GCM IX, Summer School "Generalized Convex Analysis" Kaohsiung, Taiwan ROC

Pseudomonotonicity and Hemivariational Inequalities Existence and Approximation Applications to Nonsmooth Mechanics

Joachim Gwinner \& Nina Ovcharova
joachim.gwinner@unibw-muenchen.de
Institute of Mathematics
Department of Aerospace Engineering

$$
\text { July, } 182008
$$

der Bundeswehr
Universität 绿 München

Outline

I A Review on Pseudomonotonicity Existence, Applications, Approximations
II Existence and General Approximation Result for abstract nonlinear nonsmooth variational problems
III Smoothing approximations
IV Numerical FE approximation of nonlinear nonsmooth functionals - Applications to HVI
V Applications to Nonsmooth Mechanics

- Unilateral contact with friction
- Adhesive contact problem
- Nonmonotone skin friction problem

A Review on Pseudomonotonicity - Existence

(Topologically) Pseudomonotone Operators in Nonlinear Analysis and Nonlinear PDEs are going back to H. Brézis 1968
F.E. Browder exploited the fact that Monotone Operator +

Compact Operator $=$ Pseudomonotone (PM) in several papers on general elliptic/parabolic PDEs
F.E. Browder \& P. Hess, 1972: Sum of PM is again PM
P. Hess, 1974: Semi-coercive problems
gave then a lecture at University of Mannheim

Pseudomonotone Operators

Definition 1

The operator $A: X \rightarrow X^{*}$ is pseudomonotone iff $u_{n} \rightharpoonup u$ and $\lim \sup _{n \rightarrow \infty}\left\langle A u_{n}, u_{n}-u\right\rangle \leq 0$ implies $A u_{n} \rightharpoonup A u$ and $\left\langle A u_{n}, u\right\rangle \rightarrow\langle A u, u\rangle$.

Moreover, the following implications hold

- If A is monotone and hemicontinuous, then A is pseudomonotone.
- If A is strongly continuous, then A is pseudomonotone.

Definition 2

Let $A: X \rightarrow X^{*}$. Then A is called

- strongly continuous iff $u_{n} \rightharpoonup u$ implies $A u_{n} \rightarrow A u$.
- hemicontinuous iff the real function $t \rightarrow\langle A(u+t v), w\rangle$ is continuous on $[0,1]$ for all $u, v, w \in X$.

A Review on Pseudomonotonicity - Existence continued

On the other hand, W. Oettli initiated the study of equilibrium problems, defined by monotone (bi)functions
J. Gw., Ph D Thesis 1978 at University of Mannheim :

Nichtlineare Variationsungleichungen mit Anwendungen contains

- definition of pm (bi)functions including the case of pm set-valued operators with bounded values; Sum of PM is again PM
- existence theory based on KKM-Fan principle; see also J.Gw., Nonlin Anal TMA, 1981
- semicoercive existence theory; see also H.G. Jeggle, Nichtlineare Funktionalanalysis, Teubner, 1978.

A Review on Pseudomonotonicity - Applications

Monotone Operator + Compact Operator $=$ Pseudomonotone \Rightarrow Nonlinear elliptic PDEs, see eg V. Mustonen
Fluid mechanics: Navier - Stokes eqs;
see eg. Tomarelli, Mikorski \& Ochal
heat transfer with radiation, Boltzmann law see eg. T. Tiihonen solid mechanics, eg. Karman plates
see e.g. D. Goeleven \& J. Gw., 2000
more general Hemi Variational Inequalities (HVI)
P.D. PANAGIOTOPOULOS moreover Z. Naniwiecz et al

A Review on Pseudomonotonicity - Regularization and Approximations

Sum of PM is again $\mathrm{PM} \Rightarrow$
Regularization method in the noncoercive case
e.g. J. Gw. 1997
more recent: O. Chadli, S. Schaible, J.C. Yao 2004
with application to noncoercive HVI
Combining regularization and penalty method:
recent: B. D. Rouhani, A. A. Khan \& F. Raciti 2008:
Mosco convergence of convex sets and approximation of set-valued pm operators under Hausdorff distance assumptions

Existence and General Approximation for abstract variational problems

($V,\|\cdot\| v$) reflexive Banach space, $K \subset V$ nonempty closed, convex cone, $\varphi: K \times K \rightarrow \mathbb{R}$
$A: V \rightarrow V^{*}$ linear continuous operator, $\langle A v, v\rangle_{V} \geq c_{0}\|v\|_{V}^{2}$
Problem π : Find $\tilde{u} \in K$ such that

$$
\langle A \tilde{u}-g, v-\tilde{u}\rangle_{v}+\varphi(\tilde{u}, v) \geq 0 \quad \forall v \in K
$$

Problem π_{t} : Find $\tilde{u}_{t} \in K_{t}$ such that

$$
\left\langle A \tilde{u}_{t}-g, v_{t}-\tilde{u}_{t}\right\rangle_{v}+\varphi_{t}\left(\tilde{u}_{t}, v_{t}\right) \geq 0, \forall v_{t} \in K_{t}
$$

Assumptions

(H1) $\varphi(\cdot, \cdot)$ is a pseudomonotone functional on $K \times K$
(H2) $\varphi(u, u) \geq 0, \forall u \in K$
(H3) $\varphi(u, \cdot)$ is convex on K
$(\mathrm{H} 4) \varphi(\cdot, u)$ is upper semicontinuous on K
(H5) there exists a compact subset $M \subset V$ and $\tilde{v} \in M \cap K$ such that

$$
\varphi(u, \tilde{v})<-\langle A u-g, \tilde{v}-u\rangle_{V} \quad \forall u \in K \backslash M
$$

