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A Review on Pseudomonotonicity - Existence

(Topologically) Pseudomonotone Operators in Nonlinear Analysis
and Nonlinear PDEs are going back to H. Brézis 1968
F.E. Browder exploited the fact that Monotone Operator +
Compact Operator = Pseudomonotone (PM) in several papers on
general elliptic/parabolic PDEs
F.E. Browder & P. Hess, 1972: Sum of PM is again PM
P. Hess, 1974: Semi-coercive problems
gave then a lecture at University of Mannheim



Pseudomonotone Operators

Definition 1
The operator A : X → X ∗ is pseudomonotone iff un ⇀ u and
lim supn→∞〈Aun, un − u〉 ≤ 0 implies Aun ⇀ Au and
〈Aun, u〉 → 〈Au, u〉.

Moreover, the following implications hold

I If A is monotone and hemicontinuous, then A is
pseudomonotone.

I If A is strongly continuous, then A is pseudomonotone.

Definition 2
Let A : X → X ∗. Then A is called

I strongly continuous iff un ⇀ u implies Aun → Au.

I hemicontinuous iff the real function t → 〈A(u + tv),w〉 is
continuous on [0, 1] for all u, v ,w ∈ X.



A Review on Pseudomonotonicity - Existence
continued

On the other hand, W. Oettli initiated the study of equilibrium
problems, defined by monotone (bi)functions
J. Gw., Ph D Thesis 1978 at University of Mannheim :
Nichtlineare Variationsungleichungen mit Anwendungen
contains

I definition of pm (bi)functions including the case of pm
set-valued operators with bounded values; Sum of PM is again
PM

I existence theory based on KKM-Fan principle; see also J.Gw.,
Nonlin Anal TMA, 1981

I semicoercive existence theory; see also H.G. Jeggle,
Nichtlineare Funktionalanalysis, Teubner, 1978.



A Review on Pseudomonotonicity - Applications

Monotone Operator + Compact Operator = Pseudomonotone ⇒
Nonlinear elliptic PDEs ,see eg V. Mustonen
Fluid mechanics: Navier - Stokes eqs;
see eg. Tomarelli, Mikorski & Ochal
heat transfer with radiation, Boltzmann law see eg. T. Tiihonen
solid mechanics, eg. Karman plates
see e.g. D. Goeleven & J. Gw., 2000
more general Hemi Variational Inequalities (HVI)
P.D. PANAGIOTOPOULOS moreover Z. Naniwiecz et al



A Review on Pseudomonotonicity - Regularization and
Approximations

Sum of PM is again PM ⇒
Regularization method in the noncoercive case
e.g. J. Gw. 1997
more recent: O. Chadli, S. Schaible, J.C. Yao 2004
with application to noncoercive HVI
Combining regularization and penalty method:
recent: B. D. Rouhani, A. A. Khan & F. Raciti 2008:
Mosco convergence of convex sets and approximation of set-valued
pm operators under Hausdorff distance assumptions



Existence and General Approximation for abstract
variational problems

(V , || · ||V ) reflexive Banach space, K ⊂ V nonempty closed,
convex cone, ϕ : K × K → IR

A : V → V ∗ linear continuous operator, 〈Av , v〉V ≥ c0||v ||2V

Problem π : Find ũ ∈ K such that

〈Aũ − g , v − ũ〉V + ϕ(ũ, v) ≥ 0 ∀v ∈ K .

Problem πt : Find ũt ∈ Kt such that

〈Aũt − g , vt − ũt〉V + ϕt(ũt , vt) ≥ 0, ∀vt ∈ Kt .



Assumptions

(H1) ϕ(·, ·) is a pseudomonotone functional on K × K

(H2) ϕ(u, u) ≥ 0, ∀u ∈ K

(H3) ϕ(u, ·) is convex on K

(H4) ϕ(·, u) is upper semicontinuous on K

(H5) there exists a compact subset M ⊂ V and
ṽ ∈ M ∩ K such that

ϕ(u, ṽ) < −〈Au − g , ṽ − u〉V ∀u ∈ K\M

Theorem 1 (Existence theorem)

Under conditions (H1)-(H5), the problem π has at least one
solution ũ ∈ M ∩ K.
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solution ũ ∈ M ∩ K.



