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Classical direct methods in Calc Var.

Recall the classical direct methods of convex analysis

Consider functional
I(u) =

∫
Ω

f(x, u(x),∇u(x)) dx

Here Ω ⊂ Rd bounded Lipschitz domain,

f : Ω× Rm × Rm×d → R Lebesgue measurable

u : Ω → Rm belongs to
a re�exive Banach space X ⊂ W 1,1(Ω,Rm).

Variational problem: Find minimizer of I(u)
in some class of feasible functions contained in X
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Interpretation in elasticity

Here d = m

u stands for the displacement �eld of an elastic body in the reference con�guration Ω.

I describes the total elastic energy of the body under deformations
(volume forces included, boundary tractions may give extra linear term).

We are interested in the equilibrium state of u
which describes the deformed con�guration of the body.

As with most other branches of physics use the fundamental principle of energy
minimization due to Euler.

According to this, these equilibrium states are exactly the minimizers of I .
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The generalized Weierstrass-principle

Let M be a closed and convex subset of a re�exive Banach space X ,
I : X → R∗ = R ∪ {+∞} , I 6≡ +∞ weakly lower semicontinuous in X and

I(u) ≥ ϕ (‖u‖) for ∀u ∈ M where ϕ ∈ C(R+) , ϕ(t) −→
t→∞

∞ .

Then there exists at least one ũ ∈ M with I(ũ) = inf
v∈M

I(v) .
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The generalized Weierstrass-principle provides:
An essential condition for the existence and consequently for the computation of minimizers
of energy-functionals I : X → R∗ is the weak lower semicontinuity.

lim inf
n→∞

I(un) ≥ I(u) whenever un ⇀ u in X

The following results clarify the connection between the notions of convexity and weak
lower semicontinuity in the scalar case.
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Theorem 1 (necessity of convexity)

Let Ω ⊂ Rd be a bounded domain, p ∈ [1,∞] and f : Ω × Rm × Rmax{d,m} → R
a continuous function (m = 1 or d = 1) such that there exists an integrable majorant
g : Ω× R+ × R+ → R to f with

|f(x, u, v)| ≤ g(x, |u| , |v|) , g ∈ L1(Ω× R+ × R+)
for a.e. x ∈ Ω and all u ∈ Rm, v ∈ Rmax{d,m} . Then the following implication holds

I(u) =
∫
Ω

f(x, u,∇u) dx is weakly lower semicontinuous in W 1,p(Ω,Rm)

=⇒ f(x, u, ·) is convex for a.e. x ∈ Ω and all u ∈ Rm .
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Theorem 2 (su�ciency of convexity)

Let Ω ⊂ Rd be a bounded domain, p ∈ [1,∞] and f : Ω × Rm × Rmax{d,m} → R
a continuous function (m = 1 or d = 1) bounded from below with

f(x, u, v) ≥ 〈 g1(x) , v 〉Rmax{d,m} + g2(x)

for a.e. x ∈ Ω and all u ∈ Rm, v ∈ Rmax{d,m} and for some g1 ∈ Lp′(Ω,Rmax{d,m}) ,
g2 ∈ L1(Ω) . Then the following implication holds

f(x, u, ·) is convex for a.e. x ∈ Ω and all u ∈ Rm

=⇒ I(u) =
∫
Ω

f(x, u,∇u) dx is weakly lower semicontinuous in W 1,p(Ω,Rm) .
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The vectorial case (m > 1 and d > 1)

The convexity of f (with appropriate growth conditions) is still a su�cient condition for
weak lower semicontinuity of I but it is far from being necessary. Therefore we adopt the
notion of

Quasiconvexity (Morrey 1952 )
An integrable function f : Rm×d → R is said to be quasiconvex if

f(A) ≤ 1
|Ω|

∫
Ω

f(A +∇ϕ(x)) dx , ∀A ∈ Rm×d , ∀ϕ ∈ W 1,∞
0 (Ω,Rm) .