Assumptions

(H1) $\varphi(\cdot, \cdot)$ is a pseudomonotone functional on $K \times K$
(H2) $\varphi(u, u) \geq 0, \forall u \in K$
(H3) $\varphi(u, \cdot)$ is convex on K
(H4) $\varphi(\cdot, u)$ is upper semicontinuous on K
(H5) there exists a compact subset $M \subset V$ and $\tilde{v} \in M \cap K$ such that

$$
\varphi(u, \tilde{v})<-\langle A u-g, \tilde{v}-u\rangle_{V} \quad \forall u \in K \backslash M
$$

Theorem 1 (Existence theorem)
Under conditions (H1)-(H5), the problem π has at least one solution $\tilde{u} \in M \cap K$.

Assumption

$$
K_{t} \subset K, K_{t} \xrightarrow{M} K
$$

(H6) for any nets $\left\{u_{t}\right\}$ and $\left\{v_{t}\right\}$ such that $u_{t} \in K_{t}$, $v_{t} \in K_{t}, u_{t} \rightharpoonup u$ and $v_{t} \rightarrow v$ we have

$$
\limsup _{t \in T} \varphi_{t}\left(u_{t}, v_{t}\right) \leq \varphi(u, v)
$$

Assumption

$$
K_{t} \subset K, K_{t} \xrightarrow{M} K
$$

(H6) for any nets $\left\{u_{t}\right\}$ and $\left\{v_{t}\right\}$ such that $u_{t} \in K_{t}$, $v_{t} \in K_{t}, u_{t} \rightharpoonup u$ and $v_{t} \rightarrow v$ we have

$$
\limsup _{t \in T} \varphi_{t}\left(u_{t}, v_{t}\right) \leq \varphi(u, v)
$$

Theorem 2 (General Approximation Result)
The family $\left\{\tilde{u}_{t}\right\}$ of solutions to the Problem π_{t} is uniformly bounded in V and any weak limit point of the net $\left\{\tilde{u}_{t}\right\}$ is a solution to the Problem π.

Smoothing approximation

$\hat{f}(x, \varepsilon):=\int_{\mathbf{R}^{m}} f(x-\varepsilon u) \Phi(u) d u=\int_{\mathbf{R}^{m}} f(y) \Theta(x-y, \varepsilon) d y,(x, \varepsilon) \in \mathbb{R}^{m} \times \mathbb{R}_{++}$

- $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}$such that $\int_{\mathbf{R}^{m}} \Phi(u) d u=1$
$-\Theta: \mathbb{R}^{m} \times \mathbb{R}_{++} \rightarrow \mathbb{R}_{+}, \quad \Theta(x, \varepsilon):=\varepsilon^{-m} \Phi\left(\varepsilon^{-1} x\right)$

$$
\begin{aligned}
\mathbb{R}_{+} & =\{\varepsilon: \varepsilon \geq 0, \varepsilon \in \mathbb{R}\} \\
\mathbb{R}_{++} & =\{\varepsilon: \varepsilon>0, \varepsilon \in \mathbb{R}\}
\end{aligned}
$$

1. $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is locally Lipschitz and supp Φ is bounded; Steklov averaged function

$$
\Phi(u)= \begin{cases}1 & \text { if } \max _{i}\left|u_{i}\right| \leq 0.5 \\ 0 & \text { otherwise }\end{cases}
$$

2. $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is globally Lipschitz, supp Φ is infinite, but Φ has to be of finite absolute mean; that is

$$
\int_{\mathbf{R}^{m}}|u| \Phi(u) d u<+\infty
$$

Bell function

$$
\Phi(u)=\frac{1}{(\sqrt{2 \pi})^{m}} e^{-\frac{|u|^{2}}{2}}
$$

3. $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a $\max (\min)$ function of continuously differentiable functions $\Rightarrow \hat{f}(x, \varepsilon)$ can be explicitly expressed;

Properties of $\hat{f}(x, \varepsilon)$

Let f be a locally Lipschitz function and Φ be a continuosly differentiable with bounded support. Then
(ii) $\hat{f}(\cdot, \cdot)$ is continuously differentiable on $\mathbb{R}^{m} \times \mathbb{R}_{++}$;
(i2) $\hat{f}(\cdot, \cdot)$ is locally Lipschitz continuous on \mathbb{R}^{m+1};
(i3) $\lim _{z \rightarrow x} \nabla_{x} \hat{f}(z, \varepsilon) \subseteq \partial f(x)$,

$$
\varepsilon \downarrow 0 \quad \nabla_{x} \hat{f}(z, \varepsilon)=\int_{\mathbf{R}^{m}} f(y) \nabla_{x} \Theta(z-y, \varepsilon) d y
$$