Assumption

Kt ⊂ K , Kt
M→ K

(H6) for any nets {ut} and {vt} such that ut ∈ Kt ,
vt ∈ Kt , ut ⇀ u and vt → v we have

lim sup
t∈T

ϕt(ut , vt) ≤ ϕ(u, v)

Theorem 2 (General Approximation Result)

The family {ũt} of solutions to the Problem πt is uniformly
bounded in V and any weak limit point of the net {ũt} is a
solution to the Problem π.
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Smoothing approximation

f̂ (x , ε) :=

∫
IRm

f (x−εu)Φ(u)du =

∫
IRm

f (y)Θ(x−y , ε)dy , (x , ε) ∈ IRm×IR++

I Φ : IRm → IR+ such that
∫
IRm Φ(u)du = 1

I Θ : IRm × IR++ → IR+, Θ(x , ε) := ε−mΦ(ε−1x)

IR+ = {ε : ε ≥ 0, ε ∈ IR}

IR++ = {ε : ε > 0, ε ∈ IR}



1. f : IRm → IR is locally Lipschitz and suppΦ is bounded;
Steklov averaged function

Φ(u) =

{
1 if max

i
|ui | ≤ 0.5

0 otherwise

2. f : IRm → IR is globally Lipschitz, suppΦ is infinite, but Φ has
to be of finite absolute mean; that is∫

IRm
|u|Φ(u) du < +∞

Bell function

Φ(u) =
1

(
√

2π)m
e−

|u|2
2

3. f : IRm → IR is a max (min) function of continuously
differentiable functions ⇒ f̂ (x , ε) can be explicitly
expressed;



Properties of f̂ (x , ε)

Let f be a locally Lipschitz function and Φ be a continuosly
differentiable with bounded support. Then

(i1) f̂ (·, ·) is continuously differentiable on IRm × IR++;

(i2) f̂ (·, ·) is locally Lipschitz continuous on IRm+1;

(i3) lim
z → x
ε ↓ 0

∇x f̂ (z , ε) ⊆ ∂f (x),

∇x f̂ (z , ε) =

∫
IRm

f (y)∇xΘ(z − y , ε) dy

∂f (x) := {ξ ∈ IRm : ξTu ≤ f 0(x ; u) for ∀u ∈ IRm}

f 0(x ; u) := lim sup
y → x
t ↓ 0

f (y + tu)− f (u)

t
.
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Maximum-type functions

f (x) = max{g1(x), g2(x), . . . , gk(x)}

gi : IRm → IR continuously differentiable

According to Bertsekas

f (x) = g1(x) + p(g2(x)− g1(x) + . . .

+ p(gk−1(x)− gk−2(x) + p(gk(x)− gk−1(x)) . . .),

where p : IR → IR+ is the plus function i.e. p(t) = max{t, 0}.



Smoothing function ( Chen, Qi and Sun)

S(x , ε) :=g1(x) + p̂(ε, g2(x)− g1(x) + p̂(ε, g3(x)− g2(x) + . . .
+p̂(ε, gk−1(x)− gk−2(x) + p̂(ε, gk(x)− gk−1(x)) . . .),

where

p̂(ε, t) =

∫
IR

p(t − εs)φ(s) ds

and

κ :=

∫
IR
|t|Φ(t) dt < +∞.



Properties of p̂(ε, t)

I For any ε > 0 and t ∈ IR,

|p̂(ε, t)− p(t)| ≤ κε;

I For any ε > 0, p̂(ε, ·) is continuously differentiable on IR,

p̂′t(ε, t) =

∫ t
ε

−∞
Φ(s) ds

and
p̂′t(ε, t) ∈ [0, 1].

Moreover, if suppΦ = IR then p̂′t(ε, t) ∈ (0, 1).



Properties of S(x , ε)

I For any ε > 0 and x ∈ IRm, |S(x , ε)− f (x)| ≤ (k − 1)κε;

I ∇xS(x , ε) =
k∑

i=1

Λi∇gi (x), where Λi ∈ [0, 1],
k∑

i=1

Λi = 1;

I lim
z → x
ε ↓ 0

∇xS(z , ε) ⊆ ∂f (x).



Neural networks smoothing function

If we choose

Φ(t) =
e−t

(1 + e−t)2
⇒

then
p̂(ε, t) = t + ε ln(1 + e−

t
ε ), (ε, t) ∈ IR++ × IR.

and

f̂ (x , ε) := S(x , ε) = ε ln
( k∑

i=1

egi (x)/ε
)
, (x , ε) ∈ IRm × IR++.



