Overview on Generalized Convexity and Vector Optimization

Fabián Flores-Bazán ${ }^{1}$

${ }^{1}$ Departamento de Ingeniería Matemática, Universidad de Concepción fflores(at)ing-mat.udec.cl

2nd Summer School 2008, GCM9
Department of Applied Mathematics National Sun Yat-sen University, Kaohsiung

15-19 July 2008
Lecture 6 - Lecture 9

Contents

(9) Vector Optimization

- Introduction
- Setting of the problem
- Generalized convexity of vector functions
- Asymptotic Analysis/finite dimensional
- The convex case/A nonconvex case
(2) Theorem of the alternative
- Althernative theorems
- Characterization through linear scalarization
(3) The positive orthant
$E \neq \emptyset$ with partial order (reflexive and transitive) $\preccurlyeq ; A \subseteq E$. $\bar{a} \in A$ is efficient of A if

$$
a \in A, a \preccurlyeq \bar{a} \Longrightarrow \bar{a} \preccurlyeq a
$$

The set of \bar{a} is denoted $\operatorname{Min}(A, \preccurlyeq)$. Given $x \in E$, lower and upper section at x,

$$
L_{x} \doteq\{y \in E: y \preccurlyeq x\}, S_{x} \doteq\{y \in E: x \preccurlyeq y\}
$$

Set

$$
S_{A} \doteq \bigcup_{x \in A} S_{x}
$$

When $\preccurlyeq=\leq_{P}, P$ being a convex cone, then

$$
(x \preccurlyeq y \Longleftrightarrow y-x \in P) L_{x}=x-P, S_{x}=x+P, S_{A}=A+P
$$

- Property (Z) : each totally ordered (chain) subset of A has a lower bound in A

$$
\mathbb{I}
$$

- A is order-totally-complete (it has no covering of form $\left\{\left(L_{x}\right)^{c}: x \in D\right\}$ with $D \subseteq A$ being totally ordered)

- each maximal totally ordered subset of A has a lower bound in A.

$$
A \not \subset \bigcup_{x \in D} L_{x}^{c} \Leftrightarrow \emptyset \neq A \cap\left(x \backslash \bigcup_{x \in D} L_{x}^{c}\right) \Leftrightarrow \emptyset \neq A \bigcap \bigcap_{x \in D} L_{x} \Leftrightarrow \exists \mathrm{LB} .
$$

Sonntag-Zalinescu, 2000; Ng-Zheng, 2002; Corley, 1987; Luc, 1989; Ferro, 1996, 1997, among others.

Basic Definitions:

(a) [Ng-Zheng, 2002] A is order-semicompact (resp. order-s-semicompact) if every covering of A of form $\left\{L_{x}^{c}: x \in D\right\}, D \subseteq A($ resp. $D \subseteq E)$, has a finite subcover.
(b) [Luc, 1989; FB-Hernández-Novo, 2008] A es order-complete if \nexists covering of form $\left\{L_{x_{\alpha}}^{C}: \alpha \in I\right\}$ where $\left\{x_{\alpha}: \alpha \in I\right\}$ is a decreasing net in A.

A directed set $(I,>)$ is a set $I \neq \emptyset$ together with a reflexive and transitive relation $>$: for any two elements $\alpha, \beta \in I$ there exists $\gamma \in I$ with $\gamma>\alpha$ and $\gamma>\beta$.
A net in E is a map from a directed set $(I,>)$ to E. A net $\left\{y_{\alpha}: \alpha \in I\right\}$ is decreasing if $y_{\beta} \preccurlyeq y_{\alpha}$ for each $\alpha, \beta \in I, \beta>\alpha$.

Theorem

If A is order-totally-complete then $\operatorname{Min} A \neq \emptyset$.
Proof. Let $\mathcal{P}=$ set of totally ordered sets in A. Since $A \neq \emptyset$, $\mathcal{P} \neq \emptyset$. Moreover, \mathcal{P} equipped with the partial order - inclusion, becomes a partially ordered set. By standard arguments we can prove that any chain in \mathcal{P} has an upper bound and, by Zorn's lemma, we get a maximal set $D \in \mathcal{P}$.
Applying a previous equivalence, there exists a lower bound $a \in A$ of D. We claim that $a \in \operatorname{Min} A$. Indeed, if $a^{\prime} \in A$ satisfies that $a^{\prime} \preccurlyeq a$ then a^{\prime} is also a lower bounded of D. Thus, $a^{\prime} \in D$ by the maximality of D in \mathcal{P}. Hence, $a \preccurlyeq a^{\prime}$ and therefore $a \in \operatorname{Min} A$.
In particular, if $A \subseteq E$ is order-s-semicompact, order-semicompact or order-complete, then Min $A \neq \emptyset$.

Teorema [Ng-Zheng, 2002; FB-Hernández-Novo, 2008]

The following are equivalent:
(a) $\operatorname{Min}(A, \preccurlyeq) \neq \emptyset$;
(b) A has a maximal totally ordered subset minorized by an order-s-semicompact subset H of S_{A};
(c) A has a nonempty section which is order-complete;
(d) A has a nonempty section which is order-totally-complete (equiv. satisfies property (Z)).

$$
\begin{gathered}
S_{A} \doteq \bigcup_{x \in A}\{y \in E: x \preccurlyeq y\} . \\
(\preccurlyeq=\leq P, I(P)=\{0\}) ; \bar{a} \in \operatorname{Min} A \Longleftrightarrow A \cap(\bar{a}-P)=\{\bar{a}\} .
\end{gathered}
$$

Sketch - proof

$(a) \Longrightarrow(b):$ Take $a \in \operatorname{Min} A$, and consider

$$
\mathcal{P} \doteq\left\{D \subseteq E: L_{a} \cap A \subseteq D \subseteq S_{a} \cap A \text { and } D \text { is totally ordered }\right\}
$$

It is clear $L_{a} \cap A$ is totally ordered, $L_{a} \cap A \in \mathcal{P}$. By equipping \mathcal{P} with the partial order - inclusion- we can prove by standard arguments that any chain in \mathcal{P} has an upper bound. Therefore, there exists a maximal totally ordered element $D_{0} \in \mathcal{P}$, i.e.,

$$
L_{a} \cap A \subseteq D_{0} \subseteq S_{a} \cap A \subseteq S_{a}
$$

Set $H=\{a\}$. Then D_{0} is minorized by H which is an order-s-semicompact subset of S_{A}.
It generalizes and unifies results by Luc 1989, Ng-Zheng 2002 among others.

Optimization problem

X Hausdorff top. s.p; $f: X \rightarrow(E, \preccurlyeq)$. Consider

$$
\min \{f(x): x \in X\}
$$

$f(X) \doteq\{f(x): x \in X\}$. A sol $\bar{x} \in X$ to (P) is such that $f(\bar{x}) \in \operatorname{Min}(f(X), \preccurlyeq)$.

Theorem [FB-Hernández-Novo, 2008]

Let X compact. If $f^{-1}\left(L_{y}\right)$ closed $\forall y \in f(X)$ (resp. $\forall y \in E$), then $f(X)$
(a) is order-semicomp. (resp. $f(X)$ is order-s-semicomp.);
(b) has the domination property, i.e., every lower section of $f(X)$ has an efficient point.
As a consequence, $\operatorname{Min}(f(X), \preccurlyeq) \neq \emptyset$.

Proof.

We only prove (a) when $f^{-1}\left(L_{y}\right)$ is closed for all $y \in f(X)$. Suppose $\bigcup_{d \in D} L_{d}^{C}$ is a covering of $f(X)$ with $D \subseteq f(X)$. Put

$$
U_{d} \doteq\left\{x \in X: f(x) \notin L_{d}\right\}
$$

Then, $X=\bigcup_{d \in D} U_{d}$. Since $f^{-1}\left(L_{d}\right)$ is closed, $U_{d}=\left(f^{-1}\left(L_{d}\right)\right)^{c}$ is open $\forall d \in D$. Moreover, as X is compact, \exists finite set $\left\{d_{1}, \ldots, d_{r}\right\} \subseteq D$ such that

$$
X=U_{d_{1}} \cup \cdots \cup U_{d_{r}}
$$

Hence, $L_{d_{1}}^{c} \cup \cdots \cup L_{d_{r}}^{c}$ covers $f(X)$ and therefore $f(X)$ is order-semicompact.

We introduce the following new

Definition [FB-Hernández-Novo, 2008]: Let $x_{0} \in X$.

We say f is decreasingly lower bounded at x_{0} if for each net $\left\{x_{\alpha}: \alpha \in I\right\}$ convergent to x_{0} such that $\left\{f\left(x_{\alpha}\right): \alpha \in I\right\}$ is decreasing, the following holds

$$
\forall \alpha \in I: \quad f\left(x_{0}\right) \in L_{f\left(x_{\alpha}\right)} .
$$

We say that f is decreasingly lower bounded (in X) if it is for each $x_{0} \in X$.

Proposition [FB-Hernández-Novo, 2008]

If $f^{-1}\left(L_{y}\right)$ is closed $\forall y \in f(X)$, then f is decreasingly lower bounded.

Theorem [FB-Hernández-Novo, 2008]

Let X compact. If f is decreasingly lower bounded, then
(a) $f(X)$ is order-complete;
(b) $f(X)$ has the domination property;
(c) $\operatorname{Min} f(X) \neq \emptyset$.