On the analogy of the scalar case we get similar weak lower semicontinuity results where
convexity of f is replaced by quasiconvexity.
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However, due to the nonlocal character of quasiconvexity (Kristensen 1999), it is di�cult
to decide whether a function f is quasiconvex or not. Therefore one is interested
in weakening resp. strengthening this notion to get at least necessary resp. su�cient
conditions for weak lower semicontinuity of I which are easy to verify. With this motivation
we obtain a weaker condition of
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Rank-one-convexity (Morrey )
f : Rm×d → R is said to be rank-one-convex if

f(λ A + (1− λ)B) ≤ λf(A) + (1− λ) f(B) , ∀λ ∈ [0, 1] , ∀A,B ∈ Rm×d

with rank(A−B) ≤ 1.

and a stronger condition
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Polyconvexity ( Ball 1977 )
For A ∈ Rm×d let T (A) denote the vector composed by A and all its quadratic minors.

T (A) ∈ Rσ(m,d) with σ(m, d) =
min(m,N)∑

l=1

m! d!
(l!)2 (m− l)! (d− l)!

A function f is called polyconvex if there exists a convex function g : Rσ(m,d) → R
such that

f(A) = g(T (A)) , ∀A ∈ Rm×d .
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As indicated above there is the following chain of implications between these notions.

f is convex =⇒ f is polyconvex =⇒ f is quasiconvex =⇒ f is rank-one-convex

These implications are not invertible in the vectorial case.
See e.g. [Ball, Sverak, Dacorogna ] for the second and third one. In the scalar case,
the rank-one-condition in the de�nition of rank-one-convexity makes no restriction to
classical convexity. Hence these notions coincide and we obtain an equivalence between
the convexity-classes if m = 1 or d = 1.
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Polyconvexity in nonlinear elasticity

The polyconvexity condition is su�cient for quasiconvexity and hence for weak lower
semicontinuity of the according functional I . In nonlinear elasticity we have m = d = 3
frequently. Thus f : R3×3 → R is polyconvex if there exists a convex g : R19 → R
with

f(A) = g (A, adjA,det A) , ∀A ∈ R3×3 .

recall:adjugate = transpose of cofactor matrix
Some simple examples for polyconvex functions are

(a) f(A) = det A , which is an example for a polyconvex function that is not convex ,

(b) f(A) = 〈A , B 〉2R3×3 :=
(
tr(A BT )

)2 for a �xed B ∈ R3×3
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There is a wide range of material models which posses a polyconvex stored energy function.
Well known and often used models are

Neo-Hookean materials : f(A) = a1 ‖A‖2R3×3 + h(detA)

Mooney-Rivlin materials : f(A) = a1 ‖A‖2R3×3 + a2 ‖adjA‖2R3×3 + h(detA)

for some a1, a2 > 0 and a convex function h : R → R.
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On the other hand there are many material models which do not have a polyconvex
energy such as the

Simo/Ortiz - energy:

f(A) =
1
a1
‖A‖a1

R3×3 + ln (det A)a2 − ln (det A) for a1, a2 ≥ 2 .

So we have lost the pointwise su�cient condition for quasiconvexity. This is motivating
for a further generalization of the convexity notion.
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Minimization of non(quasi) convex integrands

drawbacks of quasiconvexity:

• not applicable in important nonlinear material models of elasticity

• only necessary for weak lower semicontinuity

So abandon weak lower semicontinuity

This needs:
Alternative methods which characterize the minimum state of I .

An advantageous method:
Approach of Young measures (parametrized measures)
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There may be situations where we need to identify lim
n→∞

I(un) for an oscillatory sequence
(un) which does not minimize but only in�mize the functional I . This is due to the
lack of weak lower semicontinuity of I . Therefore we are led to introduce a parametrized
measure νx , x ∈ Ω generated by (un) which describes - in contrast to the weak limit of
(un) - the minimum state of I .
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Examples

(a) Set Ω = (0, π) , uj(x) = cos (j x) and f(z) = z2 for z ∈ [−1, 1]
(f is continuously extended to zero elsewhere) then

uj
∗
⇀ 0 and f(uj)

∗
⇀

1
2

in L∞(Ω,R) .

(b) Sensitized with this result, we examine another sequence uj : R → R with

uj(x) = I{(k,k+1/3) , k∈Z}(j x) =

{
1 , 0 < j x− bj xc < 1/3
0 , 1/3 < j x− bj xc < 1

more closely. The weak - ∗ - limit of (uj) in L∞(R) is the mean value 1/3.
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But if we look at the asymptotic behaviour of f(uj) , we can see that

f(uj)
∗
⇀

1
3

f(1) +
2
3

f(0)

which is not equal to f(1/3) for nonlinear f in general.

