
−
0 [, α−0 ≤ α2, then

x̄ ∈ EW ⇐⇒ f1(x̄) ≤ f1(α−0 ), f2(x̄) = f2(β1)}

(d) x̄ < α1: if A− = [β1, α
−
0 ], α−0 < α2, then

x̄ ∈ EW ⇐⇒ f1(x̄) ≤ f1(λ−), f2(x̄) = f2(β1)}

where λ−
.

= l«ımt↓0 f2(α−0 + t).

Flores-Bazán Overview on Generalized convexity and VO



Vector Optimization
Theorem of the alternative

The positive orthant

Theorem [FB-Vera, 2008]
K ⊆ R convex closed; fi : K → R be lsc and quasiconvex for
i = 1,2.
(a) If f2 is semistrictly quasiconvex and M+

1 ∩M+
2 6= ∅, then

Ew = [α1, x̄ ], where x̄ ∈ K solves the system

x̄ > β2 f1(x̄) = f1(α2), f2(x̄) = γ+.

(b) If f1 is semistrictly quasiconvex and M−1 ∩M−2 6= ∅, then
Ew = [x̄ , β2], here x̄ ∈ K solves the system

x̄ < α1 f2(x̄) = f2(β1), f1(x̄) = γ−.
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Example.

Consider F = (f1, f2), K = [0,+∞[,

f1(x) =

{
2, if x 6∈ [1,2]

1, if x ∈ [1,2]
f2(x) = |x − 5|.

Here, E = {2,5}, EW = [1,8].
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TABLE 1

error total cpu time γ+/iterations maxEw /iterations
10−3 0.0150000000 2.9992675781/12 7.9993314775/40
10−4 0.0160000000 2.9999084430/15 7.9999226491/42
10−5 0.0160000000 2.9999942780/19 7.9999965455/45
10−6 0.0160000000 2.9999992847/22 7.9999993877/49
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Example.

Let K = [0,+∞[,

f1(x) =


2 si x < 1,
1 if x ∈ [1,2],
2 if x ∈]2,7[,√

x − 7 + 2 if x > 7,

f2(x) =

{
6− x if x < 4,
e−(x−4)2

+ 3 if x ≥ 4,

Here Ew = [0,7].
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TABLE2

error total cpu time γ+/iterations maxEw /iterations
10−3 0.0140000000 3.9990234375/11 6.9999681538/40
10−4 0.0160000000 3.9999389648/15 6.9999908912/42
10−5 0.0160000000 3.9999923706/18 6.9999997729/48
10−6 0.0160000000 3.9999990463/21 6.9999997729/48
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Multicriteria case

We describe EW in the multicriteria case, that is when m > 2,
since

EW =
⋃
{EW (I) : I ⊆ {1,2 . . . ,m}, |I| ≤ 2}, (1)

where EW (I) is the set of x̄ solutions to the subproblem

x̄ ∈ K : FI(x)− FI(x̄) 6∈ −int R|I|+ ∀ x ∈ K .

Here, FI = (fi)i∈I and R|I|+ is the positive orthant in R|I|. One
inclusion in (1) trivially holds since EW (I) ⊆ EW (I′) if I ⊆ I′; the
other is a consequence of the following Helly’s theorem since
each fi is quasiconvex.
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Helly’s theorem

Let Ci , i = 1, . . . ,m, be a collection of convex sets in Rn. If
every subcollection of n + 1 or fewer of these Ci has a
nonempty intersection, then the entire collection of the m sets
has a nonempty intersection.
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