Special situation

Y top. vec. space ordered by a closed convex cone $P \subseteq Y$. Define \preccurlyeq^{\prime} in 2^{Y}. If $A, B \in 2^{Y}$ then

$$
A \preccurlyeq^{\prime} B \quad \Longleftrightarrow \quad B \subseteq A+P
$$

This is partial order: reflexive and transitive [Jahn, 2003; Kuroiwa, 1998, 2003].
Kuroiwa introduces the notion of efficient set for a family of $\mathcal{F} \subseteq$ of nonempty subsets of Y. We say $A \in \mathcal{F}$ is a $/$-minimal set ($A \in \operatorname{lMin} \mathcal{F}$) if

$$
B \in \mathcal{F}, B \preccurlyeq^{\prime} A \Longrightarrow A \preccurlyeq^{\prime} B
$$

- X real Hausd. top. vect. spac.; Y real normed vect. spac.;
- $P \subseteq Y$ a convex cone, int $P \neq \emptyset, I(P) \doteq P \cap(-P)$;
- $K \subseteq X$ a closed set; $F: K \rightarrow Y$ a vector function.
$E=$ the set of \bar{x} such that

$$
\bar{x} \in K: F(x)-F(\bar{x}) \notin-P \backslash I(P) \forall x \in K
$$

Its elements are called efficient points;
$E_{W}=$ the set of \bar{x} such that

$$
\bar{x} \in K: F(x)-F(\bar{x}) \notin-\operatorname{int} P \forall x \in K .
$$

Its elements are called weakly efficient points.

$$
E \subseteq E_{W}=\bigcap_{x \in K}\{\bar{x} \in K: F(\bar{x})-F(x) \notin \text { int } P\}
$$

How we can compute the efficient points?

Theorem: Consider $P=\mathbb{R}_{+}^{n}, F(x)=C x$ (linear), K polyhedra.
\bar{x} is efficient $\Longleftrightarrow \exists p^{*}>0$ such that \bar{x} solves

$$
\min \left\{\left\langle p^{*}, F(x)\right\rangle: A x \geq b, x \geq 0\right\} .
$$

In a standar notation $\bar{x} \in \operatorname{argmin}_{K}\left\langle p^{*}, F(\cdot)\right\rangle$,
$K \doteq\left\{x \in \mathbb{R}^{n}: A x \geq b, x \geq 0\right\}$.
Does the previous theorem remains valid for non linear F ?

$$
\bar{x} \in E \Longleftrightarrow \bar{x} \in \bigcup_{p^{*} \in \mathbb{R}_{+}^{m}} \operatorname{argmin}_{\mathcal{K}}\left\langle p^{*}, F(\cdot)\right\rangle(\Longleftarrow \text { always!!); }
$$

\Longrightarrow weighting method
How to choice $p^{*} \in \mathbb{R}_{++}^{m}$?

Example 1.1.

Let $F\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right), x \in K \doteq\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}+x_{2} \geq 1\right\}$. Here, $E=E_{W}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}+x_{2}=1\right\}$. However,

$$
\operatorname{vnf}_{x \in \mathbb{R}}\left\langle p^{*}, F(x)\right\rangle=-\infty, p^{*}=\left(p_{1}^{*}, p_{2}^{*}\right), p_{1}^{*} \neq p_{2}^{*}
$$

Example 1.2.

Let $F(x)=\left(\sqrt{1+x^{2}}, x\right), x \in K=\mathbb{R}$. Here,
$\left.\left.E=E_{W}=\right]-\infty, 0\right]$. However, if $p_{2}^{*}>p_{1}^{*}>0$, and

$$
\operatorname{unf}_{x \in \mathbb{R}}^{\operatorname{un}}\left\langle p^{*}, F(x)\right\rangle=-\infty, p^{*}=\left(p_{1}^{*}, p_{2}^{*}\right) .
$$

A lot of work to do !!!

Let $h: X \rightarrow \mathbb{R} \cup\{+\infty\}$. It is

- quasiconvex if

$$
h(x) \leq h(y) \Longrightarrow h(\xi) \leq h(y) \quad \forall \xi \in(x, y)
$$

or equivalently, $\{x: h(x) \leq t\}$ is convex for all $t \in \mathbb{R}$.

- semistrictly quasiconvex if

$$
h(x)<h(y) \Longrightarrow h(\xi)<h(y) \quad \forall \xi \in(x, y)
$$

Proposition

If $h: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is semistrictly quasiconvex and lower semicontinuous, then it is quasiconvex.

Theorem [Malivert-Boissard, 1994] $K \subseteq \mathbb{R}^{n}$ convex

each $f_{i}(i=1, \ldots, m)$ is quasiconvex, semistrictly quasiconvex, and Isc along lines in K. Then

$$
E_{W}=\bigcup\{E(J): J \subseteq\{1, \ldots, m\}, J \neq \emptyset\} .
$$

Example 2.

Consider $F=\left(f_{1}, f_{2}\right), K=[0,+\infty[$,

$$
f_{1}(x)=\left\{\begin{array}{ll}
2, & \text { if } x \notin[1,2] \\
1, & \text { if } x \in[1,2]
\end{array} \quad f_{2}(x)=|x-5| .\right.
$$

Here, $E=\{2,5\}, E_{W}=[1,8]$.

Some notations

$$
\begin{gathered}
G^{\lambda} \doteq\{x \in K: F(x)-\lambda \in-P\} ; G_{\lambda} \doteq\{x \in K: F(x)-\lambda \notin \operatorname{int} P\} \\
G(y) \doteq\{x \in K: F(x)-F(y) \notin \operatorname{int} P\} \\
\text { epi } F \doteq\{(x, y) \in K \times Y: y \in F(x)+P\}
\end{gathered}
$$

There is no relationship between the closedness of G^{λ} for all $\lambda \in Y$ and the closedness of $G(y)$ for all $y \in K$ even when P is additionally closed.

- $F: K \rightarrow Y$ is [Penot-Therá, 1979] P-lower semicontinuous (P-lsc) at $x_{0} \in K$ if \forall open set $V \subseteq Y$ st $F\left(x_{0}\right) \in V \exists$ an open neighborhood $U \subseteq X$ of x_{0} st $F(U \cap K) \subseteq V+P$. We shall say that F is P-Isc (on K) if it is at every $x_{0} \in K$.
- F is \mathbb{R}_{+}^{m}-Isc if and only if each f_{i} is Isc.

Proposition [FB, 2003; Bianchi-Hadjisavvas-Schaible, 1997;

The Luc, 1989]
$P \subseteq Y$ is convex cone, $K \subseteq X$ and $S \subseteq Y$ be closed sets such that $S+P \subseteq S$ and $S \neq Y ; F: K \rightarrow Y$. The following hold.
(a) If F is a P-Isc function, then $\{x \in K: F(x) \in \lambda-S\}$ is closed for all $\lambda \in Y$;
(b) Assume int $P \neq \emptyset$ and P closed: F is P-Isc if and only if $\{x \in K: F(x)-\lambda \notin$ int $P\}$ is closed for all $\lambda \in Y$;
(c) Assume int $P \neq \emptyset$ and P closed: epi F is closed if and only if $\{x \in K: F(x)-\lambda \in-P\}$ is closed for all $\lambda \in Y$;
(d) Assume int $P \neq \emptyset$ and P closed: if F is P-Isc then epi F is closed.

Theorem [Ferro, 1982; (set-valued) Ng-Zheng, 2002]

P convex cone; K compact; G^{λ} closed for all $\lambda \in Y(\Longleftrightarrow$ epi F is closed if int $P \neq \emptyset$). Then $E \neq \emptyset$.

Proof. We know $\operatorname{Min} F(X) \neq \emptyset$, thus $E \neq \emptyset$.

$$
G^{\lambda} \doteq\{x \in K: F(x)-\lambda \in-P\} .
$$

Theorem: P convex cone, int $P \neq \emptyset ; K$ compact;
$G(y) \doteq\{x \in K: F(x)-F(y) \notin$ int $P\}$ closed $\forall y \in K$. Then $E_{W} \neq \emptyset$.

Proof. Notice that $E_{W}=E(F(K) \mid C)$ for $C=($ int $P) \cup\{0\}$. The closedness of E_{W} is obvious; it suffices to show that $E_{W} \neq \emptyset$. If it is not order-complete for C, let $\left\{F\left(x_{\alpha}\right)\right\}$ be a decreasing net with $\left\{\left(F\left(x_{\alpha}\right)-C\right)^{c}\right\}_{\alpha}$ forming a covering of $F(K)$. By compactness, (assume) $x_{\alpha} \rightarrow x_{0}$ for some $x_{0} \in K$. If $E_{W}=\emptyset, \exists$ $y \in K$ such that $F(y)-F\left(x_{0}\right) \in-$ int P. For $F(y), \exists \alpha_{0}$ such that $F(y)-F\left(x_{\alpha_{0}}\right) \notin-C$. This implies

$$
\begin{aligned}
& F(y)-F\left(x_{\alpha}\right)=F(y)-F\left(x_{\alpha_{0}}\right)+F\left(x_{\alpha_{0}}\right)-F\left(x_{\alpha_{0}}\right) \\
& \in(Y \backslash-C)+C \subseteq Y \backslash-C \subseteq Y \backslash-\operatorname{int} P \forall \alpha>\alpha_{0} .
\end{aligned}
$$

$G(y)$ closed implies $F\left(x_{0}\right)-F(y) \notin \operatorname{int} P$, a contradiction.

Since int $P \neq \emptyset$, take $\bar{y} \in$ int P. Then the set

$$
B=\left\{y^{*} \in P^{*}:\left\langle y^{*}, \bar{y}\right\rangle=1\right\}
$$

is a w^{*}-compact convex base for P^{*}, i.e., $0 \notin B$ and $P^{*}=\bigcup_{t \geq 0} t B$. In this case,

$$
\begin{gathered}
p \in P \Longleftrightarrow\left\langle p^{*}, p\right\rangle \geq 0 \forall p^{*} \in B ; \\
p \in \operatorname{int} P \Longleftrightarrow\left\langle p^{*}, p\right\rangle>0 \forall p^{*} \in B
\end{gathered}
$$

The set E^{*} of the extreme points of B is nonempty by the Krein-Milman theorem.