Properties of $\hat{f}(x, \varepsilon)$

Let f be a locally Lipschitz function and Φ be a continuosly differentiable with bounded support. Then
(i1) $\hat{f}(\cdot, \cdot)$ is continuously differentiable on $\mathbb{R}^{m} \times \mathbb{R}_{++}$;
(i2) $\hat{f}(\cdot, \cdot)$ is locally Lipschitz continuous on \mathbb{R}^{m+1};
(i3) $\lim _{z \rightarrow x} \nabla_{x} \hat{f}(z, \varepsilon) \subseteq \partial f(x)$,

$$
\begin{aligned}
& \begin{array}{c}
z \rightarrow x \\
\varepsilon \downarrow 0
\end{array} \\
& \nabla_{x} \hat{f}(z, \varepsilon)= \\
& \partial f(x):= \int_{\mathbf{R}^{m}} f(y) \nabla_{x} \Theta(z-y, \varepsilon) d y \\
& \\
& f^{0}(x ; u):=\left.\limsup ^{m}: \xi^{T} u \leq f^{0}(x ; u) \text { for } \forall u \in \mathbb{R}^{m}\right\} \\
& y \rightarrow x \\
& t \downarrow 0
\end{aligned}
$$

Maximum-type functions

$f(x)=\max \left\{g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right\}$
$g_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ continuously differentiable

According to Bertsekas

$$
\begin{aligned}
f(x)= & g_{1}(x)+p\left(g_{2}(x)-g_{1}(x)+\ldots\right. \\
& +p\left(g_{k-1}(x)-g_{k-2}(x)+p\left(g_{k}(x)-g_{k-1}(x)\right) \ldots\right),
\end{aligned}
$$

where $p: \mathbb{R} \rightarrow \mathbb{R}_{+}$is the plus function i.e. $p(t)=\max \{t, 0\}$.

Smoothing function (Chen, Qi and Sun)

$$
\begin{aligned}
S(x, \varepsilon):= & g_{1}(x)+\hat{p}\left(\varepsilon, g_{2}(x)-g_{1}(x)+\hat{p}\left(\varepsilon, g_{3}(x)-g_{2}(x)+\ldots\right.\right. \\
& +\hat{p}\left(\varepsilon, g_{k-1}(x)-g_{k-2}(x)+\hat{p}\left(\varepsilon, g_{k}(x)-g_{k-1}(x)\right) \ldots\right),
\end{aligned}
$$

where

$$
\hat{p}(\varepsilon, t)=\int_{\mathbf{R}} p(t-\varepsilon s) \phi(s) d s
$$

and

$$
\kappa:=\int_{\mathbf{R}}|t| \Phi(t) d t<+\infty
$$

Properties of $\hat{p}(\varepsilon, t)$

- For any $\varepsilon>0$ and $t \in \mathbb{R}$,

$$
|\hat{p}(\varepsilon, t)-p(t)| \leq \kappa \varepsilon
$$

- For any $\varepsilon>0, \hat{p}(\varepsilon, \cdot)$ is continuously differentiable on \mathbb{R},

$$
\hat{p}_{t}^{\prime}(\varepsilon, t)=\int_{-\infty}^{\frac{t}{\varepsilon}} \Phi(s) d s
$$

and

$$
\hat{p}_{t}^{\prime}(\varepsilon, t) \in[0,1] .
$$

Moreover, if supp $\Phi=\mathbb{R}$ then $\hat{p}_{t}^{\prime}(\varepsilon, t) \in(0,1)$.

Properties of $S(x, \varepsilon)$

- For any $\varepsilon>0$ and $x \in \mathbb{R}^{m},|S(x, \varepsilon)-f(x)| \leq(k-1) \kappa \varepsilon$;
- $\nabla_{x} S(x, \varepsilon)=\sum_{i=1}^{k} \Lambda_{i} \nabla g_{i}(x), \quad$ where $\Lambda_{i} \in[0,1], \sum_{i=1}^{k} \Lambda_{i}=1$;
- $\lim _{z \rightarrow x} \nabla_{x} S(z, \varepsilon) \subseteq \partial f(x)$.

$$
\varepsilon \downarrow 0
$$

Neural networks smoothing function

If we choose

$$
\Phi(t)=\frac{e^{-t}}{\left(1+e^{-t}\right)^{2}} \Rightarrow
$$

then

$$
\hat{p}(\varepsilon, t)=t+\varepsilon \ln \left(1+e^{-\frac{t}{\varepsilon}}\right), \quad(\varepsilon, t) \in \mathbb{R}_{++} \times \mathbb{R}
$$

and

$$
\hat{f}(x, \varepsilon):=S(x, \varepsilon)=\varepsilon \ln \left(\sum_{i=1}^{k} e^{g_{i}(x) / \varepsilon}\right),(x, \varepsilon) \in \mathbb{R}^{m} \times \mathbb{R}_{++}
$$

Zang smoothing function

If we choose

$$
\rho(t)= \begin{cases}t & \text { if }-\frac{1}{2} \leq t \leq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

then

$$
\hat{p}(\varepsilon, t)=\left\{\begin{array}{cll}
0 & \text { if } t<-\frac{\varepsilon}{2} \\
\frac{1}{2 \varepsilon}\left(t+\frac{\varepsilon}{2}\right)^{2} & \text { if }-\frac{\varepsilon}{2} \leq t \leq \frac{\varepsilon}{2} . \\
t & \text { if } t>\frac{\varepsilon}{2}
\end{array} .\right.
$$

Zang smoothing function

If we choose

$$
\rho(t)= \begin{cases}t & \text { if }-\frac{1}{2} \leq t \leq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

then

$$
\hat{p}(\varepsilon, t)=\left\{\begin{array}{cll}
0 & \text { if } t<-\frac{\varepsilon}{2} \\
\frac{1}{2 \varepsilon}\left(t+\frac{\varepsilon}{2}\right)^{2} & \text { if } & -\frac{\varepsilon}{2} \leq t \leq \frac{\varepsilon}{2} \\
t & \text { if } & t>\frac{\varepsilon}{2}
\end{array} .\right.
$$