Zang smoothing function

If we choose

ρ(t) =

{
t if − 1

2 ≤ t ≤ 1
2

0 otherwise

then

p̂(ε, t) =


0 if t < − ε

2
1
2ε(t + ε

2)2 if − ε
2 ≤ t ≤ ε

2
t if t > ε

2

.

If f (x) := max{g1(x), g2(x)} = g1(x) + p(g2(x)− g1(x)) then

f̂ (x , ε) =


g1(x) if (i) holds
1
2ε [g2(x)− g1(x)]2 + 1

2(g2(x) + g1(x)) + ε
8 if (ii) holds

g2(x) if (iii) holds

where
(i) g2(x)− g1(x) ≤ − ε

2
(ii) − ε

2 ≤ g2(x)− g1(x) ≤ ε
2

(iii) g2(x)− g1(x) ≥ ε
2 .
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Numerical approximation of nonlinear nonsmooth functionals.

Applications to HVI on boundary

V = H1(Ω; IRm), Ω ⊂ IR2 is a plane polygonal domain with
boundary Γ
f : IRm → IR is a locally Lipschitz function such that

(A1) for each η ∈ IRm, η∗ ∈ ∂f (η) ⇒ |η∗| ≤ c(1 + |η|)
(A2) for each η ∈ IRm, η∗ ∈ ∂f (η), η∗ · (−η) ≤ b |η| i.e.{

η∗ ≥ −b if η > 0
η∗ ≤ b if η < 0

Problem (P): Find u ∈ K such that

〈Au − g , v − u〉V +

∫
Γ
f 0(γu; γv − γu) ds ≥ 0, ∀v ∈ K ,

where γ : H1(Ω; IRm) → L2(Γ; IRm) is a trace mapping.
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Piecewise linear approximations. Finite dimensional discretization

Approximate V by

V 1
h = {vh ∈ C (Ω; IRm) : vh|∆ ∈ (P1)

m,∀∆ ∈ Th}

and K by a family Kh of closed convex nonempty cones of V 1
h such

that Kh
M→ K ; We put V 1

n,h := V 1
h , Kn,h := Kh;

Π = linear continuous mapping transforming vector valued
functions into scalar ones, for example

Πy := yj |Γ for some given j ∈ {1, . . . ,m}

W 1
h = Π(V 1

h ), W 1
h = {wh ∈ C (Γ) : wh|E ∈ P1, ∀E ∈ T̃h}

T̃h = { set of all edges of the boundary triangles ∆ ∈ Th}
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Approximation by smoothing function

Denote

ϕ(u, v) :=

∫
Γ
f 0(γu; γv − γu) ds.

We define ϕn : u ∈ V  ϕn(u) ∈ V ∗ by

〈ϕn(u), v〉 =

∫
Γ
∇x f̂ (γu, εn) · γv ds

Approximate ∇x f̂ (γun,h, εn) · γvn,h by wn,h(un,h, vn,h) via:

(1) wn,h(un,h, vn,h) ∈ W 1
n,h, W 1

n,h := W 1
h

(2) wn,h(un,h, vn,h)(P) = ∇x f̂ (γun,h(P), εn) · γvn,h(P) for

∀P ∈ Γ ∩ Σh, where Σh is the set of the vertices of
T h.
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Using Kepler’s trapezoidal rule, approximate 〈ϕn(un,h), vn,h〉 by

〈ϕ(1)
n,h(un,h), vn,h〉 =

∫
Γ
wn,h(un,h, vn,h) ds

=
1

2

∑
i

|PiPi+1|
[
∇x f̂ (γun,h(Pi ), εn) · γvn,h(Pi )

+ ∇x f̂ (γun,h(Pi+1), εn) · γvn,h(Pi+1)
]
.

Problem (Pn,h): find un,h ∈ Kn,h such that

〈Aun,h − g , vn,h − un,h〉V + ϕn,h(un,h, vn,h) ≥ 0, ∀vn,h ∈ Kn,h

ϕn,h(un,h, vn,h) := 〈ϕ(1)
n,h(un,h), vn,h − un,h〉

We apply the General Approximation Result to Problem (Pn,h).
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Define qh : C (Γ; IRm) → L∞(Γ; IRm) by

qh(µ) =
∑

Pi∈Γ∩Σh

µ(Pi ) χi , ∀µ ∈ C (Γ; IRm)

Pi−12

Pi+ 1
2

Pi 1

PiPi+1

−

χi = χ(P
i− 1

2
,P

i+ 1
2
)

Then∫
Γ
wn,h(un,h, vn,h) ds =

∫
Γ
∇x f̂ (qh(γun,h), εn) · qh(γvn,h) ds.