Setting of the problem
Generalized convexity of vector functions
Asymptotic Analysis/finite dimensional The convex case/A nonconvex case

Definitions: Let $\emptyset \neq K \subseteq X, F: K \rightarrow Y$ is said to be:

1. P-convex if, $x, y \in K$,

$$
t F(x)+(1-t) F(y) \in F(t x+(1-t) y)+P, \forall t \in] 0,1[;
$$

F is \mathbb{R}_{+}^{m}-convex if and only if each f_{i} is convex.
2. properly P-quasiconvex [Ferro, 1982] if, $x, y \in K, t \in] 0,1[$,
$F(t x+(1-t) y) \in F(x)-P$ or $F(t x+(1-t) y) \in F(x)+P$,
or equivalently, $\{\xi \in K: F(\xi) \notin \lambda+P\}$ is convex $\forall \lambda \in Y$. $\left.\left.F(x)=\left(x,-x^{2}\right), K=\right]-\infty, 0\right]$, satisfies 2 but not 1 ;
$F(x)=\left(x^{2},-x\right), K=\mathbb{R}$, satisfies 1 but not 2 ;

More Definitions

3. naturally P-quasiconvex [Tanaka, 1994] if, $x, y \in K$, $t \in$]0, $1[$

$$
F(t x+(1-t) y) \in \mu F(x)+(1-\mu) F(y)-P, \text { for some } \mu \in[0,1]
$$

or equivalently, $F([x, y]) \in \operatorname{co}\{F(x), F(y)\}-P$. $F(x)=\left(x^{2}, 1-x^{2}\right), K=[0,1]$, satisfies 3 but not 2 or 1 .
4. scalarly P-quasiconvex [Jeyakumar-Oettli-Natividad, 1993] if, for $p^{*} \in P^{*} \backslash\{0\}, x \in K \mapsto\left\langle p^{*}, F(x)\right\rangle$ is quasiconvex.

Both are equivalent [FB-Hadjisavvas-Vera, 2007] if int $P \neq \emptyset$.

$$
\Longrightarrow F(K)+P \text { is convex. }
$$

More Definitions

5. P-quasiconvex [Ferro, 1982] if,

$$
\{\xi \in K: F(\xi)-\lambda \in-P\} \text { is convex } \forall \lambda \in Y
$$

F is \mathbb{R}_{+}^{m}-quasiconvex if and only if each f_{i} is quasiconvex. [Benoist-Borwein-Popovici, 2003] This is equivalent to: given any $p^{*} \in E^{*}, x \in K \mapsto\left\langle p^{*}, F(x)\right\rangle$ is quasiconvex.
6. semistrictly- P-quasiconvex at y [Jahn-Sachs, 1986] if,

$$
x \in K, F(x)-F(y) \in-P \Longrightarrow F(\xi)-F(y) \in-P \forall \xi \in] x, y[
$$

[R. Cambini, 1998] When $X=\mathbb{R}^{n}, Y=\mathbb{R}^{2}, P \subseteq \mathbb{R}^{2}$ polyhedral, int $P \neq \emptyset, F: K \rightarrow \mathbb{R}^{2}$ continuous, both are equivalent.

One more Definition

7. semistrictly-($Y \backslash-$ int P)-quasiconvex at $y[F B, 2004]$ if, $x \in K$,

$$
F(x)-F(y) \notin \operatorname{int} P \Longrightarrow F(\xi)-F(y) \notin \operatorname{int} P \forall \xi \in] x, y[.
$$

Teorema [FB, 2004]. Sean X, Y, K, P, F as above. We have:

P-quasiconv. implies semistrictly $(Y \backslash$-int $P)$-quasiconv.
Proof. Take any $x, y \in K$ such that $F(x)-F(y) \notin$ int P, and suppose $\exists \xi \in] x, y[$ satisfying $F(\xi)-F(y) \in$ int P. If
$F(x)-F(\xi) \in P$, the latter inclusion implies
$F(x)-F(y) \in \operatorname{int} P$ which cannot happen by the choice of x, y. Hence $F(x)-F(\xi) \notin P$. By a Lemma due to
Bianchi-Hadjisavvas-Schaible (1997) ($a \nsupseteq 0 b<0 \Rightarrow \exists c \nsupseteq 0$, $a \leq c, b \leq c$) there exists $c \notin P$ such that

$$
F(x)-F(\xi)-c \in-P \text { and } F(y)-F(\xi)-c \in-P
$$

By the P-quasiconvexity of F, we conclude in particular $F(\xi)-F(\xi)-c=-c \in-P$ giving a contradiction.
Consequently $F(\xi)-F(y) \notin$ int P for all $\xi \in] x, y[$, proving the desired result.

Definition

Given $S \subseteq Y, K \subseteq X$ convex. The function $F: K \rightarrow Y$ is semistrictly (S)-quasiconvex at $y \in K$, if for every $x \in K, x \neq y$, $F(x)-F(y) \in-S \Longrightarrow F(\xi)-F(y) \in-S \quad \forall \xi \in] x, y[$. We say that F is semistrictly (S)-quasiconvex (on K) if it is at every $y \in K$.

$$
\begin{aligned}
F_{1}(x)= & \left(e^{-x^{2}}, x^{2}\right), \quad x \in \mathbb{R} ; F_{2}(x)=\left(\frac{1}{1+|x|^{2}},|x|\right), \quad x \in \mathbb{R} \\
& F_{3}\left(x_{1}, x_{2}\right)=\left(\frac{x_{1}^{2}}{1+x_{1}^{2}}, x_{2}^{3}\right), \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
\end{aligned}
$$

are semistrictly $\left(\mathbb{R}^{2} \backslash\right.$-int $\left.\mathbb{R}_{+}^{2}\right)$-quasiconvex.

Particular cases

$Y=\mathbb{R}, \mathbb{R}_{+} \doteq\left[0,+\infty\left[, \mathbb{R}_{++} \doteq\right] 0,+\infty[:\right.$
semistrict $\left(\mathbb{R}_{+}\right)$-quasiconvexity = quasiconvexity; semistrict $\left(\mathbb{R}_{++}\right)$-quasiconvexity = semistrict quasiconvexity.

The previous definition is related to the problem of finding $\bar{x} \in X$ satisfying

$$
\bar{x} \in K \text { such that } F(x)-F(\bar{x}) \in S \forall x \in K .
$$

The set of such \bar{x} is denoted by E_{S}.

Set $\mathcal{L}_{y} \doteq\{x \in K: F(x)-F(y) \in-S\}$.

Proposition

Assume $0 \in S$ (for instance $S=Y \backslash-\operatorname{int} P, S=Y \backslash-P \backslash I(P)$); K convex; $F: K \rightarrow Y, y \in K$. The FAE:
(a) F is semistrictly (S)-quasiconvex at y;
(b) \mathcal{L}_{y} is starshaped at y.

If $X=\mathbb{R}$, (b) may be substituted by the convexity of \mathcal{L}_{y}.

Proposition

Let S, K as above, and $\bar{x} \in K$ be a local S-minimal for F on K. Then, $\bar{x} \in E_{S} \Longleftrightarrow F$ is semistrictly $(Y \backslash-S)$-quasiconvex at \bar{x}.

To fix ideas let $X=\mathbb{R}^{n}$, the asymptotic cone of C is

$$
C^{\infty} \doteq\left\{v \in X: \exists t_{n} \downarrow 0, \exists x_{n} \in C, t_{n} x_{n} \rightarrow v\right\},
$$

When C is closed and starshaped at $x_{0} \in C$, one has

$$
C^{\infty}=\bigcap_{t>0} t\left(C-x_{0}\right) .
$$

If C is convex the above expression is independent of $x_{0} \in C$.

$$
\begin{gathered}
E_{S} \doteq \bigcap_{y \in K}\{x \in K: F(x)-F(y) \in-S\}, \\
\left(E_{S}\right)^{\infty} \subseteq \bigcap_{y \in K}\{x \in K: F(x)-F(y) \in-S\}^{\infty} \\
\left(E_{S}\right)^{\infty} \subseteq \bigcap_{y \in K}\left\{v \in K^{\infty}: F(y+\lambda v)-F(y) \in-S \forall \lambda>0\right\} \doteq R_{S} .
\end{gathered}
$$

We introduce the following cones in order to deal with the case when K unbounded. Here $S \subseteq Y$,

$$
\begin{aligned}
& R_{P} \doteq \bigcap_{y \in K}\left\{v \in K^{\infty}: F(y+\lambda v)-F(y) \in-P \forall \lambda>0\right\}, \\
& R_{S} \doteq \bigcap_{y \in K}\left\{v \in K^{\infty}: F(y+\lambda v)-F(y) \in-S \forall \lambda>0\right\} .
\end{aligned}
$$

We recall that E_{S} denotes the set of $\bar{x} \in X$ satisfying

$$
\begin{gathered}
\bar{x} \in K \text { such that } F(x)-F(\bar{x}) \in S \forall x \in K . \\
E_{S} \neq \emptyset \Longrightarrow 0 \in S .
\end{gathered}
$$

$$
\mathcal{L}_{y} \doteq\{x \in K ; F(x)-F(y) \in-S\} .
$$

Theorem

K closed convex; P convex cone; $S \subseteq Y$ such that $S+P \subseteq S$; $F: K \rightarrow Y$ semistrictly (S)-quasiconvex and \mathcal{L}_{y} is closed $\forall y \in K$. The following hold:

- $E_{S}+R_{P}=E_{S}, R_{P} \subseteq\left(E_{S}\right)^{\infty} \subseteq R_{S}$;
- if $E_{S} \neq \emptyset$ and either $X=\mathbb{R}$ or $Y=\mathbb{R}$ (with $P=[0,+\infty[$), $\Longrightarrow E_{S}$ is convex and $\left(E_{S}\right)^{\infty}=R_{S}$;
- $E_{P} \neq \emptyset \Longrightarrow\left(E_{S}\right)^{\infty}=R_{S},\left(E_{P}\right)^{\infty}=R_{P}$.