If $f(x):=\max \left\{g_{1}(x), g_{2}(x)\right\}=g_{1}(x)+p\left(g_{2}(x)-g_{1}(x)\right)$ then
$\hat{f}(x, \varepsilon)= \begin{cases}g_{1}(x) & \text { if }(i) \text { holds } \\ \frac{1}{2 \varepsilon}\left[g_{2}(x)-g_{1}(x)\right]^{2}+\frac{1}{2}\left(g_{2}(x)+g_{1}(x)\right)+\frac{\varepsilon}{8} & \text { if }(i i) \text { holds } \\ g_{2}(x) & \text { if }(i i i) \text { holds }\end{cases}$
where $\begin{aligned} & \text { (i) } \quad g_{2}(x)-g_{1}(x) \leq-\frac{\varepsilon}{2} \\ & \text { (ii) }-\frac{\varepsilon}{2} \leq g_{2}(x)-g_{1}(x) \leq \frac{\varepsilon}{2} \\ & \text { (iii) } g_{2}(x)-g_{1}(x) \geq \frac{\varepsilon}{2} .\end{aligned}$

Numerical approximation of nonlinear nonsmooth functionals.
Applications to HVI on boundary
$V=H^{1}\left(\Omega ; \mathbb{R}^{m}\right), \Omega \subset \mathbb{R}^{2}$ is a plane polygonal domain with boundary Γ
$f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a locally Lipschitz function such that
(A1) for each $\eta \in \mathbb{R}^{m}, \eta^{*} \in \partial f(\eta) \Rightarrow\left|\eta^{*}\right| \leq c(1+|\eta|)$
(A2) for each $\eta \in \mathbb{R}^{m}, \eta^{*} \in \partial f(\eta), \eta^{*} \cdot(-\eta) \leq b|\eta|$ i.e.

$$
\left\{\begin{array}{llll}
\eta^{*} & \geq & -b & \text { if } \\
\eta^{*} & \eta>0 \\
& b & \text { if } & \eta<0
\end{array}\right.
$$

Numerical approximation of nonlinear nonsmooth functionals.
Applications to HVI on boundary
$V=H^{1}\left(\Omega ; \mathbb{R}^{m}\right), \Omega \subset \mathbb{R}^{2}$ is a plane polygonal domain with boundary Γ
$f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a locally Lipschitz function such that
(A1) for each $\eta \in \mathbb{R}^{m}, \eta^{*} \in \partial f(\eta) \Rightarrow\left|\eta^{*}\right| \leq c(1+|\eta|)$
(A2) for each $\eta \in \mathbb{R}^{m}, \eta^{*} \in \partial f(\eta), \eta^{*} \cdot(-\eta) \leq b|\eta|$ i.e.

$$
\left\{\begin{array}{llccc}
\eta^{*} & \geq & -b & \text { if } & \eta>0 \\
\eta^{*} & \leq & b & \text { if } & \eta<0
\end{array}\right.
$$

Problem (P): Find $u \in K$ such that

$$
\langle A u-g, v-u\rangle_{v}+\int_{\Gamma} f^{0}(\gamma u ; \gamma v-\gamma u) d s \geq 0, \quad \forall v \in K
$$

where $\gamma: H^{1}\left(\Omega ; \mathbb{R}^{m}\right) \rightarrow L^{2}\left(\Gamma ; \mathbb{R}^{m}\right)$ is a trace mapping.

Piecewise linear approximations. Finite dimensional discretization

Approximate V by

$$
V_{h}^{1}=\left\{v_{h} \in C\left(\bar{\Omega} ; \mathbb{R}^{m}\right):\left.v_{h}\right|_{\Delta} \in\left(P_{1}\right)^{m}, \forall \Delta \in \mathcal{T}_{h}\right\}
$$

and K by a family K_{h} of closed convex nonempty cones of V_{h}^{1} such that $K_{h} \xrightarrow{M} K$; We put $V_{n, h}^{1}:=V_{h}^{1}, K_{n, h}:=K_{h}$;

Piecewise linear approximations. Finite dimensional discretization

Approximate V by

$$
V_{h}^{1}=\left\{v_{h} \in C\left(\bar{\Omega} ; \mathbb{R}^{m}\right):\left.v_{h}\right|_{\Delta} \in\left(P_{1}\right)^{m}, \forall \Delta \in \mathcal{T}_{h}\right\}
$$

and K by a family K_{h} of closed convex nonempty cones of V_{h}^{1} such that $K_{h} \xrightarrow{M} K$; We put $V_{n, h}^{1}:=V_{h}^{1}, K_{n, h}:=K_{h}$;
$\Pi=$ linear continuous mapping transforming vector valued functions into scalar ones, for example

$$
\Pi y:=y_{j} \mid \Gamma \quad \text { for some given } j \in\{1, \ldots, m\}
$$

