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1 Min-Max Theorems

1.1 Introduction to minimax problem by a two person game.

Let X : a normed space, X∗ : its normed dual.

A ⊂ X

B ⊂ X∗
fixed subsets.

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

The special case:

X = Rn, X∗ = (Rn)∗ = Rn.

In this case,

X is a reflexive Banach space.

Consider two players A and B;

player A selects a vector x from his strategy A

player B selects a vector x∗ from his strategy B

The quantity 〈x, x∗〉 is computed and player A pays that amount

to player B.

Thus A seeks to make his selection to minimize 〈x, x∗〉, and

B seeks to maximize 〈x, x∗〉.

If the quantities

µ = min
x∈A

max
x∗∈B

〈x, x∗〉

µ = max
x∗∈B

min
x∈A
〈x, x∗〉

exist, then player A will find a best choice x0 so that
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A loses no more than max
x∗∈B

〈x0, x∗〉.

On the other hand, player B will find x∗0 that

B wins at least min
x∈A
〈x, x∗0〉.

Therefore by their proper choices x0 and x∗0, it would have that

µ ≤ 〈x0, x∗0〉 ≤ µ, (Saddle point property) as well as

µ = max
x∗∈B

〈x0, x∗〉 ≤ 〈x0, x∗0〉 ≤ min
x∈A
〈x, x∗0〉 = µ.

Question arises that whether

µ = µ

so that the existence of a unique pay-off made for optimal play by

both players.

We state the min-max theorem for above type game (cf. The Book:

D.G. Luenberger: Optimization by vector space methods, 1969)

Theorem (Min-Max)

Let X be reflexive normed space, and let A ⊂ X and B ⊂ X∗ be compact,

convex subsets respectively. Then

min
x∈A

max
x∗∈B

〈x, x∗〉 = max
x∗∈B

min
x∈A
〈x, x∗〉.
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Proof. Let

f (x) = max
x∗∈B

〈x, x∗〉, g(x) = 0 for all x ∈ A,

one can deduce the conjugate functions as

f ∗(x∗) = 0, g∗(x∗) = max
x∈A
〈x, x∗〉 for x∗ ∈ B.

Then applying Fenchel duality theorem to yield

minx∈A f (x) = min
x∈A

{
f (x) − g(x)

}
= max

x∗∈B

{
g∗(x∗) − f ∗(x∗)

}
= max

x∗∈B
min
x∈A
〈x, x∗〉.

Here f ∗(x∗) is the conjugate function of f (x),

f ∗(x∗) = sup
{
〈x, x∗〉 − f (x)

}
.

The amount
{
〈x, x∗〉 − f (x)

}
is finite only if x∗ ∈ B. Thus Fenchel

duality theorem is applicable. �

1.2 General Minimax Problems

There are various general version of Min-Max theorems. We state

several minimax theorems for general functional with arbitrary sets

X and Y, f : X × Y→ R as the following problems.

(See Ky Fan [1], [2])
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Question: Let X and Y be arbitrary sets (not necessary topologied).

f : X × Y→ R. Then, weather f (x, y) has property

(?) min
x∈X

max
y∈Y

f (x, y) = max
y∈Y

min
x∈X

f (x, y).

Theorem 1.

X, Y: Compact Hausdorff spaces,

f : X × Y→ R
{

l.s.c. on X
u.s.c. on Y

. Then

(?) holds ⇐⇒



∀
{
x1, · · · , xn

}
⊂ X and ∀

{
y1, · · · , ym

}
⊂ Y,

∃(x0, y0) ∈ X × Y (called saddle point), such that

f (x0, yk) ≤ f (x0, y0) ≤ f (xi, y0), 1 ≤ i ≤ n, 1 ≤ k ≤ m.

In particular,

if f (x, y) is convex / concave on X / Y, then (?) holds.
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Theorem 2.

X: Compact Hausdorff space, (not linear sp.)

Y: arbitrary set, (no topology)

f : X × Y→ R is l.s.c. on X.

If (i) x −→ f (x, y) is convex-like on X for y ∈ Y,

(ii) y −→ f (x, y) is concave-like on Y for x ∈ X,

then (?) holds.

Definition.

f : X × Y→ R is convex-like / concave-like on X / Y, resp

If ∀x1, x2 ∈ X and ζ1, ζ2 ≥ 0 with ζ1 + ζ2 = 1(
∀y1, y2 ∈ Y and η1, η2 ≥ 0 with η1 + η2 = 1

)
,

then ∃ x0 = x0(x1, x2) / y0 = y0(y1, y2)

such that ∀y ∈ Y
(
∀x ∈ X

)
,

f (x0, y) ≤ ζ1 f (x1, y) + ζ2 f (x2, y)

(
f (x, y0) ≥ η1 f (x, y1) + η2 f (x, y2)

)
.

Note that: X and Y are not necessary linear spaces.
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Theorem 3.