Models: $S=P, S=Y \backslash-(P \backslash I(P)), S=Y \backslash-\operatorname{int} P$.

Proposition [FB-Vera, 2006]

$K \subseteq \mathbb{R}^{n}$ closed convex; $S \subseteq Y ; F: K \rightarrow Y$ semistrictly (S)-quasiconvex and \mathcal{L}_{y} closed for all $y \in K$.

- If $R_{S}=\{0\} \Longrightarrow\left(K_{r} \doteq K \cap \bar{B}(0, r)\right)$

$$
\begin{equation*}
\exists r>0, \forall x \in K \backslash K_{r}, \exists y \in K_{r}: F(y)-F(x) \notin S ; \tag{*}
\end{equation*}
$$

- if $X=\mathbb{R}$ then (without the closedness of \mathcal{L}_{y}),

$$
R_{S}=\{0\} \Longleftrightarrow(*) \text { holds. }
$$

when $S=Y \backslash-$ int P, we denote $E_{S}=E_{W}, R_{S}=\tilde{R}_{W}$.

Theorem

$K \subseteq \mathbb{R}^{n}$ closed convex; $P \subseteq Y$ closed cone; $F: K \rightarrow Y$ semistrictly $(Y \backslash-$ int P)-quasiconvex with $G(y)=\{x \in \underset{\tilde{R}}{K}: F(x)-F(y) \notin$ int $P\}$ closed $\forall y \in K$. Then $\tilde{R}_{W}=\{0\} \Longrightarrow E_{W} \neq \emptyset$ and compact.

Remarks

- Unfortunately, we do not know whether the condition $\tilde{R}_{W}=\{0\}$ is also necessary for the nonemptines and compactness of E_{W} in this general setting.
- convex case If $P=\mathbb{R}_{+}^{m}$ and each component of F is convex and Isc, the equivalence holds [Deng, 1998]. It will be extended for general cones latter on.
- a nonconvex case If $n=1$ or $Y=\mathbb{R} \ldots$

We set $X=\mathbb{R}^{n}, Y=\mathbb{R}^{m}$,

Hypothesis on the cone P

$P \subseteq \mathbb{R}^{m}$ is a closed convex cone, int $P \neq \emptyset$ (thus $P^{*}=\bigcup_{t>0} t B$ for some compact convex set B). We require that the set B_{0} of extreme points of B is closed.

Obviously the polhyedral and the ice-cream cones satisfy the previous hypothesis.

Set $\left(S=\mathbb{R}^{m} \backslash\right.$-int $\left.P\right)$

$$
E_{W} \doteq \bigcap_{y \in K} \bigcup_{q \in B_{0}}\{x \in K:\langle q, F(x)-F(y)\rangle \leq 0\},
$$

$$
R_{P}=\bigcap_{y \in K} \bigcap_{\lambda>0} \bigcap_{q \in B_{0}}\left\{v \in K^{\infty}:\langle q, F(y+\lambda v)-F(y)\rangle \leq 0\right\},
$$

Additionally, we also consider the cone

$$
\tilde{R}_{W}=\bigcap_{y \in K} \bigcup_{q \in B_{0}}\left\{v \in K^{\infty}:\langle q, F(y+\lambda v)-F(y)\rangle \leq 0 \quad \forall \lambda>0\right\} .
$$

Corollary: $h_{q}(x)=\langle q, F(x)\rangle, q \in P^{*}, x \in K$.

Assume h_{q} is convex for all $q \in B_{0} ; F: K \rightarrow \mathbb{R}^{m} P$-Isc. Then,

- if $E_{W} \neq \emptyset$,

$$
\begin{gathered}
\bigcap_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\} \subseteq\left(E_{W}\right)^{\infty} \subseteq \\
\bigcup_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\} ;
\end{gathered}
$$

- if $\operatorname{argmin}_{K} h_{q} \neq \emptyset$ for all $q \in B_{0}$,

$$
\left(E_{W}\right)^{\infty}=\bigcup_{q \in B_{0}}\left\{v \in K^{\infty}: h_{q}^{\infty}(v) \leq 0\right\}=\tilde{R}_{W} .
$$

Examples showing optimality of the assumptions

Example 3.1.

Take $P=\mathbb{R}_{+}^{2}, K=\mathbb{R}^{2}, f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}, f_{2}\left(x_{1}, x_{2}\right)=e^{x_{2}}$. Then $f_{1}^{\infty}\left(v_{1}, v_{2}\right)=0$ if $v_{1}=0, f_{1}^{\infty}\left(v_{1}, v_{2}\right)=+\infty$ elsewhere; $f_{2}^{\infty}\left(v_{1}, v_{2}\right)=0$ if $v_{2} \leq 0, f_{2}^{\infty}\left(v_{1}, v_{2}\right)=+\infty$ elsewhere. Thus,

$$
\left.\left.\left.\left.R_{P}=\{0\} \times\right]-\infty, 0\right], \tilde{R}_{W}=(\{0\} \times \mathbb{R}) \cup(\mathbb{R} \times]-\infty, 0\right]\right)
$$

while $E_{W}=\{0\} \times \mathbb{R}=\left(E_{W}\right)^{\infty}$. Notice that $\operatorname{argmin}_{K} f_{2}=\emptyset$.

The convex case

Theorem [Deng, 1998; FB-Vera, 2006]

$K \subseteq \mathbb{R}^{n}$ closed convex; P closed convex cone as above. Assume $F: K \rightarrow \mathbb{R}^{m}$ is P-Isc such that $\langle q, F(\cdot)\rangle: K \rightarrow \mathbb{R}$ is convex $\forall q \in B_{0}$. The FAE:
(a) E_{W} is nonempty and compact;
(b) $\operatorname{argmin}_{K}\langle q, F(\cdot)\rangle$ is nonempty and compact for all $q \in B_{0}$;
(c) $\tilde{R}_{w}=\{0\}$;

The nonconvex case: non quasiconvexity

Theorem [FB-Vera, 2006]

$K \subseteq \mathbb{R}$ closed convex; $P \subseteq Y$ convex cone, int $P \neq \emptyset$;
$F: K \rightarrow Y$ is semistrictly ($Y \backslash$-int P)-quasiconvex such that
\mathcal{L}_{y} is closed $\forall y \in K$. Then, E_{W} is closed convex, and the FAE:
(a) $\tilde{R}_{W}=\{0\}$;
(b) $\exists r>0, \forall x \in K \backslash K_{r}, \exists y \in K_{r}: F(y)-F(x) \in-$ int P, where $K_{r}=[-r, r] \cap K$;
(c) $E_{W} \neq \emptyset$ and bounded (it is already closed and convex).

When $P=\mathbb{R}_{+}^{m}$ some of the components of F may be not quasiconvex.

The nonconvex case: quasiconvexity

Theorem [FB, 2004; FB-Vera, 2006]

$Y=\mathbb{R}^{n}, K \subseteq \mathbb{R}$ is closed convex; $P \subseteq \mathbb{R}^{m}$ closed convex cone as above. Assume $\langle q, F(\cdot)\rangle: K \rightarrow \mathbb{R}$ is Isc and semistrictly quasiconvex $\forall q \in B_{0}$. The FAE:
(a) E_{W} is a nonempty compact convex set;
(b) $\operatorname{argmin}_{K}\langle q, F(\cdot)\rangle$ is a nonempty compact convex set for all $q \in B_{0}$;
(c) $\exists r>0, \forall x \in K \backslash K_{r}, \exists y \in K_{r}\left(K_{r}=[-r, r] \cap K\right)$:

$$
\langle q, F(y)-F(x)\rangle<0 \quad \forall q \in B_{0} .
$$

Examples showing optimality of the assumptions

Example 4.1.

Consider $P=\mathbb{R}_{+}^{2}, K=\mathbb{R}, F(x)=\left(\sqrt{|x|}, \frac{x}{1+|x|}\right), x \in \mathbb{R}$. Here, $\left.\left.E_{W}=\right]-\infty, 0\right]$.

Example 4.2.

Consider $P=\mathbb{R}_{+}^{2}, F=\left(f_{1}, f_{2}\right), K=[0,+\infty[$ where,

$$
f_{1}(x)=\left\{\begin{array}{ll}
2, & \text { if } x \notin[1,2] \\
1, & \text { if } x \in[1,2]
\end{array} \quad f_{2}(x)= \begin{cases}-e^{-x+5}, & \text { if } x \geq 5 \\
4-x, & \text { if } x<5\end{cases}\right.
$$

Here, $E_{W}=[1,+\infty[$.

Conjecture:

Assume that each $f_{i}: K \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is semistrictly quasiconvex and $\mathrm{Isc}, i=1, \ldots, m$. The FAE:

- E_{W} is nonempty and compact;
- each $\operatorname{argmin}_{K} f_{i}$ is nonempty and compact.

The starting point: linear case

Theorem [Gordan Paul, 1873] Let A matrix.

Then, exactly one of the following sistems has solution:
(I) $A x<0$;
(II) $A^{\top} p=0, p \geq 0, p \neq 0$.