Piecewise linear approximations. Finite dimensional discretization

Approximate V by

$$
V_{h}^{1}=\left\{v_{h} \in C\left(\bar{\Omega} ; \mathbb{R}^{m}\right):\left.v_{h}\right|_{\Delta} \in\left(P_{1}\right)^{m}, \forall \Delta \in \mathcal{T}_{h}\right\}
$$

and K by a family K_{h} of closed convex nonempty cones of V_{h}^{1} such that $K_{h} \xrightarrow{M} K$; We put $V_{n, h}^{1}:=V_{h}^{1}, K_{n, h}:=K_{h}$;
$\Pi=$ linear continuous mapping transforming vector valued functions into scalar ones, for example

$$
\begin{gathered}
\Pi y:=y_{j} \mid \Gamma \text { for some given } j \in\{1, \ldots, m\} \\
W_{h}^{1}=\Pi\left(V_{h}^{1}\right), W_{h}^{1}=\left\{w_{h} \in C(\Gamma): w_{h} \mid E \in P_{1}, \forall E \in \tilde{\mathcal{T}}_{h}\right\} \\
\tilde{\mathcal{T}}_{h}=\left\{\text { set of all edges of the boundary triangles } \Delta \in \mathcal{T}_{h}\right\}
\end{gathered}
$$

Approximation by smoothing function

Denote

$$
\varphi(u, v):=\int_{\Gamma} f^{0}(\gamma u ; \gamma v-\gamma u) d s
$$

Approximation by smoothing function

Denote

$$
\varphi(u, v):=\int_{\Gamma} f^{0}(\gamma u ; \gamma v-\gamma u) d s
$$

We define $\varphi_{n}: u \in V \rightsquigarrow \varphi_{n}(u) \in V^{*}$ by

$$
\left\langle\varphi_{n}(u), v\right\rangle=\int_{\Gamma} \nabla_{x} \hat{f}\left(\gamma u, \varepsilon_{n}\right) \cdot \gamma v d s
$$

Approximation by smoothing function

Denote

$$
\varphi(u, v):=\int_{\Gamma} f^{0}(\gamma u ; \gamma v-\gamma u) d s
$$

We define $\varphi_{n}: u \in V \rightsquigarrow \varphi_{n}(u) \in V^{*}$ by

$$
\left\langle\varphi_{n}(u), v\right\rangle=\int_{\Gamma} \nabla_{x} \hat{f}\left(\gamma u, \varepsilon_{n}\right) \cdot \gamma v d s
$$

Approximate $\nabla_{x} \hat{f}\left(\gamma u_{n, h}, \varepsilon_{n}\right) \cdot \gamma v_{n, h}$ by $w_{n, h}\left(u_{n, h}, v_{n, h}\right)$ via:
(1) $w_{n, h}\left(u_{n, h}, v_{n, h}\right) \in W_{n, h}^{1}, W_{n, h}^{1}:=W_{h}^{1}$
(2) $w_{n, h}\left(u_{n, h}, v_{n, h}\right)(P)=\nabla_{x} \hat{f}\left(\gamma u_{n, h}(P), \varepsilon_{n}\right) \cdot \gamma v_{n, h}(P)$ for $\forall P \in \Gamma \cap \Sigma_{h}$, where Σ_{h} is the set of the vertices of \mathcal{T}^{h}.

Using Kepler's trapezoidal rule, approximate $\left\langle\varphi_{n}\left(u_{n, h}\right), v_{n, h}\right\rangle$ by

$$
\begin{aligned}
\left\langle\varphi_{n, h}^{(1)}\left(u_{n, h}\right), v_{n, h}\right\rangle & =\int_{\Gamma} w_{n, h}\left(u_{n, h}, v_{n, h}\right) d s \\
& =\frac{1}{2} \sum_{i}\left|P_{i} P_{i+1}\right|\left[\nabla_{x} \hat{f}\left(\gamma u_{n, h}\left(P_{i}\right), \varepsilon_{n}\right) \cdot \gamma v_{n, h}\left(P_{i}\right)\right. \\
& \left.+\nabla_{x} \hat{f}\left(\gamma u_{n, h}\left(P_{i+1}\right), \varepsilon_{n}\right) \cdot \gamma v_{n, h}\left(P_{i+1}\right)\right] .
\end{aligned}
$$

Using Kepler's trapezoidal rule, approximate $\left\langle\varphi_{n}\left(u_{n, h}\right), v_{n, h}\right\rangle$ by

$$
\begin{aligned}
\left\langle\varphi_{n, h}^{(1)}\left(u_{n, h}\right), v_{n, h}\right\rangle & =\int_{\Gamma} w_{n, h}\left(u_{n, h}, v_{n, h}\right) d s \\
& =\frac{1}{2} \sum_{i}\left|P_{i} P_{i+1}\right|\left[\nabla_{x} \hat{f}\left(\gamma u_{n, h}\left(P_{i}\right), \varepsilon_{n}\right) \cdot \gamma v_{n, h}\left(P_{i}\right)\right. \\
& \left.+\nabla_{x} \hat{f}\left(\gamma u_{n, h}\left(P_{i+1}\right), \varepsilon_{n}\right) \cdot \gamma v_{n, h}\left(P_{i+1}\right)\right] .
\end{aligned}
$$

Problem $\left(P_{n, h}\right)$: find $u_{n, h} \in K_{n, h}$ such that

$$
\begin{gathered}
\left\langle A u_{n, h}-g, v_{n, h}-u_{n, h}\right\rangle_{v}+\varphi_{n, h}\left(u_{n, h}, v_{n, h}\right) \geq 0, \quad \forall v_{n, h} \in K_{n, h} \\
\varphi_{n, h}\left(u_{n, h}, v_{n, h}\right):=\left\langle\varphi_{n, h}^{(1)}\left(u_{n, h}\right), v_{n, h}-u_{n, h}\right\rangle
\end{gathered}
$$

We apply the General Approximation Result to Problem ($P_{n, h}$).

