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1 Introduction

In Part I, the minimax programming with real variables is intro-

duced. Now we will take set variables or complex variables in a

programming problem. That is, functions in programming prob-

lems are taken by set functions or complex variable functions. At

first we introduce the analysis of set functions in optimization the-

ory. The concept is firstly developed by

Morris: Optimal constrained selection of measurable subsets,

JMAA 70(1979), 546-562.

After then, many researchers have further development in their

own interesting including theory and applications. Throughout

this lecture, let (X, Γ, µ) be a finite atomless measure space with

L1(X,Γ, µ) separable. That is, µ(X) < ∞, and for any measurable set

A ∈ Γ with µ(A) > 0, ∃ a nonempty set B ⊂ A , s.t. µ(B) > 0. Thus,

each Ω ∈ Γ corresponds characteristic function χΩ ∈ L∞ = L∗1 ⊂ L1,

and so for f ∈ L1, and χΩ ∈ L∞, the dual pair 〈 f , χΩ〉 is represented
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by ∫
Ω

f dµ = 〈 f , χΩ〉.

By the separability of L1 ⊃ L∞, all topologies induced in Γ is topology

induced by w∗-topology on { χΩ | Ω ∈ Γ } ⊂ L∞, and the family

{ χΩ | Ω ∈ Γ } can be taken countable sequences which are dense in

L1.

The convexity, differentiability, subdifferentiability can be defined

for set functions. Readers are encouraged to consult Morris’ paper

and

Chen/Lai: ”Optimization Analysis Involving Set Functions”,

Applied Math E-Notes 2(2002), 78-97.

This talk is focus on the minimax programming problems involv-

ing set variables / complex variables which we have developed in

recent 10 years (cf. Lai et al. [1]∼[12] and the references therein).

(A) Set Variable Case

Let (X, Γ, µ) be atomless finite measure space with L1(X, Γ, µ) sep-

arable. For any (Ω,Λ, λ) ∈ Γ × Γ × [0, 1], and any sequences {Ωn} in
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Ω and {Λn} in Λ such that

χΩn

w∗−→ λχΩ\Λ and χΛn

w∗−→ (1 − λ)χΛ\Ω

=⇒ χΩn∪Λn∪(Ω∩Λ)
w∗−→ λχΩ + (1 − λ)χΛ, ( as n→∞).

(?)

\

n

n

\

-
)-(1-

Let Mn = Ωn ∪ Λn ∪ (Ω ∩ Λ) satisfy (?), namely Morris sequence.

A subfamily S ⊂ Γ is said to be convex family if S possesses the

property (?) for any given (Ω,Λ, λ) ∈ S × S × [0, 1].

Definition 1. A set function F : Γ→ R is called convex on a

convex family S in Γ if for any (Ω,Λ, λ) ∈ S × S × [0, 1],

∃ a Morris sequence {Mn} in Γ such that

lim
n→∞

F(Mn) ≤ λF(Ω) + (1 − λ)F(Λ).
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Definition 2. A set function F : Γ→ R is differentiable

at Ω0 ∈ Γ, if ∃ fΩ0 ∈ L1, namely the derivative of F at Ω0,(
fΩ0 ≡ F′(Ω0)

)
s.t.

F(Ω) = F(Ω0) + 〈 fΩ0, χΩ − χΩ0 〉 + o
(
ρ(Ω,Ω0)

)

where ρ is a pseudometric on Γ, defined by

ρ(Ω1,Ω2) = µ(Ω1∆Ω2), Ω1,Ω2 ∈ Γ

where ∆ stands for the symmetric difference of sets in Γ.

Definition 3. An element f ∈ L1 is a subgradient of a set

function F at Ω0 ∈ Γ, if it satisfies the inequality

F(Ω) ≥ F(Ω0) + 〈 f , χΩ − χΩ0 〉 for any Ω ∈ Γ.

The set of all subgradients of F at Ω0 is called the

subdifferential of F at Ω0, and is denoted by

∂F(Ω0) ≡
{

f ∈ L1

∣∣∣ F(Ω) ≥ F(Ω0) + 〈 f , χΩ − χΩ0 〉, Ω ∈ Γ
}
.

Remark. F : Γ→ R is subdifferentiable at Ω0 if

∂F(Ω0) , ∅.

A convex set function is subdifferentiable.

5



Definition 4. The conjugate functional F∗ of F is defined by

F∗( f ) = sup
Ω∈Γ

{
〈 f , χΩ 〉 − F(Ω), f ∈ L1

}
, F ≡�∞.