The convex case

Theorem [Fan-Glicksberg-Hoffman, 1957] Let $K \subseteq \mathbb{R}^{n}$ convex,

$f_{i}: K \rightarrow \mathbb{R}, i=1, \ldots, m$, convex. Then, exactly one of the following two sistems has solution:

$$
\begin{aligned}
& \text { (I) } f_{i}(x)<0, i=1, \ldots, m, x \in K ; \\
& \text { (II) } p \in \mathbb{R}_{+}^{m} \backslash\{0\}, \sum_{i=1}^{m} p_{i} f_{i}(x) \geq 0 \forall x \in K .
\end{aligned}
$$

Sketch of Proof. Set $F=\left(f_{1}, \ldots, f_{m}\right)$.
$\operatorname{Not}(I) \Longleftrightarrow F(K) \cap\left(-\right.$ int $\left.\mathbb{R}_{+}^{m}\right)=\emptyset \Longleftrightarrow\left(F(K)+\mathbb{R}_{+}^{m}\right) \cap\left(-\right.$ int $\left.\mathbb{R}_{+}^{m}\right)=\emptyset$

$$
\begin{aligned}
& \Uparrow \quad\left(F(K)+\mathbb{R}_{+}^{m} \text { is convex } \Longrightarrow(I I)\right) \\
& \overline{\operatorname{cone}}\left(F(K)+\mathbb{R}_{+}^{m}\right) \cap\left(-\operatorname{int} \mathbb{R}_{+}^{m}\right)=\emptyset
\end{aligned}
$$

Let P closed convex cone with int $P \neq \emptyset$

$$
F(K) \approx A \subseteq Y, \mathbb{R}_{+}^{n} \approx P
$$

(I) $A \cap(-$ int $P) \neq \emptyset$,
(II) $\operatorname{co}(A) \cap(-$ int $P)=\emptyset$.

Trivial part (I) y $(I I) \Longrightarrow$ absurd.
Non trivial part: Hipothesis (¿ ?)

$$
\begin{gathered}
A \cap(-\operatorname{int} P)=\emptyset \Longrightarrow \operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset . \\
A \cap(-\operatorname{int} P)=\emptyset \Longleftrightarrow \overline{\operatorname{cone}(A+P) \cap(- \text { int } P)=\emptyset .}
\end{gathered}
$$

It suffices the convexity of $\overline{\text { cone }}(A+P)$!!

Definition: Let $P \subseteq Y$ closed convex cone, int $P \neq \emptyset$.

The set $A \subseteq Y$ is:
(a) generalized subconvexlike [Yang-Yang-Chen, 2000] if $\left.\exists u \in \operatorname{int} P, \forall x_{1}, x_{2} \in A, \forall \alpha \in\right] 0,1[, \forall \varepsilon>0, \exists \rho>0$ such that

$$
\begin{equation*}
\varepsilon u+\alpha x_{1}+(1-\alpha) x_{2} \in \rho A+P \tag{1}
\end{equation*}
$$

(b) presubconvexlike [Zeng, 2002] if
$\left.\exists u \in Y, \forall x_{1}, x_{2} \in A, \forall \alpha \in\right] 0,1[, \forall \varepsilon>0, \exists \rho>0$ such that (1) holdse;
(c) nearly subconvexlike [Sach, 2003; Yang-Li-Wang, 2001] if cone $(A+P)$ is convex.
(a), (b), (c) are equiv. [FB-Hadjisavvas-Vera, 2007].

$$
\operatorname{cone}_{+}(A+\operatorname{int} P) \text { is convex } \Longleftrightarrow \operatorname{cone}(A+\operatorname{int} P) \text { is convex. }
$$

$$
\begin{gathered}
\Longrightarrow \overline{\operatorname{cone}}(A+\operatorname{int} P)=\overline{\operatorname{cone}}(\overline{A+\operatorname{int} P})=\overline{\operatorname{cone}}(\overline{A+\overline{\operatorname{int} P}})= \\
\overline{\operatorname{cone}}(A+P)=\overline{\operatorname{cone}_{+}}(A+P) \text { is convex. }
\end{gathered}
$$

Also,

$$
\begin{gathered}
\operatorname{int}\left(\overline{\operatorname{cone}_{+}(A+P)}\right)=\operatorname{int}\left(\overline{\operatorname{cone}_{+}(A)+P}\right)=\operatorname{cone}_{+}(A)+\operatorname{int} P= \\
\operatorname{cone}_{+}(A+\operatorname{int} P) \text { is convex. Consequently } \\
\overline{\operatorname{cone}(A+P) \text { is convex } \Longleftrightarrow \operatorname{cone}(A+\operatorname{int} P) \text { is convex. }}
\end{gathered}
$$

Here, $\overline{\operatorname{cone}(M)}=\overline{\text { cone }_{+}(M)}$.

$$
\operatorname{cone}(M)=\bigcup_{t \geq 0} t M, \operatorname{cone}_{+}(M) \doteq \bigcup_{t>0} t M, \overline{\operatorname{cone}(M)} \overline{\operatorname{cone}(M)}
$$

Theorem [Yang-Yang-Chen, 2000; Yang-Li-Wang, 2001]

$P \subseteq Y$ as above, $A \subseteq Y$. Assume $\overline{\text { cone }}(A+P)$ is convex. Then

$$
A \cap(-\operatorname{int} P)=\emptyset \Longrightarrow \operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset
$$

Example: [FB-Hadjisavvas-Vera, 2007]

Def: A cone $K \subseteq Y$ is called "pointed" if

$x_{1}+\cdots+x_{k}=0$ is impossible for $x_{1}, x_{2}, \ldots, x_{k}$ in K unless
$x_{1}=x_{2}=\cdots=x_{k}=0 .(\Longleftrightarrow \operatorname{co} K \cap(-\operatorname{co} K)=\{0\})$.
Our first main result is the following:

Theorem [FB-Hadjisavvas-Vera, 2007]

$: \emptyset \neq A \subseteq Y, P \subseteq Y$ convex closed cone, int $P \neq \emptyset$. The FAE:
(a) cone $(A+\operatorname{int} P)$ is pointed;
(b) $\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset$.

Sketch of proof

We first prove cone $(A+\operatorname{int} P)$ is pointed $\Longrightarrow A \cap(-\operatorname{int} P)=\emptyset$. If $\exists x \in A \cap(-\operatorname{int} P)$, then $x=2\left(x-\frac{x}{2}\right) \in \operatorname{cone}(A+\operatorname{int} P)$ and $-x=x+(-2 x) \in A+\operatorname{int} P \subseteq \operatorname{cone}(A+\operatorname{int} P)$. By pointedness, $0=x+(-x)$ implies $x=0 \in \operatorname{int} P$, a contradiction.
Now assume that (a) holds. If (b) does not hold, $\exists x \in-$ int P such that $x=\sum_{i=1}^{m} \lambda_{i} a_{i}$ with $\sum_{i=1}^{m} \lambda_{i}=1, \lambda_{i}>0, a_{i} \in A$. Thus, $0=\sum_{i=1}^{m} \lambda_{i}\left(a_{i}-x\right)$. Using (a), $\lambda_{i}\left(a_{i}-x\right)=0 \forall i=1, \ldots, m, \mathrm{a}$ contradiction. Conversely, assume (b) holds. If cone $(A+\operatorname{int} P)$ is not pointed, then $\exists x_{i} \in \operatorname{cone}(A+\operatorname{int} P) \backslash\{0\}, i=1,2, \ldots n$, $\sum_{i=1}^{n} x_{i}=0$. So, $x_{i}=\lambda_{i}\left(y_{i}+u_{i}\right)$ with $\lambda_{i}>0, y_{i} \in A$ and $u_{i} \in$ int P. Hence $\sum_{i=1}^{n} \lambda_{i} y_{i}=-\sum_{i=1}^{n} \lambda_{i} u_{i}$. Setting $\mu_{i}=\lambda_{i} / \sum_{j=1}^{n} \lambda_{j}$ we get
$\sum_{i=1}^{n} \mu_{i} y_{i}=-\sum_{i=1}^{n} \mu_{i} u_{i} \in \operatorname{co}(A) \cap(-$ int $P)$, a contradiction.

The optimal 2D alternative theorem

Theorem [FB-Hadjisavvas-Vera, 2007]

Let $P \subseteq \mathbb{R}^{2}$ be a cone as before with int $P \neq \emptyset$, and $A \subseteq \mathbb{R}^{2}$ be satisfying $A \cap(-$ int $P)=\emptyset$. The following hold:

$$
\begin{gathered}
\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset \Longleftrightarrow \operatorname{cone}(A+P) \text { is convex } \Longleftrightarrow \\
\operatorname{cone}(A+\operatorname{int} P) \text { is convex } \Longleftrightarrow \operatorname{cone}(A)+P \text { is convex } \Longleftrightarrow \\
\overline{\operatorname{cone}}(A+P) \text { is convex. }
\end{gathered}
$$

We are in $\mathbb{R}^{2}, \operatorname{int}\left(\operatorname{cone}_{+}(A+P)\right) \cup\{0\}=\operatorname{cone}(A+\operatorname{int} P) \subseteq$

$$
\operatorname{cone}(A+\operatorname{int} P) \subseteq \operatorname{cone}(A+P) \subseteq \operatorname{cone}(A)+P \subseteq \operatorname{cone}(A+P)
$$

Remark

$$
A \cap(-\operatorname{int} P)=\emptyset \& \operatorname{cone}(A+P) \text { is convex } \Longleftrightarrow \operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset
$$

Theorem [FB-Hadjisavvas-Vera, 2007] Y LCTVS.