Define $q_{h}: C\left(\Gamma ; \mathbb{R}^{m}\right) \rightarrow L^{\infty}\left(\Gamma ; \mathbb{R}^{m}\right)$ by

$$
q_{h}(\mu)=\sum_{P_{i} \in \Gamma \cap \Sigma_{h}} \mu\left(P_{i}\right) \chi_{i}, \quad \forall \mu \in C\left(\Gamma ; \mathbb{R}^{m}\right)
$$

Then

$$
\int_{\Gamma} w_{n, h}\left(u_{n, h}, v_{n, h}\right) d s=\int_{\Gamma} \nabla_{x} \hat{f}\left(q_{h}\left(\gamma u_{n, h}\right), \varepsilon_{n}\right) \cdot q_{h}\left(\gamma v_{n, h}\right) d s
$$

Piecewise quadratic approximations

Approximate V by

$$
V_{h}^{2}=\left\{v_{h} \in C\left(\bar{\Omega} ; \mathbb{R}^{m}\right):\left.v_{h}\right|_{\Delta} \in\left(P_{2}\right)^{m}, \forall \Delta \in \mathcal{T}^{h}\right\}
$$

and define $\quad W_{h}^{2}=\left\{w_{h} \in C(\Gamma):\left.w_{h}\right|_{E} \in P_{2}, \forall E \in \tilde{\mathcal{T}}_{h}\right\}$.
Approximate $\nabla_{x} \hat{f}\left(\gamma u_{n, h}, \varepsilon_{n}\right) \cdot \gamma v_{n, h}$ by $w_{n, h}\left(u_{n, h}, v_{n, h}\right)$ via:
(1) $w_{n, h}\left(u_{n, h}, v_{n, h}\right) \in W_{n, h}^{2}, W_{n, h}^{2}:=W_{h}^{2}$
(2) $w_{n, h}\left(u_{n, h}, v_{n, h}\right)(P)=\nabla_{x} \hat{f}\left(\gamma u_{n, h}(P), \varepsilon_{n}\right) \cdot \gamma v_{n, h}(P)$ for $\quad \forall P \in \Gamma \cap\left(\Sigma_{h} \cup \Sigma_{h}^{\prime}\right)$,
Σ_{h}^{\prime} is the set of all midpoints of the sides of the triangles of \mathcal{T}^{h}.

Using Simpson's rule, approximate $\left\langle\varphi_{n}\left(u_{n, h}\right), v_{n, h}\right\rangle$ by

$$
\begin{aligned}
\left\langle\varphi_{n, h}^{(2)}\left(u_{n, h}\right), v_{n, h}\right\rangle & =\int_{\Gamma} w_{n, h}\left(u_{n, h}, v_{n, h}\right) d s \\
& =\frac{1}{6} \sum_{i}\left|P_{i} P_{i+1}\right|\left[\nabla_{x} \hat{f}\left(\gamma u_{n, h}\left(P_{i}\right), \varepsilon_{n}\right) \cdot \gamma v_{n, h}\left(P_{i}\right)\right. \\
& +4 \nabla_{x} \hat{f}\left(\gamma u_{n, h}\left(P_{i+\frac{1}{2}}\right), \varepsilon_{n}\right) \cdot \gamma v_{n, h}\left(P_{i+\frac{1}{2}}\right) \\
& \left.+\nabla_{x} \hat{f}\left(\gamma u_{n, h}\left(P_{i+1}\right), \varepsilon_{n}\right) \cdot \gamma v_{n, h}\left(P_{i+1}\right)\right] .
\end{aligned}
$$

Problem $\left(P_{n, h}\right)$: find $u_{n, h} \in K_{n, h}$ such that

$$
\left\langle A u_{n, h}-g, v_{n, h}-u_{n, h}\right\rangle v+\varphi_{n, h}\left(u_{n, h}, v_{n, h}\right) \geq 0, \quad \forall v_{n, h} \in K_{n, h} .
$$

Now $\quad \varphi_{n, h}\left(u_{n, h}, v_{n, h}\right)=\left\langle\varphi_{n, h}^{(2)}\left(u_{n, h}\right), v_{n, h}-u_{n, h}\right\rangle$.

Applications to HVI in domain

$$
V=H^{1}\left(\Omega ; \mathbb{R}^{m}\right), K \subset V
$$

Problem (P): Find $u \in K$ such that

$$
\langle A u-g, v-u\rangle_{v}+\int_{\Omega} f^{0}(u ; v-u) d x \geq 0, \forall v \in K
$$

Applications to HVI in domain

$$
V=H^{1}\left(\Omega ; \mathbb{R}^{m}\right), K \subset V
$$

Problem (P): Find $u \in K$ such that

$$
\langle A u-g, v-u\rangle_{v}+\int_{\Omega} f^{0}(u ; v-u) d x \geq 0, \forall v \in K
$$

- piecewise linear approximations

$$
\begin{gathered}
V_{h}^{1}=\left\{v_{h} \in C\left(\bar{\Omega} ; \mathbb{R}^{m}\right):\left.v_{h}\right|_{\Delta} \in\left(P_{1}\right)^{m}, \forall \Delta \in \mathcal{T}^{h}\right\} \\
W_{h}^{1}=\left\{w_{h} \in C(\bar{\Omega}):\left.w_{h}\right|_{\Delta} \in P_{1}, \forall \Delta \in \mathcal{T}^{h}\right\}
\end{gathered}
$$