Let X, Y: arbitrary sets. If f : X × Y→ R is almost periodic function, then

(?) holds ⇐⇒



∀ε > 0, ∀
{
x1, · · · , xn

}
⊂ X, ∀

{
y1, · · · , ym

}
⊂ Y,

∃(x0, y0) ∈ X × Y called ”ε-saddle point”, such that

f (x0, yk) − f (xi, y0) ≤ ε, 1 ≤ i ≤ n, 1 ≤ k ≤ m.

equivalently,

f (x0, yk) ≤ f (x0, y0) + ε ≤ f (xi, y0)

In particular,

if f is convex-like / concave-like on X / Y, respectively, then (?) holds.

Definition.

f : X × Y→ R is almost periodic

if it is left / right almost periodic on X / Y.

That is, if f (x, y) is bounded and ∀ε > 0,

∃ a finite covering
⋃n

i=1 Xi (left)
(⋃m

j=1 Y j (right)
)

s.t. | f (x′, y) − f (x”, y)| < ε, ∀y ∈ Y(
| f (x, y′) − f (x, y”)| < ε, ∀x ∈ X

)
whenever x′, x” belong to the same Xi(
whenever y′, y” belong to the same Y j

)
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Problem. If f (x, y) is a fractional function:

f (x, y) =
ϕ(x, y)
ψ(x, y)

, (x, y) ∈ X × Y,

then whether the minimax theorem holds?

Note that

(1) convexity or concavity of ϕ and ψ

=⇒\ convexity or concavity of f =
ϕ

ψ
.

(2) l.s.c. / u.s.c. of ϕ and ψ

=⇒\ l.s.c. / u.s.c. for f =
ϕ

ψ
.

Remark.

Minimax problem in Economics is often related to

Minimum cost / Maximum profit.

Saddle point property is the equilibrium point related to

Supply / Demand.

Supply

Demand 

Saddle point 
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2 Optimization Problems and Lagrange Multipliers

Consider a general convex programming problem as the form

(P) inf f (x)

s.t. x ∈ ΓP =
{
x ∈ Ω ∈ X | g(x) ≤C 0

}
,

where f : X→ R and g : X→ (Y,C) are convex in the convex subset

Ω ∈ X, C ∈ Y is a pointed convex closed cone (= positive cone Y+),

Y is a normed space with order cone C.

Let C∗ ⊂ Y∗ be the dual cone of C. That is , for y∗ ∈ C∗, y∗(y) ≥ 0

for any y ∈ C. The Lagrange functional for (P) is defined by

L(x, y∗) = f (x) + 〈g(x), y∗〉, (x, y∗) ∈ X × Y∗,

and y∗ ∈ Y∗ is called Lagrange multipliers.

Theorem 1. (Necessary Conds.)

Let x0 ∈ ΓP be a (P)-optimal. Suppose that
◦
C, ∅ and there

exists a point x1 ∈ Ω such that g(x1) <C 0.

Then there exists a y∗0 ∈ C∗ such that

f (x0) = inf
{

f (x) + 〈g(x), y∗0〉
}
,

and 〈g(x0), y∗0〉 = 0.
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That is, (x0, y∗0) is a saddle point of the Lagrangian

L(x, y∗) = f (x) + 〈g(x), y∗〉, (x, y∗) ∈ X × Y∗.

Theorem 2. (Sufficient Conds.)

In problem (P), if the Lagrangian

L(x, y∗) = f (x) + 〈g(x), y∗〉,

possesses a saddle point (x0, y∗0) ∈ Ω × C∗, then x0 solves the

problem (P). That is

f (x0) = inf
x∈ΓP

f (x).

The Lagrange dual functional w.r.t. (P) is given by

ϕ(y∗) = inf
{

f (x) + 〈g(x), y∗〉
}
, y∗ ∈ C∗.

In general ϕ may not be finite throughout the positive cone C∗ ⊂ Y∗,

but in the region which ϕ takes finite value is concave and repre-

sented by

ϕ(y∗) = inf
{
w(y) + 〈y, y∗〉

}
where w(y) =

{
inf f (x) | x ∈ Ω, g(x) ≤C y ∈ Y

}
.
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The problem

(P∗) max
y∗∈C∗

ϕ(y∗) = sup
y∗∈C∗

inf
x∈ΓP

{
f (x) + 〈g(x), y∗〉

}
is called Lagrange dual with respect to problem (P).

Then we have the Lagrange Duality Theorem:

Theorem 3. (Lagrange Duality)

Let (P) be a convex programming problem:

(P) inf
x∈ΓP

f (x)

s.t. ΓP =
{
x ∈ Ω | g(x) ≤C 0,

◦
C, ∅

}
.

Then

(?) inf
x∈ΓP

f (x) = max
y∗∈C∗

ϕ(y∗)

where maximum on the right is achieved for some y∗0 ≥ 0 in Y∗.

Corollary. Furtheremore in Theorem 3,

if on the left of (?) is achieved at some x0 ∈ Ω, then

〈g(x0), y∗0〉 = 0

and x0 minimizes
{

f (x) + 〈g(x), y∗0〉, x ∈ ΓP

}
.