But how does the weak limit look like?
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Theorem 3 (Existence of Young measures generated by

measurable sequences)

Let Ω ⊂ Rd be a Lebesgue measurable and bounded set, uj : Ω → Rm , j ∈ N a
sequence of Lebesgue measurable functions and f ∈ C0(Rm) .
Then (f (uj))j∈N possesses a weak - ∗ - convergent subsequence in L∞(Ω) and its weak
- ∗ - limit can be identi�ed with the duality product between f and a Lebesgue measurable
family of Radon measures (named Young measures) with �nite mass (νx)x∈Ω ⊂M(Rm) .

f(uj)
∗
⇀ 〈 f , νx 〉 in L∞(Ω)
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Remark

In contrast to the preceding theorem, the following one only states the existence of a
Young measure as a representation of the weak limit in the case "(f(uj))j∈N converges
weakly in Lp(Ω)" . In applications to minimization problems, the convergence itself has
to be shown separately; depending on the speci�c structure of the variational problem.
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Theorem 4 (Extension to "f ∈ C(Rm)")

Let Ω ⊂ Rd be a measurable set and (uj)j∈N ⊂ Lq(Ω,Rm) ,
sup
j∈N

‖uj‖Lq(Ω,Rm) < ∞ a uniformly bounded sequence for some q ∈ [1,∞] .

Moreover, let f : Rm → R be a continuous function, such that the the sequence
(f(uj))j∈N is weakly convergent in Lp(Ω) , p ∈ [1,∞] .
Then there exists a measurable family (νx)x∈Ω ⊂ (C0(Rm))∗ (Young measure) which
represents the weak limit of (f(uj))j∈N with

lim
j→∞

∫
Ω

f(uj(x))α(x) dx =
∫

Ω

〈 f , νx 〉 α(x) dx , ∀α ∈ Lp′(Ω) .
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A - convexity and A - convex relaxations

To absorb restrictions of variational problems for in�mizing sequences, we consider special
classes of sequences in Lq(Ω,Rm) , q ∈ [1,∞] and denote them with A. By theorem
4, any uniformly bounded sequence in Lq(Ω,Rm) contains a subsequence that generates
a Young measure (νx)x∈Ω ⊂ C0(Rm). Therefore - to guarantee the existence of Young
measures - we require

A ⊂

{
(uj)j∈N ⊂ Lq(Ω,Rm) ; sup

j∈N
‖uj‖Lq(Ω,Rm) < ∞

}
⊂ (Lq(Ω,Rm))N

q ∈ [1,∞] .
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According to these classes we construct a generalized notion of convexity -A - convexity -
with the help of Young measures. At �rst we introduce the set of homogeneus Young
measures (νx = ν for almost every x ∈ Ω) generated by sequences in A.

A∗ =
{

ν ∈ (C0(Rm))∗ ; ν is generated by a sequence in A
}

=
{

ν ∈ (C0(Rm))∗ ; ∀f ∈ C(Rm) ∃ (uj) ∈ A : 〈 f , ν 〉

= lim
j→∞

1
|Ω|

∫
Ω

f(uj(x)) dx
}
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Now we are in the position to introduce theA - convex relaxation of an arbitrary continuous
function f : Rm → R .

fA(z) := inf
(uj)∈A

{
lim inf
j→∞

1
|Ω|

∫
Ω

f(uj(x)) dx ; uj ⇀ z in A
}

; z ∈ Rm

where the convergence "uj ⇀ u in A " depends on the choice of A.
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With the usage of Young measure notation we obtain

fA(z) = inf
ν∈A∗

{〈 f , ν 〉 ; 〈 id , ν 〉 = z} , 〈 f , ν 〉 =
∫
Rm

f(z̃) dν(z̃) .

De�nition
A Lebesgue measurable function f : Rm → R is called A - convex if it is equal to its
A - convex relaxation fA .
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Example 1

We consider

A =

{
(∇uj)j∈N : (uj)j∈N ⊂ W 1,q(Ω,Rm) , sup

j∈N
‖uj‖W 1,q(Ω,Rm) < ∞

}
.

The sequence of gradients (∇uj)j∈N is a sequence of matrices in Rm×d .
A - convexity corresponds to the previously introduced Quasiconvexity in this case.

f is A - convex ⇐⇒ f(A) ≤ 1
|Ω|

∫
Ω

f(A +∇ϕ(x)) dx , ∀A ∈ Rm×d,

∀ϕ ∈ C∞
0 (Ω,Rm)
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Example 2

We compute a A - convex relaxation of a non -A - convex function ϕ explicitly. To this
end we set

Ω = (0, 1) and A =

{
(uj)j∈N ⊂ L2((0, 1)) ; ∃C > 0 : sup

j∈N
‖uj‖L2((0,1)) ≤ C

}
.