Approximate $\nabla_{x} \hat{f}\left(u_{n, h}, \varepsilon_{n}\right) \cdot v_{n, h}$ by $w_{n, h}\left(u_{n, h}, v_{n, h}\right)$ defined by:
(1) $w_{n, h}\left(u_{n, h}, v_{n, h}\right) \in W_{n, h}^{1}, W_{n, h}^{1}:=W_{h}^{1}$
(2) $w_{n, h}\left(u_{n, h}, v_{n, h}\right)(P)=\nabla_{x} \hat{f}\left(u_{n, h}(P), \varepsilon_{n}\right) \cdot v_{n, h}(P)$ for $\forall P \in \Sigma_{h}$.
and
$\left\langle\varphi_{n}\left(u_{n, h}\right), v_{n, h}\right\rangle=\int_{\Omega} \nabla_{x} \hat{f}\left(u_{n, h}, \varepsilon_{n}\right) \cdot v_{n, h} d x, \quad \forall u_{n, h}, v_{n, h} \in V_{n, h}^{1}:=V_{h}^{1}$

$$
\begin{aligned}
\left\langle\varphi_{n, h}^{(1)}\left(u_{n, h}\right), v_{n, h}\right\rangle & =\int_{\Omega} w_{n, h}\left(u_{n, h}, v_{n, h}\right) d x \\
& =\sum_{s} \int_{T_{s}} w_{n, h}\left(u_{n, h}, v_{n, h}\right) d x \\
& =\sum_{s} \frac{\operatorname{meas}\left(T_{s}\right)}{3}\left[\nabla_{x} \hat{f}\left(u_{n, h}\left(P_{1 s}\right), \varepsilon_{n}\right) \cdot v_{n, h}\left(P_{1 s}\right)\right. \\
& +\nabla_{x} \hat{f}\left(u_{n, h}\left(P_{2 s}\right), \varepsilon_{n}\right) \cdot v_{n, h}\left(P_{2 s}\right) \\
& \left.+\nabla_{x} \hat{f}\left(u_{n, h}\left(P_{3 s}\right), \varepsilon_{n}\right) \cdot v_{n, h}\left(P_{3 s}\right)\right]
\end{aligned}
$$

Consider another partition \mathcal{R}_{h} of Ω :

$$
x_{h}^{j}=\left\{\text { all nodes of the triangulation } \mathcal{T}_{h}\right\}
$$

x_{h}^{j} in the interior

x_{h}^{j} at the boundary
$R_{j}=\operatorname{conv}\{$ mass centres of adjacent triangles, midpoints of adjacent sides $\}$
$Y_{h}=$ the space of all piecewise constant functions over \mathcal{R}_{h} :

$$
Y_{h}:=\left\{\mu_{h} \in L^{\infty}(\Omega)\left|\mu_{h}\right|_{\kappa} \in P_{0}(R), \forall R \in \mathcal{R}_{h}\right\}
$$

and the piecewise constant Lagrange interpolation $P_{h}: W_{h}^{1} \rightarrow Y_{h}$ of w_{h} is defined as

$$
P_{h} w_{h}=\sum_{j} w_{h}\left(x_{h}^{j}\right) \chi_{\mathrm{int}_{\Omega} K_{j}}(x)
$$

$Y_{h}=$ the space of all piecewise constant functions over \mathcal{R}_{h} :

$$
Y_{h}:=\left\{\mu_{h} \in L^{\infty}(\Omega)\left|\mu_{h}\right|_{K} \in P_{0}(R), \forall R \in \mathcal{R}_{h}\right\}
$$

and the piecewise constant Lagrange interpolation $P_{h}: W_{h}^{1} \rightarrow Y_{h}$ of w_{h} is defined as

$$
P_{h} w_{h}=\sum_{j} w_{h}\left(x_{h}^{j}\right) \chi_{i n t_{\Omega}} K_{j}(x)
$$

Then

$$
\int_{\Omega} w_{n, h}\left(u_{n, h}, v_{n, h}\right) d x=\int_{\Omega} \nabla_{x} \hat{f}\left(P_{h}^{*} u_{n, h}, \varepsilon_{n}\right) \cdot P_{h}^{*} v_{n, h} d x
$$

where $P_{h}^{*}: V_{h}^{1} \rightarrow\left(Y_{h}\right)^{m}, \quad P_{h}^{*} v_{h}:=\left(P_{h} v_{h}^{1}, \ldots, P_{h} v_{h}^{m}\right)$.

- Piecewise quadratic approximations

Now make the partition \mathcal{R}_{h} out of quadrilaterals and triangles:
$x_{h}^{j}=\left\{\right.$ all midpoints of the sides of the triangles of $\left.\mathcal{T}_{h}\right\}$

for a given midpoint $x_{h}^{j} \Rightarrow$
$R_{j}=\operatorname{conv}\{$ neighbouring nodes, neighbouring mass centres $\}$

Applications to Mechanics

\star Unilateral contact with friction
$\Omega \subset \mathbb{R}^{2}$ linear elastic body, $\Gamma=\bar{\Gamma}_{U} \cup \bar{\Gamma}_{F} \cup \bar{\Gamma}_{C}$
on Γ_{C} :