The biconjugate function F∗∗ of F is defined by

F∗∗(Ω) = sup
f∈L1

{
〈 f , χΩ〉 − F∗( f )

}
for Ω ∈ Dom f

= ∞ if Ω ∈\ Dom f .

Theorem 1. (Fenchel Moreaus)

Let F be proper convex w∗-l.s.c. set function on its convex

domain S. Then

F∗∗(Ω) = F(Ω), ∀ Ω ∈ Γ.

One find a nondifferentiable set function in minimax fractional pro-

gramming problem as follows(
Similar to Part I (p.14) §3 , Problem (P1)

)
(P) min max

1≤i≤p

Fi(Ω)
Gi(Ω)

s.t. Ω ∈ S ⊂ Γ and

H j(Ω) ≤ 0, j ∈ {1, · · · ,m}

where S is a convex subfamily of Γ; Fi, − Gi, (i = 1, · · · , p) and
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H j, ( j = 1, · · · ,m) are convex set functions, and given some natural

assumptions in (P), for instance, Gi(·) > 0 and Fi(·) ≥ 0, H j(Ω) < 0 for

some Ω ∈ S, and all convexities set function are proper convex and

w∗-continuous etc.

Problem (P)
(

see Lai [1]
)

can be reduced to an equivalent non-

fractional parametric problem as the form:

(EP) Minimize λ

s.t. Fi(Ω) − λGi(Ω) ≤ 0, 1 ≤ i ≤ p,

H j(Ω) ≤ 0, 1 ≤ j ≤ m,

Ω ∈ S.(
cf. Zalmai, Optimaization 20(1989), pp.377-395

)
If Ω0 is an optimal solution of (P), then (Ω0, λ0) is an optimal

solution of (EP) where

λ0 = max
1≤i≤p

Fi(Ω0)
Gi(Ω0)

is the optimal value of (EP).

Conversely, if (Ω0, λ0) is an optimal solution of (EP), then Ω0 is

an optimal solution of (P) with optimal value λ0, the following ex-

pression is immediate.
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(0) φ(Ω) ≡ max
1≤i≤p

Fi(Ω)
Gi(Ω)

= max
u∈I

〈u, F(Ω)〉
〈u,G(Ω)〉

where I =
{
u ∈ Rp

+ |
∑p

i=1 ui = 1
}
.

Theorem 2. (Nec. Optim. Conds.) Let Ω0 ∈ S be a (P)-optimal

with optimal value λ0, then ∃ multipliers y∗ ∈ Rp
+ and z∗ ∈ Rm

+

such that (Ω0, λ0, y∗, z∗) satisfies

(1) 0 ∈ ∂〈y∗, F(·)〉(Ω0) + λ0∂〈−y∗,G(·)〉(Ω0)

+∂〈z∗,H(·)〉(Ω0) +NS(Ω0),

(2) 〈y∗, F(Ω0) − λ0G(Ω0)〉 = 0,

(3) 〈z∗,H(Ω0)〉 = 0.

where F = (F1, · · · , Fp), G = (G1, · · · ,Gp) and H = (H1, · · · ,Hm);

NS(Ω0) denotes the normal cone to S at Ω0. The optimal point

Ω0 is regular if (1) ∼ (3) are valid and

∃� h ∈ ∂〈z∗,H(·)〉(Ω0) or η ∈ NS(Ω0) such that

h + η = 0.

As we have explained before, the sufficiency for optimal condi-

tions may be regarded as the inverse of Nec. Conds. with extra
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assumptions. To find such extra assumptions, we define a kind of

generalized (F , ρ, θ)-convexity as in the following definitions.

Let F : Γ × Γ × L1 → R be sublinear functional on the third

argument in L1, F : Γ→ R a set function. Let ρ ∈ R and

θ : Γ × Γ→ R+ = [0,∞) such that θ(Ω,Ω0) , 0 if Ω , Ω0.

Then we give the following essential definitions as the explana-

tion for extra assumptions added to the Nec. Optim. Conds.(
Refer to Lai / Liu, JAMM 215(1997) pp.443-460 for

generalized (F , ρ, θ)-convex set functions
)

Definition 5.
(

Generalized (F , ρ, θ) Convexities
)

For each Ω ∈ Γ and f ∈ ∂F(Ω0)(⊂ L1), we define

1. F is (F , ρ, θ)-convex at Ω0, if

F(Ω) − F(Ω0) ≥ F (Ω,Ω0; f ) + ρθ(Ω,Ω0)

2. F is (F , ρ, θ)-quasiconvex at Ω0, if

F(Ω) ≤ F(Ω0) =⇒ F (Ω,Ω0; f ) ≤ −ρθ(Ω,Ω0)
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3. F is prestrictly (F , ρ, θ)-quasiconvex at Ω0, if