Consider ϕ : R → R with ϕ(z) = z4 − z2 + 1
4 .

28



GCM IX, Summer School �Generalized Convex Analysis� Kaohsiung, Taiwan ROC

Then



A

ϕA(z) =

 0 , z ∈
[
−
√

2
2 ,

√
2

2

]
z4 − z2 + 1

4 , z ∈ R \
[
−
√

2
2 ,

√
2

2

]
29



GCM IX, Summer School �Generalized Convex Analysis� Kaohsiung, Taiwan ROC

Application to unilateral contact � basics

Let Ω bdd domain ⊂ IR3 with Lipschitz bdy Γ = Γc ∪ ΓD ∪ ΓN

unknown u ∈ W1,p :=
[
W 1,p(Ω)

]3

= W 1,p(Ω, IR3)

X =
{

u, H, τ) : H = adj ∇u, τ = det∇u
}

recall:adjugate = transpose of cofactor matrix

Consider X ⊂ X := W1,p × Lq × Lr, p, q, r later

Then (J. Ball 1977)
X is not convex, but sequently weakly closed ⊂ X .
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Further conditions in nonlinear elasticity

The deformation u of the body should be (locally) invertible

Hence set of admissible deformations

V =
{

u : (u, H, τ) ∈ X, τ = det∇u > 0 a.e. in Ω
}

May be further restricted by Dirichlet bd cond.: u|ΓD = u0

Loads give rise to continuous linear forms in u :

(f, u) =
∫
Ω

f · u dx, f . . . volume force density

〈g, u〉 =
∫

ΓN

g · u da, g . . . surface force density
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The total energy

given by

I(u) =
∫
Ω

e(x,∇u) dx− (f, u)− 〈g, u〉

with nonconvex strain energy function e(x, )̇.

Assume e(x, ·) polyconvex:

∃ ẽ : Ω× IR3×3 × IR3×3 × IR++ → IR such that
∀ x ∈ Ω ẽ(x, ·, ·, ·) is convex
∀ M ∈ IR3×3 with det M > 0 :

e(x,M) = ẽ(x,M, adj M,detM)
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Further assumptions on e

Assume ẽ coercive:

∃ a ∈ L1(Ω); b > 0, p ≥ 2, q ≥ p

p− 1
, r > 1

such that for all x ∈ Ω,M ∈ IR3×3,H ∈ IR3×3, τ > 0

ẽ(x,M,H, τ) ≥ a(x) + b(‖M‖p + ‖H‖q + τ r)

These assumptions are satis�ed in various examples of nonlinear material models:

Ogden model, Mooney-Rivlin model
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Semicoercive contact problem

If Dirichlet by cond. absent, only Neumann by cond. (surface force)
and Signorini cond. (rigid obstacle). In this situation

Proposition 1. Let |u|1,p := (
∫
Ω

|∇u|pdx)1/p. Then

(i) ‖ · ‖1,p
∼= | · |1,p + ‖ · ‖p

(ii) R := {% ∈ W1,p, |%|1,p = 0}
= {% : Ω → IR3 const. } ∼= IR3 of �nite dimension

(iii) ∃ c0 > 0 ∀ u ∈ W1,p

inf{‖u− %‖p : % ∈ R} ≤ c0|u|1,p

Then Variational Problem for given K 6= ∅ closed convex ⊂ IR3

(P) Find a minimizer of I(u) on V subject to u(x) ∈ K for (a.e.) x ∈ Γc.
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Recession analysis

Asymptotic cone acK =
⋂

t>0 t(K − z), z ∈ K �xed

Directions d ∈ acK ∩R of �escape� should form an obtuse angle with the applied forces

(H)
∫
Ω

f · d dx +
∫
Γc

g · d da < 0, ∀d ∈ acK ∩R\{0}

Theorem 1. [Ciarlet & Ne£as,1985] Suppose (H). Then ∃ sol. to (P).
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A penalty approximation

Now explicit constraint j
(
u(x)

)
≤ 0 (x ∈ Γc),

where j : IR3 → IR pos. homog., convex.