$P \subseteq Y$ closed convex cone, int $P \neq \emptyset$ and int $P^{*} \neq \emptyset$. The FAE:
(a) for every $A \subseteq Y$ one has

$$
\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset \Rightarrow \overline{\operatorname{cone}}(A+P) \text { is convex; }
$$

(b) for every $A \subseteq Y$ one has

$$
\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset \Rightarrow \operatorname{cone}(A)+P \text { is convex; }
$$

(c) for every $A \subseteq Y$ one has

$$
\operatorname{co}(A) \cap(-\operatorname{int} P)=\emptyset \Rightarrow \operatorname{cone}(A+\operatorname{int} P) \text { is convex; }
$$

(d) Y is at most two-dimensional.

The assumption int $P^{*} \neq \emptyset$ (which corresponds to pointedness of P when Y is finite-dimensional) cannot be removed. Indeed, let $P=\left\{y \in Y:\left\langle p^{*}, y\right\rangle \geq 0\right\}$ where $p^{*} \in Y^{*} \backslash\{0\}$. Then $P^{*}=$ cone $\left(\left\{p^{*}\right\}\right)$, int $P^{*}=\emptyset$. For any nonempty $A \subseteq Y$, the set cone $(A+\operatorname{int} P)$ is convex if $A \cap(-\operatorname{int} P)=\emptyset$ $(\Longleftrightarrow A \subseteq P \Longleftrightarrow \operatorname{co}(A) \cap(-$ int $P)=\emptyset)$.
Thus, the previous implication holds independently of the dimension of the space Y.

Characterization of weakly efficient solutions via linear scalarization

$K \subseteq \mathbb{R}^{n}$ convex and P as above. Given $F: K \rightarrow \mathbb{R}^{m}$, we consider

$$
\bar{x} \in K: F(x)-F(\bar{x}) \notin-\operatorname{int} P, \quad \forall x \in K,
$$

Clearly, $\bar{x} \in E_{W} \Longleftrightarrow(F(K)-F(\bar{x})) \cap$-int $P=\emptyset$.

Teorema[FB-Hadjisavvas-Vera, 2007]: The FAE

(a)

$$
\bar{x} \in \bigcup_{p^{*} \in P^{*}, p^{*} \neq 0} \operatorname{argmin}_{K}\left\langle p^{*}, F(\cdot)\right\rangle ;
$$

(b) $\operatorname{cone}(F(K)-F(\bar{x})+\operatorname{int} P)$ is pointed.

Theorem [FB-Hadjisavvas-Vera, 2007]

Set $m=2$. The FAE:
(a)

$$
\bar{x} \in \bigcup_{p^{*} \in P^{*}, p^{*} \neq 0} \operatorname{argmin}_{K}\left\langle p^{*}, F(\cdot)\right\rangle ;
$$

(b) $\bar{x} \in E_{W}$ and cone $(F(K)-F(\bar{x})+\operatorname{int} P)$ is convex.
(c) $\bar{x} \in E_{W}$ and cone $(F(K)-F(\bar{x})+P)$ is convex.
(d) $\bar{x} \in E_{W}$ and cone $(F(K)-F(\bar{x}))+P$ is convex.

$$
\operatorname{cone}(A)=\bigcup_{t \geq 0} t A
$$

Example

Consider $F=\left(f_{1}, f_{2}\right), K=[0,+\infty[$ where,

$$
f_{1}(x)=\left\{\begin{array}{ll}
2, & \text { if } x \notin[1,2] \\
1, & \text { if } x \in[1,2]
\end{array} \quad f_{2}(x)=|x-5| .\right.
$$

Here, $E_{W}=[1,8]$, whereas

$$
\bigcup_{p^{*} \in \mathbb{R}_{+}^{2}, p^{*} \neq 0} \operatorname{argmin}_{K}\left\langle p^{*}, F(\cdot)\right\rangle=[1,5] .
$$

Vector Optimization
Theorem of the alternative
The positive orthant

Althernative theorems
Characterization through linear scalarization

Open problem

to find an assumption convexity of ?? (*) such that

$$
(*) \& A \cap(- \text { int } P)=\emptyset \Longrightarrow \operatorname{co}(A) \cap(- \text { int } P)=\emptyset .
$$

At least for $A \approx G(K)$ some class of vector functions
$G: K \rightarrow Y$.

Characterizing the Fritz-John type optimality conditions in VO

Take X normed space. It is known that if \bar{x} is a local minimum point for (differentiable) $F: K \rightarrow \mathbb{R}$ on K, then

$$
\nabla F(\bar{x}) \in(T(K ; \bar{x}))^{*}
$$

Here, $T(C ; \bar{x})$ denotes the contingent cone of C at $\bar{x} \in C$,

$$
T(C ; \bar{x})=\left\{v \in X: \exists t_{k} \downarrow 0, v_{k} \in X, v_{k} \rightarrow v, \bar{x}+t_{k} v_{k} \in C \forall k\right\}
$$

How to extend to the vector case ?
$K \subseteq X$ closed; $F: K \rightarrow \mathbb{R}^{m} ; P \subseteq \mathbb{R}^{m}$, int $P \neq \emptyset$, a vector $\bar{x} \in K$ is a local weakly efficient solution for F on $K\left(\bar{x} \in E_{W}^{l o c}\right)$, if there exists an open neighborhood V of \bar{x} such that

$$
(F(K \cap V)-F(\bar{x})) \cap(-\operatorname{int} P)=\emptyset .
$$

We say that a function $h: X \rightarrow \mathbb{R}$ admits a Hadamard directional derivative at $\bar{x} \in X$ in the direction v if

$$
\lim _{(t, u) \rightarrow\left(0^{+}, v\right)} \frac{h(\bar{x}+t u)-h(\bar{x})}{t} \in \mathbb{R} .
$$

In this case, we denote such a limit by $d h(\bar{x} ; v)$.

If $F=\left(f_{1}, \ldots, f_{m}\right)$, we set

$$
\begin{gathered}
\mathcal{F}(v) \doteq\left(\left(d f_{1}(\bar{x} ; v), \ldots, d f_{m}(\bar{x} ; v)\right),\right. \\
\mathcal{F}(T(K ; \bar{x}))=\left\{\mathcal{F}(v) \in \mathbb{R}^{m}: v \in T(K ; \bar{x})\right\} .
\end{gathered}
$$

It is known that if $d f_{i}(\bar{x} ; \cdot), i=1, \ldots, m$ do exist in $T(K ; \bar{x})$, and $\bar{x} \in E_{W}^{\text {loc }}$, then

$$
\left(d f_{1}(\bar{x} ; v), \ldots, d f_{m}(\bar{x} ; v)\right) \in \mathbb{R}^{m} \backslash-\operatorname{int} P, \quad \forall v \in T(K ; \bar{x}),
$$

or equivalently, $\mathcal{F}(T(K ; \bar{x})) \cap(-\operatorname{int} P)=\emptyset$.

Theorem [FB-Hadjisavvas-Vera, 2007][$Y=\mathbb{R}^{m}$]

Under the assumptions above, the FAE:

- $\exists\left(\alpha_{1}^{*}, \ldots, \alpha_{m}^{*}\right) \in P^{*} \backslash\{0\}, \alpha_{1}^{*} d f_{1}(\bar{x}, v)+\cdots+\alpha_{m}^{*} d f_{m}(\bar{x}, v) \geq$ $0 \forall v \in T(K ; \bar{x})$;
- $\operatorname{cone}(\mathcal{F}(T(K ; \bar{x}))+\operatorname{int} P)$ is pointed.

A more precise formulation may be obtained when $m=2$.

Theorem [FB-Hadjisavvas-Vera, 2007][$m=2$]

The FAE:

- $\exists\left(\alpha_{1}^{*}, \alpha_{2}^{*}\right) \in P^{*} \backslash\{0\}, \alpha_{1}^{*} d f_{1}(\bar{x}, v)+\alpha_{2}^{*} d f_{2}(\bar{x}, v) \geq 0 \quad \forall v \in$ $T(K ; \bar{x})$;
- $\mathcal{F}(T(K ; \bar{x})) \cap(-$ int $P)=\emptyset \& \operatorname{cone}(\mathcal{F}(T(K ; \bar{x}))+\operatorname{int} P)$ is convex.
$P=\mathbb{R}_{+}^{m}, f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is diff. for $i=1, \ldots, m$. Then $d f_{i}(\bar{x}, v)=\left\langle\nabla f_{i}(\bar{x}), v\right\rangle$,

$$
\mathcal{F}(v)=\left(\left\langle\nabla f_{1}(\bar{x}), v\right\rangle, \ldots,\left\langle\nabla f_{m}(\bar{x}), v\right\rangle\right) .
$$

Moreover,
$\exists \alpha^{*} \in \mathbb{R}_{+}^{m} \backslash\{0\}, \alpha_{1}^{*} d f_{1}(\bar{x}, v)+\cdots+\alpha_{m}^{*} d f_{m}(\bar{x}, v) \geq 0 \forall v \in T(K ; \bar{x})$

$$
\operatorname{co}\left(\left\{\nabla f_{i}(\bar{x}): i=1, \ldots, m\right\}\right) \cap(T(K ; \bar{x}))^{*} \neq \emptyset
$$

This is not always a necessary optimality condition. In fact !!