F(Ω) < F(Ω0) =⇒ F (Ω,Ω0; f ) ≤ −ρθ(Ω,Ω0)

4. F is (F , ρ, θ)-pseudoconvex at Ω0, if

F (Ω,Ω0; f ) ≥ −ρθ(Ω,Ω0) =⇒ F(Ω) ≥ F(Ω0)

5. F is strictly (F , ρ, θ)-pseudoconvex at Ω0, if

F (Ω,Ω0; f ) ≥ −ρθ(Ω,Ω0) =⇒ F(Ω) > F(Ω0)

Remark. If ρ ≥ 0 in above Definition 5 and take the functional

F : Γ × Γ × L1 → R to be

F (Ω,Ω0; f ) = 〈χΩ − χΩ0, f 〉,

then (F , ρ, θ)-convexity of F is deduced that F is convex at Ω0.

The symbol 〈y∗, F(·)〉 ≡ y∗TF(·) is often used as the inner product

in Euclidian space Rp. By the above definitions for generalized

convexity, the sufficient optimality conditions for (P) is established.

For convenience we denote the set functions A, B, C by

A(Ω) = y∗TG(Ω0)y∗TF(Ω) − y∗TF(Ω0)y∗TG(Ω)

B(Ω) = z∗TH(Ω)
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C(Ω) = A(Ω) + y∗TG(Ω0)B(Ω)

Then we have the main theorem (including five sufficient optimality

conds.) ( cf. Lai / Liu [3] )

Theorem 3. (Suff. Optim. Conds.)

Let Ω0 be a feasible solutions of (P). Assume that there exist

y∗ ∈ I and z∗ ∈ Rm
+ which satisfy the (Nec.) condition (1)∼(3),

and let F (Ω,Ω0;−η) ≥ 0 for each η ∈ NS(Ω0), and Ω be any

feasible solution of (P). Furthermore suppose that any one of

the following conditions is valid:

(a) y∗TF is (F , ρ1, θ)-convex at Ω0,

−y∗TG is (F , ρ2, θ)-convex at Ω0,

z∗TH is (F , ρ3, θ)-convex at Ω0,

and y∗TG(Ω0)ρ1 + y∗TF(Ω0)ρ2 + z∗TH(Ω0)ρ3 ≥ 0.
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(b) A is (F , ρ1, θ)-pseudoconvex at Ω0,

B is (F , ρ2, θ)-quasiconvex at Ω0,

and ρ1 + y∗TG(Ω0)ρ2 ≥ 0.

(c) A is (F , ρ1, θ)-quasiconvex at Ω0,

B is strictly (F , ρ2, θ)-pseudoconvex at Ω0,

and ρ1 + y∗TG(Ω0)ρ2 ≥ 0.

(d) C is (F , ρ, θ)-pseudoconvex at Ω0 and ρ ≥ 0.

(e) C is prestrictly (F , ρ, θ)-quasiconvex at Ω0 and ρ > 0.

Then Ω0 is an optimal solution of (P).

Employing the Suff. Optim. Conds., one can proceed to establish

the three duality theorems:

weak, strong, and strict converse theorem

for the Wolfe type dual, the Mond-Weir type dual and the paramet-

ric type dual programming problems
(

see Lai et al, [2-3]
)
.

Furthermore, a mixed type dual model is investigated in Lai et

al, [4-5].
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(B) Complex Variable Case

Mathematical programming in complex space was studied first

by Levinson in 1966 for linear programming. Hence after many

authors, for example,

Abrams, Craven, Swarup and Shrma, Datta and Bhatia,

Parkash, Ferrero, Lai, Liu, Schaible, Stancu-Minasian etc.

studied linear fractional, nonlinear fractional or nonfractional pro-

gramming problems in complex spaces.

Complex programming could be applied to electrical networks

with alternating current with complex variable z ∈ Cn representing

currents or voltages for element of network. It is also employed to

variant fields in engineering, like blind deconvolution, blind equal-

ization, minimal entropy, maximum kurtosis, optimal receiver etc.

(cf. Lai / Lin [7]).

In [10], Chen / Lai / Schaible introduce a generalized

Charnes-Cooper variable transformation to change fractional com-

plex program. into nonfractional program., and proved that the

optimal solution of complex fractional program. can be reduced to
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an optimal solution of the equivalent nonfractional program. and

vice versa.