Piecewise quadratic approximations

Approximate V by

V 2
h = {vh ∈ C (Ω; IRm) : vh|∆ ∈ (P2)

m,∀∆ ∈ T h}

and define W 2
h = {wh ∈ C (Γ) : wh|E ∈ P2, ∀E ∈ T̃h}.

Approximate ∇x f̂ (γun,h, εn) · γvn,h by wn,h(un,h, vn,h) via:

(1) wn,h(un,h, vn,h) ∈ W 2
n,h, W 2

n,h := W 2
h

(2) wn,h(un,h, vn,h)(P) = ∇x f̂ (γun,h(P), εn) · γvn,h(P)
for ∀P ∈ Γ ∩ (Σh ∪ Σ′

h),

Σ′
h is the set of all midpoints of the sides of the triangles of T h.



Using Simpson’s rule, approximate 〈ϕn(un,h), vn,h〉 by

〈ϕ(2)
n,h(un,h), vn,h〉 =

∫
Γ
wn,h(un,h, vn,h) ds

=
1

6

∑
i

|PiPi+1|
[
∇x f̂ (γun,h(Pi ), εn) · γvn,h(Pi )

+ 4∇x f̂ (γun,h(Pi+ 1
2
), εn) · γvn,h(Pi+ 1

2
)

+ ∇x f̂ (γun,h(Pi+1), εn) · γvn,h(Pi+1)
]
.

Problem (Pn,h): find un,h ∈ Kn,h such that

〈Aun,h − g , vn,h − un,h〉V + ϕn,h(un,h, vn,h) ≥ 0, ∀vn,h ∈ Kn,h.

Now ϕn,h(un,h, vn,h) = 〈ϕ(2)
n,h(un,h), vn,h − un,h〉.



Applications to HVI in domain

V = H1(Ω; IRm), K ⊂ V

Problem (P): Find u ∈ K such that
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Approximate ∇x f̂ (un,h, εn) · vn,h by wn,h(un,h, vn,h) defined by:

(1) wn,h(un,h, vn,h) ∈ W 1
n,h, W 1

n,h := W 1
h

(2) wn,h(un,h, vn,h)(P) = ∇x f̂ (un,h(P), εn) · vn,h(P) for
∀P ∈ Σh.

and

〈ϕn(un,h), vn,h〉 =

∫
Ω
∇x f̂ (un,h, εn) · vn,h dx , ∀un,h, vn,h ∈ V 1

n,h := V 1
h



〈ϕ(1)
n,h(un,h), vn,h〉 =

∫
Ω
wn,h(un,h, vn,h) dx

=
∑

s

∫
Ts

wn,h(un,h, vn,h) dx

=
∑

s

meas (Ts)

3

[
∇x f̂ (un,h(P1s), εn) · vn,h(P1s)

+ ∇x f̂ (un,h(P2s), εn) · vn,h(P2s)

+ ∇x f̂ (un,h(P3s), εn) · vn,h(P3s)
]



Consider another partition Rh of Ω:

x j
h = {all nodes of the triangulation Th}

R j

xjh

R j

xjh

x j
h in the interior x j

h at the boundary

Rj = conv {mass centres of adjacent triangles, midpoints of adjacent sides }



Yh = the space of all piecewise constant functions over Rh :

Yh := {µh ∈ L∞(Ω) |µh|K ∈ P0(R),∀R ∈ Rh}

and the piecewise constant Lagrange interpolation Ph : W 1
h → Yh

of wh is defined as

Phwh =
∑

j

wh(x
j
h)χintΩKj

(x).

Then ∫
Ω
wn,h(un,h, vn,h) dx =

∫
Ω
∇x f̂ (P∗

hun,h, εn) · P∗
hvn,h dx ,

where P∗
h : V 1

h → (Yh)
m, P∗

hvh := (Phv
1
h , . . . ,Phv

m
h ).



Yh = the space of all piecewise constant functions over Rh :

Yh := {µh ∈ L∞(Ω) |µh|K ∈ P0(R),∀R ∈ Rh}

and the piecewise constant Lagrange interpolation Ph : W 1
h → Yh

of wh is defined as

Phwh =
∑

j

wh(x
j
h)χintΩKj

(x).