Example [FB-Hadjisavvas-Vera, 2007]

$K=\left\{\left(x_{1}, x_{2}\right):\left(x_{1}+2 x_{2}\right)\left(2 x_{1}+x_{2}\right) \leq 0\right\}$. Take $f_{i}\left(x_{1}, x_{2}\right)=x_{i}$, $\bar{x}=(0,0) \in E_{W}: T(K ; \bar{x})=K$ is nonconvex; $\mathcal{F}(v)=v$; $(T(K ; \bar{x}))^{*}=\{(0,0)\}$, and

$$
\operatorname{co}\left(\left\{\nabla f_{i}(\bar{x}): i=1,2\right\}\right) \cap(T(K ; \bar{x}))^{*}=\emptyset .
$$

In the example,

$$
\operatorname{cone}\left(\mathcal{F}(T(K ; \bar{x}))+\mathbb{R}_{+}^{2}\right)=\bigcup_{t \geq 0} t\left(T(K ; \bar{x})+\mathbb{R}_{+}^{2}\right) \text { is nonconvex. }
$$

On the other hand, due to the linearity of \mathcal{F} (when each f_{i} is differentiable), if $T(K ; \bar{x})$ is convex then
$\operatorname{cone}\left(\mathcal{F}(T(K ; \bar{x}))+\mathbb{R}_{+}^{m}\right)=\bigcup_{t \geq 0} t\left(\mathcal{F}(T(K ; \bar{x}))+\mathbb{R}_{+}^{m}\right)$ is also convex.
This fact was point out earlier in [Wang, 1988], i.e., if $T(K ; \bar{x})$ is convex the condition above is a necessary optimality condition.

The convexity of $T(K ; \bar{x})$ is the only case ??

NO!

Example [FB-Hadjisavvas-Vera, 2007]

Thus,

$$
\begin{gathered}
\operatorname{co}\left(\left\{\nabla f_{i}(\bar{x}): \quad i=1,2\right\}\right) \cap(T(K ; \bar{x}))^{*} \neq \emptyset . \text { And } \\
\bigcup_{t \geq 0} t\left(\mathcal{F}(T(K ; \bar{x}))+\mathbb{R}_{+}^{2}\right)=\bigcup_{t \geq 0} t\left(T(K ; \bar{x})+\mathbb{R}_{+}^{2}\right) \text { is convex. }
\end{gathered}
$$

A non linear scalarization procedure

Def.: Let $a \in Y, e \in \operatorname{int} P$.
Define $\xi_{e, a}: Y \longrightarrow \mathbb{R} \cup\{-\infty\}$, by

$$
\xi_{e, a}(y)=\operatorname{knf}\{t \in \mathbb{R}: y \in t e+a-P\} .
$$

Def. $A \subseteq Y, \xi_{e, A}: Y \rightarrow \mathbb{R} \cup\{-\infty\}:$

$$
\xi_{e, A}(y)=\operatorname{dnf}\{t \in \mathbb{R}: y \in t e+A-P\} \text {. }
$$

$$
\begin{equation*}
\xi_{e, A}(y)=\inf _{a \in A} \xi_{e, a}(y) . \tag{1}
\end{equation*}
$$

Lemma [Hernández-Rodriguez, 2007]: Let $\emptyset \neq A \subseteq Y$ and P as above.
Then, $A-P \neq Y \Longleftrightarrow \xi_{e, A}(y)>-\infty \forall y \in Y$.
By taking into account that

$$
\operatorname{int}(\overline{A-P})=\operatorname{int}(A-P)=A-\operatorname{int} P, \overline{A-P}=\overline{A-\operatorname{int} P},
$$

one can prove,
Lemma: Let $A \subseteq Y, r \in \mathbb{R}, y \in Y$.
Then
(a) $\xi_{e, A}(y)<r \Leftrightarrow y \in r e+A-\operatorname{int}(P)$;
(b) $\xi_{e, A}(y) \leq r \Leftrightarrow y \in r e+\overline{A-P}$;
(c) $\xi_{e, A}(y)=r \Leftrightarrow y \in r e+\partial(A-P)$.

Corollary: Let $\emptyset \neq P \subseteq Y$ closed convex proper cone.

(a) If int $P \neq \emptyset$ and $E_{W} \neq \emptyset$, then

$$
E_{W}=E\left(\xi_{e, f\left(E_{W}\right)} \circ f, K\right)=\bigcup_{x \in E_{W}} E\left(\xi_{e, f(x)} \circ f, K\right)
$$

If in addition $E\left(\xi_{e, f(x)} \circ f, K\right) \neq \emptyset$ for some $x \in K$, then

$$
E_{W}=\bigcup_{x \in K} E\left(\xi_{e, f(x)} \circ f, K\right) ;
$$

(b) if $E \neq \emptyset$, then

$$
E=\bigcup_{x \in E} E\left(\xi_{e, f(x)} \circ f, K\right) \subseteq E\left(\xi_{e, f(E)} \circ f, K\right) ;
$$

The positive orthant

Example 1.

Consider $F(x)=\left(x, \sqrt{1+x^{2}}\right), x \in K=\mathbb{R}$. Here,
$\left.\left.E_{W}=\right]-\infty, 0\right]$. However, if $p_{1}^{*}>p_{2}^{*}>0$, then

$$
\operatorname{wnf}_{x \in \mathbb{R}}\left\langle p^{*}, F(x)\right\rangle=-\infty, p^{*}=\left(p_{1}^{*}, p_{2}^{*}\right) .
$$

Example 2.

Consider $F=\left(f_{1}, f_{2}\right), K=[0,+\infty[$ where,

$$
f_{1}(x)=\left\{\begin{array}{ll}
2, & \text { if } x \notin[1,2] \\
1, & \text { if } x \in[1,2]
\end{array} \quad f_{2}(x)=|x-5| . \text { Here } E_{W}=[1,8] .\right.
$$

Theorem [FB-Vera, 2008]

$K \subseteq \mathbb{R}$ is closed convex; $f_{i}: K \rightarrow \mathbb{R}$ is Isc and quasiconvex for all $i=1, \ldots, m$. The following assertions hold:
(a) if $\emptyset \neq E_{W} \neq \mathbb{R}$, then there exists j such that $\operatorname{argmin}_{K} f_{j} \neq \emptyset$;
(b) if $K \neq \mathbb{R}$: then $E_{W} \neq \emptyset \Longleftrightarrow \exists j, \operatorname{argmin}_{K} f_{j} \neq \emptyset$.

Theorem [FB-Vera, 2008]

$K \subseteq \mathbb{R}$ is closed convex; $f_{i}: K \rightarrow \mathbb{R}$ is Isc and semistrictly quasiconvex for all $i=1, \ldots, m$. Assume $E_{W} \neq \emptyset$. Then, either

$$
E_{W}=\mathbb{R} \text { or } E_{W}=\operatorname{co}\left(\bigcup_{j \in J} \operatorname{argmin}_{K} f_{j}\right)+R_{W} .
$$

The bicriteria case

We consider $F: K \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{gathered}
{\left[\alpha_{1}, \beta_{1}\right] \doteq \operatorname{argmin}_{K} f_{1},\left[\alpha_{2}, \beta_{2}\right] \doteq \operatorname{argmin}_{K} f_{2}} \\
-\infty<\alpha_{1} \leq \beta_{1}<\alpha_{2} \leq \beta_{2}<+\infty
\end{gathered}
$$

Set

$$
\begin{gathered}
A_{+} \doteq\left\{x \in\left[\beta_{1}, \alpha_{2}\right]: f_{1}(x)=f_{1}\left(\alpha_{2}\right)\right\}, \\
A_{-} \doteq\left\{x \in\left[\beta_{1}, \alpha_{2}\right]: f_{2}(x)=f_{2}\left(\beta_{1}\right)\right\} . \\
\gamma_{+}=\left\{\begin{array}{ll}
f_{2}\left(\alpha_{0}^{+}\right), & \left.\left.A_{+}=\right] \alpha_{0}^{+}, \alpha_{2}\right] \\
\lambda_{+}, & A_{+}=\left[\alpha_{0}^{+}, \alpha_{2}\right]
\end{array} \quad \lambda_{+} \doteq \operatorname{limm}_{t \downarrow 0} f_{2}\left(\alpha_{0}^{+}-t\right) .\right.
\end{gathered}
$$

Theorem [FB-Vera, 2008]

$K \subseteq \mathbb{R}$ is closed convex; $f_{i}: K \rightarrow \mathbb{R}$ is Isc and quasiconvex for all $i=1,2$. Then A_{+}and A_{-}are convex and nonempty. Moreover, we also have:
(a) $\bar{x}>\beta_{2}$: if $\left.\left.A_{+}=\right] \alpha_{0}^{+}, \alpha_{2}\right], \alpha_{0}^{+} \geq \beta_{1}$, then

$$
\bar{x} \in E_{W} \Longleftrightarrow f_{2}(\bar{x}) \leq f_{2}\left(\alpha_{0}^{+}\right), f_{1}(\bar{x})=f_{1}\left(\alpha_{2}\right) ;
$$

(b) $\bar{x}>\beta_{2}$: if $A_{+}=\left[\alpha_{0}^{+}, \alpha_{2}\right], \alpha_{0}^{+}>\beta_{1}$, then

$$
\bar{x} \in E_{W} \Longleftrightarrow f_{2}(\bar{x}) \leq \lambda_{+}, f_{1}(\bar{x})=f_{1}\left(\alpha_{2}\right) ;
$$

where $\lambda_{+} \doteq \mathrm{km}_{t \downarrow 0} \mathrm{f}_{2}\left(\alpha_{0}^{+}-t\right)=\mathrm{knf}_{y<\alpha_{0}^{+}} f_{2}(y)$.

Theorem [continued...]