That is the minimax theorem of L(x, y∗) holds:

inf
x∈ΓP

sup
y∗∈C∗

L(x, y∗) = sup
y∗∈C∗

inf
x∈ΓP

L(x, y∗) = L(x0, y∗0)
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The above results hold for

X = Rn, Y = Rm, C = Rm
+ .

In this case, X and Y are reflexive Banach spaces, and the Lagrange

multiplier y∗ ∈ C∗ is usually denoted by

y∗ = (λ1, · · · , λm) ∈ (Rm
+ )∗ = Rm

+ , λk ≥ 0 (k = 1, · · · ,m).

3 Minimax Programming Problems

Now we turn to introduce the minimax programming problems

including real variables as well as their duality theory.

In general a minimax programming problem is considered as the

form:

(P) min
x∈X

max
y∈Y

f (x, y)

s.t. h(x) ≤Rr
+

0.

In 1977 Scmittendorff: ”Necessary conditions and sufficient condi-

tions for static minimax problems”, JMAA. 57, pp683-693,

was firstly studied the problem (P), where Y is a compact subset

of Rm, X = Rn, f (·, ·) : Rn × Rm → R and h(·) : Rn → Rp. are

C1-mappings.
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Usually, in the study of problem (P), the main purpose is to es-

tablish the necessary / sufficient optimality conditions.

If the necessary optimality conditions is established as well, the

sufficient optimality conditions can be regarded as the converse of

necessary conditions with extra assumptions.

Thus the sufficient theorems are various. Many authors effort to

search such extra conditions. For example, convexity as well as the

variety of generalized convexity are explored.

Based on the optimality conditions, the duality theory corre-

sponding to the primal problem are developed.

The following references are related to minimax fractional pro-

gramming in the recent years. (cf. [1∼6])

In [1], Lai et al. investigated f (x, y) in (P) by a nondifferentiable

fractional minimax problem with objective function:

f (x, y) =
fi(x)
gi(x)

= f (x, i), y = i ∈ Y = {1, · · · , p}.
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Precisely problem (P) becomes

(PI) min
x∈ΓP

max
1≤i≤p

fi(x)
gi(x)

s.t. ΓP =

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣
h j(x) ≤ 0, j = 1, · · · , r
with h j(x̃) < 0 for some x̃


where fi, − gi and h j are continuous real valued convex functions

and gi > 0 on ΓP for all i. The paper established the necessary and

sufficient optimality theorem as the following form:

Theorem.

The point x0 ∈ ΓP is (PI)-optimal.

⇐⇒ ∃ ϕ(x0) ∈ R+, Lagrange multiplier,

α` ≥ 0, ` ∈ I = {1, · · · , k} with
∑
`∈I α` = 1

and µ j ≥ 0 as h j(x̃) < 0 for some x̃ ∈ ΓP, such that

0 ∈
∑
`∈I

α`∂ fi(x0) + ϕ(x0)
(
∂(−gi(x0))

)
+

r∑
j=1

µ j∂h j(x0)

where I is the set of all indexes for which

f`(x0) − ϕ(x0)g`(x0) = max
1≤i≤p

(
fi(x0) − ϕ(x0)gi(x0)

)
,

and ϕ(x0) = λ∗ is the optimal value of (P).

Remark. In (P1), since fi, − gi and h j are continuous convex func-

tions, thus each function is subdifferentiable. If x0 is (P1)-optimal
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with value

λ∗ = max
1≤i≤p

fi(x0)
gi(x0)

≡ ϕ(x0),

and

f`(x0) − ϕ(x0)g`(x0) = max
1≤i≤p

( fi(x0) − ϕ(x0)gi(x0)),

then

ϕ(x0) = inf
x∈ΓP

max
1≤i≤p

fi(x0)
gi(x0)

.

If Y ⊂ Rm is a nondiscrete compact subset, we can also consider

the following nondifferentiable minimax fractional programming

problem:

(P2) min F(x) = sup
y∈Y

f (x, y) + (xTAx)1/2

g(x, y) − (xTBx)1/2

s.t. x ∈ Rn and h(x) ≤Rp
+

0

where Y ⊂ Rm is a compact subset, f (·, ·) and g(·, ·) : Rn × Rm → R

are C1 functions and h(·) : Rn → Rp is a C1 mapping; A and B are

n × n positive semidefinite matrices. Then the necessary / sufficient

optimality conditions was established in Ref [2].

We remark here in the fractional function, the term (xTAx)1/2 as

well as (xTBx)1/2 are not differentiable at the point x0 where either

xT
0 Ax0 = 0 or xT

0 Bx0 = 0. Thus the fractional function is not dif-
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ferentiable even f and g are C1 functions. Therefore the sufficient

conditions of (P2) is not invertible from necessary conditions, and

we need to assume the some generalized convexity as the extra

assumptions to the necessary conditions. See Ref [2] for detail.

This lecture will be stop here. Next lecture, we would like to

introduce some minimax programming (fractional or nonfractional)

problems for set variables as well as complex variables.
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