Then ∫
Ω
wn,h(un,h, vn,h) dx =

∫
Ω
∇x f̂ (P∗

hun,h, εn) · P∗
hvn,h dx ,

where P∗
h : V 1

h → (Yh)
m, P∗

hvh := (Phv
1
h , . . . ,Phv

m
h ).



I Piecewise quadratic approximations

Now make the partition Rh out of quadrilaterals and triangles:

x j
h = {all midpoints of the sides of the triangles of Th}

T1 R j

T2

xjh

xjh

Ps 3

Ps  2

R j

Ps 1

for a given midpoint x j
h ⇒

Rj = conv {neighbouring nodes, neighbouring mass centres }



Applications to Mechanics

? Unilateral contact with friction

Ω ⊂ IR2 linear elastic body, Γ = ΓU ∪ ΓF ∪ ΓC

on ΓC :

• if uN < 0 ⇒ SN = 0, ST = 0

• if uN = 0 ⇒ SN ≤ 0 and

−ST ∈ ∂jT (uT ), ST (x) ∈ IR, uT (x) ∈ IR, x ∈ ΓC

a(u, v) =

∫
Ω

Cijhkεij(u)εhk(v) dx ,

〈g , v〉 =

∫
Ω

fivi dx +

∫
ΓF

Fivi ds



find u ∈ K such that

a(u, v − u) +

∫
ΓC

j0T (uT ; vT − uT ) ds ≥ 〈g , v − u〉, ∀ v ∈ K

on the function space

V = {v ∈ H1(Ω; IR2) : v = 0 on ΓU}

and the convex closed cone

K = {v ∈ V : vN ≤ 0 on ΓC}.



jT : ΓC × IR2 → IR

(i) for all η ∈ IR the function jT (·, η) is measurable on
ΓC ;

(ii) for almost all ξ ∈ ΓC , the function jT (ξ, ·) is locally
Lipschitz;

(iii) for almost all ξ ∈ ΓC and each η ∈ IR2

η∗ ∈ ∂jT (ξ, η) ⇒ |η∗| ≤ c(1 + |η|)

η∗ · (−η) ≤ b(1 + |η|)

for some constants c ≥ 0 and b ≥ 0 not depending on ξ ∈ ΓC .



uT

f2 f1

uT

−ST

jT (uT ) = max{f1(uT1 , uT2), f2(uT1 , uT2)} −ST ∈ ∂jT (uT )



Nh = {P ∈ Σh : P ∈ ΓC}

Appoximate V by

V 1
h = {vh ∈ C (Ω; IR2) ∩ V : vh|T ∈ (P1)

2, ∀T ∈ Th, vh|ΓU
= 0}

and K by

Kh = {vh ∈ V 1
h : (vh)N(P) ≤ 0, ∀P ∈ Nh}.

Then W 1
h is defined as

W 1
h = {wh ∈ C (ΓC ) : wh|∆ ∈ P1, ∀∆ ∈ T C

h , },

where T C
h is the partition of ΓC induced by Th.



? Adhesive contact problem

jN : IR → IR locally Lipschitz function;

−SN ∈ ∂jN(uN), ST = CT (x) given on ΓC .

Find u ∈ K such that

〈Au − g , v − u〉V +

∫
ΓC

j0N(uN ; vN − uN) ds ≥ 0, ∀v ∈ K ,

where

〈g , v〉 =

∫
Ω

fivi dx +

∫
ΓC

CTi
vTi

ds,

V = {v ∈ H1(Ω; IR2) : v = 0 on ΓU}

and K = {v ∈ V : vN ≤ 0 on ΓC}.



? Nonmonotone skin friction problem

Let Ω be a polygonal domain occupied by an elastic plate or by an
elastic body within planar linear elasticity. We split the body forces
F in two parts Fi = F̄i + ¯̄Fi , i = 1, 2, where ¯̄Fi ∈ L2(Ω) are given.
On a polygonal subdomain Ω0 ⊂ Ω we consider the multivalued
reaction-displacement law

−F̄ (x) ∈ ∂ j(u(x)) a.e. x ∈ Ω0.

The subspace V0 is determined by the Dirichlet bc on ΓU .
HVI: Find u ∈ V0 such that

a(u, v − u) +

∫
Ω0

j0(u; v − u) dx ≥ 〈l , v − u〉, ∀v ∈ V0,

where l ∈ V ∗
0 is defined as

〈l , v〉 =

∫
ΓF

Fivi dΓ +

∫
Ω

¯̄Fivi dx

and Γ = ΓU + ΓF .