Thus feasible set
V̂ =

{
u ∈ V : j

(
u(x)

)
≤ 0 a.e. on Γc

}
Introduce

J(u) = β
∥∥∥(

j ◦ u|Γc

)+
∥∥∥

Ls(Γc)
(β > 0, s ≥ 1)

Then J : W ⊃ V → IR satis�es

(H1)


pos. homog., convex, ≥ 0
lower semicontinuous
u ∈ V and J(u) = 0 ⇔ u ∈ V̂
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A penalty approximation - continued

Introduce
Iγ(u) := I(u) + γJ(u), γ > 0.

Consider instead of (P)

(Pγ) Find a minimizer of Iγ(·) on V

Instead of (H) assume

(H2) γJ(%)− (f, %)− 〈g, %〉 > 0, ∀ % ∈ R\{0}

analogous to linear elasticity (Duvaut & Lions, '76)

Then (H2) ⇒ (H) holds.
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Convergence of penalty method

Theorem 2. [J.G., 1989] Suppose J satis�es (H1) and (H2) for some γ0 > 0.

Let 2 ≤ p < 3, q ≥ p

p− 1
, r > 1, p ≤ s ≤ 2p

3− p
.

Then:

(∀ γ ≥ γ0) ∃ solution u(γ) to (Pγ).

For any sequence γν →∞ we have

u(γν) ⇀ u a solution to (P).
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Exactness of penalty method

Proposition 2. Suppose ∃ sol. u to (P), further suppose

∃ λ ∈ Ls′(Γc), λ ≥ 0 a.e.

(
1
s′

+
1
s

= 1
)

:

(∀ v ∈ V )I(u) ≤ I(v) +
∫
Γc

λ · (j ◦ v)da

Let γ := β−1‖λ‖Ls′

Then for γ > γ, any solution u(γ) to (Pγ) solves original problem (P).

→ open problem:
existence of such a Lagrange multiplier λ
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Euler-Lagrange eq. in nonlinear unilateral contact

Partial answer by recent work of Schuricht (2002, 2006).

Re�ned model, constraint no longer assumed to be convex.

Instead constraint
g(u) ≤ 0,

with g merely locally Lipschitz on W1,p(Ω).

use of Clarke's calculus of generalized convexity.
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Construction of locally Lipschitz constraint

Geometric contact condition
u(x) ∈ IR3\C on Ω

where given obstacle C is closure of open set ⊂ IR3.

Introduce signed distance function

δ(q) = dist IR3\Cq − distCq, q ∈ IR3 .

Then
δ(q) ≤ 0 ⇔ q ∈ IR3\C.

Thus constraint
g(u) := max

x∈Ω
δ
(
u(x)

)
≤ 0 .
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The Nonconvex Variational Problem

Let as above
I(u) =

∫
Ω

e
(
x,∇u(x)

)
dx.

However
e(x,M) = ∞ if det M ≤ 0

(Deformations should be locally invertible and orientation preserving) is dropped.

Variational problem:

Find minimizer of I in W1,p(Ω; IR3)
such that u = u0 on ΓD, g(u) ≤ 0.
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Further assumptions

Di�erentiability assumptions on strain energy e(x, ·):

e(x, ·) cont. di�. on IR3×3(∀ x ∈ Ω);

∃ c0 ≥ 0, c ∈ L1(Ω) such that ∀ M ∈ IR3×3, x ∈ Ω

‖∇Me(x, M)‖ ≤ c0‖M‖p + c(x).

Hence I is di�erentiable in W1,p.

Moreover
u0(ΓD) ∩ C = ∅,

i.e. Dirichlet boundary cond. is compatible with contact constraint.
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Euler-Lagrange equation � The result

Theorem 3. [Schuricht '02] Let u ∈ W1,p(ω, IR3), p > 3 be a local minimizer
of variational problem above. Then under assumptions above ∃ �nite Borel measure µC

with support in the contact set {
x ∈ IR3 : u(x) ∈ C

}
and a function d∗ ∈ L1(ω, µc; IR3) with

d∗(x) ∈ ∂◦δ
(
u(x)

)
, ∀ x ∈ Ω

such that for all w ∈ W1,∞(Ω; IR3) with x|ΓD = 0∫
Ω

∇Me
(
x,∇u(x)

)
∇w(x) dx +

∫
Ω

d∗(x)w(x) dµc(x) = 0 .

44