- if $u_{N}<0 \Rightarrow S_{N}=0, S_{T}=0$
- if $u_{N}=0 \Rightarrow S_{N} \leq 0$ and

$$
\begin{gathered}
-S_{T} \in \partial j_{T}\left(u_{T}\right), S_{T}(x) \in \mathbb{R}, u_{T}(x) \in \mathbb{R}, x \in \Gamma_{C} \\
a(u, v)=\int_{\Omega} C_{i j h k} \varepsilon_{i j}(u) \varepsilon_{h k}(v) d x \\
\langle g, v\rangle=\int_{\Omega} f_{i} v_{i} d x+\int_{\Gamma_{F}} F_{i} v_{i} d s
\end{gathered}
$$

find $u \in K$ such that

$$
a(u, v-u)+\int_{\Gamma_{C}} j_{T}^{0}\left(u_{T} ; v_{T}-u_{T}\right) d s \geq\langle g, v-u\rangle, \quad \forall v \in K
$$

on the function space

$$
V=\left\{v \in H^{1}\left(\Omega ; \mathbb{R}^{2}\right): v=0 \text { on } \Gamma_{u}\right\}
$$

and the convex closed cone

$$
K=\left\{v \in V: v_{N} \leq 0 \text { on } \Gamma_{C}\right\} .
$$

$j_{T}: \Gamma_{C} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$
(i) for all $\eta \in \mathbb{R}$ the function $j_{T}(\cdot, \eta)$ is measurable on Γ_{C};
(ii) for almost all $\xi \in \Gamma_{C}$, the function $j_{T}(\xi, \cdot)$ is locally Lipschitz;
(iii) for almost all $\xi \in \Gamma_{C}$ and each $\eta \in \mathbb{R}^{2}$

$$
\begin{gathered}
\eta^{*} \in \partial j_{T}(\xi, \eta) \Rightarrow\left|\eta^{*}\right| \leq c(1+|\eta|) \\
\eta^{*} \cdot(-\eta) \leq b(1+|\eta|)
\end{gathered}
$$

for some constants $c \geq 0$ and $b \geq 0$ not depending on $\xi \in \Gamma_{C}$.

$j_{T}\left(u_{T}\right)=\max \left\{f_{1}\left(u_{T_{1}}, u_{T_{2}}\right), f_{2}\left(u_{T_{1}}, u_{T_{2}}\right)\right\}$

$-S_{T} \in \partial_{j}\left(u_{T}\right)$

$$
\mathcal{N}_{h}=\left\{P \in \Sigma_{h}: P \in \bar{\Gamma}_{C}\right\}
$$

Appoximate V by

$$
V_{h}^{1}=\left\{v_{h} \in C\left(\bar{\Omega} ; \mathbb{R}^{2}\right) \cap V: v_{\left.h\right|_{T}} \in\left(P_{1}\right)^{2}, \forall T \in \mathcal{T}_{h}, v_{\left.h\right|_{\Gamma_{U}}}=0\right\}
$$

and K by

$$
K_{h}=\left\{v_{h} \in V_{h}^{1}:\left(v_{h}\right)_{N}(P) \leq 0, \forall P \in \mathcal{N}_{h}\right\} .
$$

Then W_{h}^{1} is defined as

$$
W_{h}^{1}=\left\{w_{h} \in C\left(\bar{\Gamma}_{C}\right): w_{\left.h\right|_{\Delta}} \in P_{1}, \forall \Delta \in \mathcal{T}_{h}^{C},\right\}
$$

where \mathcal{T}_{h}^{C} is the partition of Γ_{C} induced by \mathcal{T}_{h}.

* Adhesive contact problem
$j_{N}: \mathbb{R} \rightarrow \mathbb{R}$ locally Lipschitz function;

$$
-S_{N} \in \partial j_{N}\left(u_{N}\right), S_{T}=C_{T}(x) \text { given on } \Gamma_{C}
$$

Find $u \in K$ such that

$$
\langle A u-g, v-u\rangle_{v}+\int_{\Gamma_{C}} j_{N}^{0}\left(u_{N} ; v_{N}-u_{N}\right) d s \geq 0, \quad \forall v \in K
$$

where

$$
\begin{gathered}
\langle g, v\rangle=\int_{\Omega} f_{i} v_{i} d x+\int_{\Gamma_{C}} C_{T_{i} v{T_{i}} d s,} \\
V=\left\{v \in H^{1}\left(\Omega ; \mathbb{R}^{2}\right): v=0 \text { on } \Gamma_{u}\right\}
\end{gathered}
$$

and $K=\left\{v \in V: v_{N} \leq 0\right.$ on $\left.\Gamma_{C}\right\}$.

* Nonmonotone skin friction problem

Let Ω be a polygonal domain occupied by an elastic plate or by an elastic body within planar linear elasticity. We split the body forces F in two parts $F_{i}=\bar{F}_{i}+\bar{F}_{i}, i=1,2$, where $\overline{\bar{F}}_{i} \in L^{2}(\Omega)$ are given. On a polygonal subdomain $\Omega_{0} \subset \Omega$ we consider the multivalued reaction-displacement law

$$
-\bar{F}(x) \in \partial j(u(x)) \quad \text { a.e. } x \in \Omega_{0} .
$$

The subspace V_{0} is determined by the Dirichlet bc on Γ_{U}. HVI: Find $u \in V_{0}$ such that

$$
a(u, v-u)+\int_{\Omega_{0}} j^{0}(u ; v-u) d x \geq\langle I, v-u\rangle, \quad \forall v \in V_{0}
$$

where $I \in V_{0}^{*}$ is defined as

$$
\langle I, v\rangle=\int_{\Gamma_{F}} F_{i} v_{i} d \Gamma+\int_{\Omega} \overline{\bar{F}}_{i} v_{i} d x
$$

and $\Gamma=\overline{\Gamma_{U}}+\overline{\Gamma_{F}}$.