(c) $\bar{x}<\alpha_{1}$: if $A_{-}=\left[\beta_{1}, \alpha_{0}^{-}\left[, \alpha_{0}^{-} \leq \alpha_{2}\right.\right.$, then

$$
\left.\bar{x} \in E_{W} \Longleftrightarrow f_{1}(\bar{x}) \leq f_{1}\left(\alpha_{0}^{-}\right), f_{2}(\bar{x})=f_{2}\left(\beta_{1}\right)\right\}
$$

(d) $\bar{x}<\alpha_{1}$: if $A_{-}=\left[\beta_{1}, \alpha_{0}^{-}\right], \alpha_{0}^{-}<\alpha_{2}$, then

$$
\left.\bar{x} \in E_{W} \Longleftrightarrow f_{1}(\bar{x}) \leq f_{1}\left(\lambda_{-}\right), f_{2}(\bar{x})=f_{2}\left(\beta_{1}\right)\right\}
$$

where $\lambda_{-} \doteq l_{k} \mathrm{~m}_{t \downarrow 0} f_{2}\left(\alpha_{0}^{-}+t\right)$.

Theorem [FB-Vera, 2008]

$K \subseteq \mathbb{R}$ convex closed; $f_{i}: K \rightarrow \mathbb{R}$ be Isc and quasiconvex for $i=1,2$.
(a) If f_{2} is semistrictly quasiconvex and $M_{1}^{+} \cap M_{2}^{+} \neq \emptyset$, then $E_{w}=\left[\alpha_{1}, \bar{x}\right]$, where $\bar{x} \in K$ solves the system

$$
\bar{x}>\beta_{2} f_{1}(\bar{x})=f_{1}\left(\alpha_{2}\right), f_{2}(\bar{x})=\gamma_{+} .
$$

(b) If f_{1} is semistrictly quasiconvex and $M_{1}^{-} \cap M_{2}^{-} \neq \emptyset$, then $E_{w}=\left[\bar{x}, \beta_{2}\right]$, here $\bar{x} \in K$ solves the system

$$
\bar{x}<\alpha_{1} \quad f_{2}(\bar{x})=f_{2}\left(\beta_{1}\right), f_{1}(\bar{x})=\gamma_{-} .
$$

Example.

Consider $F=\left(f_{1}, f_{2}\right), K=[0,+\infty[$,

$$
f_{1}(x)=\left\{\begin{array}{ll}
2, & \text { if } x \notin[1,2] \\
1, & \text { if } x \in[1,2]
\end{array} \quad f_{2}(x)=|x-5|\right.
$$

Here, $E=\{2,5\}, E_{W}=[1,8]$.

TABLE 1

error	total cpu time	γ_{+}/iterations	$\max E_{w} /$ iterations
10^{-3}	0.0150000000	$2.9992675781 / 12$	$7.9993314775 / 40$
10^{-4}	0.0160000000	$2.9999084430 / 15$	$7.9999226491 / 42$
10^{-5}	0.0160000000	$2.9999942780 / 19$	$7.9999965455 / 45$
10^{-6}	0.0160000000	$2.9999992847 / 22$	$7.9999993877 / 49$

Example.

Let $K=[0,+\infty[$,

$$
\begin{aligned}
& f_{1}(x)= \begin{cases}2 & \text { si } x<1, \\
1 & \text { if } x \in[1,2], \\
2 & \text { if } x \in] 2,7[, \\
\sqrt{x-7+2} & \text { if } x>7,\end{cases} \\
& f_{2}(x)= \begin{cases}6-x & \text { if } x<4, \\
e^{-(x-4)^{2}}+3 & \text { if } x \geq 4,\end{cases}
\end{aligned}
$$

Here $E_{w}=[0,7]$.

TABLE2

error	total cpu time	γ_{+}/iterations	$\max E_{w} /$ iterations
10^{-3}	0.0140000000	$3.9990234375 / 11$	$6.9999681538 / 40$
10^{-4}	0.0160000000	$3.9999389648 / 15$	$6.9999908912 / 42$
10^{-5}	0.0160000000	$3.9999923706 / 18$	$6.9999997729 / 48$
10^{-6}	0.0160000000	$3.9999990463 / 21$	$6.9999997729 / 48$

Multicriteria case

We describe E_{W} in the multicriteria case, that is when $m>2$, since

$$
\begin{equation*}
E_{W}=\bigcup\left\{E_{W}(I): I \subseteq\{1,2 \ldots, m\},|I| \leq 2\right\} \tag{1}
\end{equation*}
$$

where $E_{W}(I)$ is the set of \bar{x} solutions to the subproblem

$$
\bar{x} \in K: F_{l}(x)-F_{l}(\bar{x}) \notin-\operatorname{int} \mathbb{R}_{+}^{|/|} \forall x \in K
$$

Here, $F_{I}=\left(f_{i}\right)_{i \in I}$ and $\mathbb{R}_{+}^{|/|}$is the positive orthant in $\mathbb{R}^{|/|}$. One inclusion in (1) trivially holds since $E_{W}(I) \subseteq E_{W}\left(I^{\prime}\right)$ if $I \subseteq I^{\prime}$; the other is a consequence of the following Helly's theorem since each f_{i} is quasiconvex.

Helly's theorem

Let $C_{i}, i=1, \ldots, m$, be a collection of convex sets in \mathbb{R}^{n}. If every subcollection of $n+1$ or fewer of these C_{i} has a nonempty intersection, then the entire collection of the m sets has a nonempty intersection.

Flores-Bazán
Overview on Generalized convexity and VO

General References

Quang-Ya Chen, Xuexiang Huang, Xiaoqi Yang (2005), Vector optimization: set-valued and variational analysis, Springer-Verlag, Berlin-Heidelberg.

E Eichfeider G. (2008), Adaptive Scalarization Methods in Multiobjective Otimization, Springer-Verlag, Berlin.

* Jahn, J. (2004), Vector Optimization, Theory Applications and Extensions, Springer-Verlag, Berlin.

Luc, D.T., Generalized convexity in vector optimization, Chapter 5, Springer-Verlag. (also LN-SC 1999).

Q Luc, D.T. (1989), Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, New York, NY, Vol. 319.

R Kaisa M. Miettinen (1999), Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston.

Cambini, R. (1996), Some new classes of generalized concave vector-valued functions Optimization, 36, 11-24.
Cambini, R. (1998), Generalized Concavity for Bicriteria Functions, Generalized Convexity, Generalized Monotonicity: Recent Results, Edited by J.P. Crouzeix et al., Nonconvex Optimization and Its Applications, Kluwer Academic Publishers, Dordrecht, Holland, 27, 439-451.
Deng, S. (1998), Characterizations of the Nonemptiness and Compactness of Solutions Sets in Convex Vector Optimization, J. of Optimization Theory and Applications, 96, 123-131.
Deng S. (2003), Coercivity properties and well posedness in vector optimization, RAIRO Operations Research, 37, 195-208.

Q Ferro, F. (1982), Minimax Type Theorems for n-Valued Functions, Annali di Matematica Pura ed Applicata, 32, 113-130.

Q Flores-Bazán F. (2002), Ideal, weakly efficient solutions for vector optimization problems, Mathematical Programming, Ser. A., 93, 453-475.

A Flores-Bazán F. (2003), Radial Epiderivatives and Asymptotic Functions in Nonconvex Vector Optimization, SIAM Journal on Optimization, 14, 284-305.

* Flores-Bazán, F. (2004), Semistrictly Quasiconvex Mappings and Nonconvex Vector Optimization, Mathematical Methods of Operations Research, 59, 129-145.
* Flores-Bazán F. and Vera C. (2006), Characterization of the nonemptiness and compactness of solution sets in convex and nonconvex vector optimization, J. of Optimization Theory and Applications, 130, 185-207.
* Flores-Bazán F. and Vera C. (2008), Weak efficiency in multiobjective quasiconvex optimization on the real-line without derivatives, Optimization.
© Flores-Bazán F., Hadjisavvas N. and Vera C. (2007), An optimal alternative theorem and applications to mathematical programming, J. of Global Optimization, 37, 229-243.

Flores-Bazán F., Hernández E., Novo V. (2008),
Characterizing efficiency without linear structure: a unified approach, J. of Global Optimization, 41, 43-60.

Flores-Bazán F., Hernández E.(2008), In progress.
Jahn, J. and Sachs, E. (1986), Generalized Quasiconvex Mappings and Vector Optimization, SIAM Journal on Control and Optimization, 24, 306-322.
\& Jeyakumar V., Oettli W. and Natividad M. (1993), A solvability theorem for a class of quasiconvex mappings with applications to optimization, J. of Mathematical Analysis and Applications, 179, 537-546.

Q Kuroiwa, D., (1998), The natural criteria in set-valued optimization, RIMS Kokyuroku, 1031, 85-90.

Kuroiwa, D., (2003), Existence theorems of set optimization with set-valued maps, J. Inf. Optim. Sci., 24, 73-84.
Kuroiwa, D., (2003), Existence of efficient points of set optimization with weighted criteria, J. Nonlinear Convex Anal., 4, 117-123.
Ng, K.F., Zheng X.Y.(2002), Existence of efficient points in vector optimization and generalized Bishop-Phelps theorem, J. of Optimization Theory and Applications, 115, 29-47.

Sach P.H. (2003), Nearly subconvexlike set-valued maps and vector optimization problems, J. of Optimization Theory and Applications, 119, 335-356.

Sach P.H. (2005), New generalized convexity notion for set-valued maps and application to vector optimization, J . of Optimization Theory and Applications, 125, 157-179.

Tanaka T. (1994), General quasiconvexities, cones saddle points and minimax theorem for vector-valued functions, J. of Optimization Theory and Applications, 81, 355-377.
Z Zeng R. (2002), A general Gordan alternative theorem with weakened convexity and its application, Optimization, 51 , 709-717.