Recently, in [6-12], Lai et al. are investigated minimax program-

ming in complex spaces. Now we consider a new problem for non-

differentiable (nonfractional) minimax programming as follows:

(P) min
ζ∈X

sup
η∈Y

Re
[

f (ζ, η) + (zHAz)1/2
]

s.t. X =
{
ζ = (z, z) ∈ C2n | − h(ζ) ∈ S

}
where Y = {η = (w,w) | w ∈ Cm} is a compact subset in C2m,

A ∈ Cn×n is a positive semidefinite Harmitian matrix,

S is a polyhedral cone in Cp,

f (·, ·) is continuous, and for each η ∈ Y,

f (·, η) : C2n → C and h(·) : C2n → Cp are analytic in Q

Q = {ζ = (z, z) | z ∈ Cn} ⊂ C2n is a linear manifold over R.

Problem (P) is nondifferentiable programming at the optimal

point ζ0 = (z0, z0) where zH
0 Az0 = 0.

There are three special cases of problem (P) as follows.
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(a) If Y vanishes, then (P) is reduced to one complex variable:

(P1) Minimize Re
[

f (ζ) + (zHAz)1/2
]

s.t. ζ = (z, z) ∈ X = {ζ = (z, z) | − h(ζ) ∈ S}.

This form is investigated by Mond and Craven.

[cf. J. Math. Oper. and Stat. 6(1975), pp.581-591]

(b) If A ≡ 0, (P) becomes a differentiable complex programming

(P0) min
ζ∈X

sup
η∈Y

Re f (ζ, η).

s.t. −h(ζ) ∈ S.

[cf. Datta / Bhatia, JMAA 101(1984), pp.1-11]

(c) Problem (P0) extended the real minimax programming of

(Pr) min
x∈X⊂Rn

sup
y∈Y⊂Rm

f (x, y)

s.t. h(x) ≤ 0 in Rp, f (·, ·) and h(·) are C1 functions.

Problem (Pr) was firstly investigated by Schmittendorff,

JMAA, 57(1977), pp.683-693.
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Symbols / Definitions

S inCp is a polyhedral cone if ∃ a positive integer k, and a matrix

B ∈ Ck×p s.t. S = {ξ ∈ Cp | Re(Bξ) ≥ 0}.

S∗ =
{
µ ∈ Cp | Re〈ξ, µ〉 ≥ 0 ∀ ξ ∈ S

}
: dual cone of S. ∀η ∈ Y ⊂ C2m,

f (·, η) : C2n → C and h(·) : C2n → Cp are analytic at ζ0 = (z0, z0) ∈ Q.

In order to have a convex real part for nonlinear analytic function,

the complex functions need to define on the linear manifold

Q = {ζ = (z, z) ∈ C2n | z ∈ Cn}.(
cf. Ferrero in JMAA 164(1992), pp.399-416

)
Theorem 4. (Nec. Optim. Conds.)

Let ζ0 = (z0, z0) ∈ Q be (P)-optimal such that 〈Az0, z0〉 = 0, and

Zη̃(ζ0) =
{
ζ ∈ C2n

∣∣∣∣ − h′ζ(ζ0)ζ ∈ S(−h(ζ0)), ζ = (z, z) ∈ Q and

Re
[ k∑

i=1

λi f ′ζ(ζ0, ηi)ζ + 〈Az, z〉1/2
]
< 0
}
= ∅.

Then
k∑

i=1

λi

[
∇z f (ζ0, ηi) + ∇z f (ζ0, ηi) + Au

]
+
(
µT∇zh(ζ0) + µH∇zh(ζ0)

)
= 0; (1)

Re〈 h(ζ0), µ 〉 = 0; (2)

uHAu ≤ 1; (3)
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(zH
0 Az0)1/2 = Re(zH

0 Au). (4)

where λi > 0,
∑k

i=1 λi = 1 and finite points

ηi ∈ Y(ζ0) =
{
η ∈ Y | Re f (ζ0, η) = sup

ν∈Y
Re f (ζ0, ν)

}
, for i = 1, · · · , k.

Theorem 5. (Sufficient Optimality Conditions).

Let ζ0 = (z0, z0) ∈ Q be a feasible solution of (P). Suppose that ∃ a positive

integer k, and ηi ∈ Y(ζ0), λi > 0, i = 1, · · · , k, with
∑k

i=1 λi = 1, such that

for 0 , µ ∈ S∗ ⊂ Cp, u ∈ Cn the conditions (1)∼(4) are valid either for

〈Az0, z0〉 > 0 or 〈Az0, z0〉 = 0 with Zη̃(ζ0) = ∅.

Assume further that any one of the following conditions (i)∼(iii) holds:

(i) Re
[∑k

i=1 λi f (ζ, ηi) + zHAu
]

is pseudoconvex on ζ = (z, z) ∈ Q,

h(ζ) is quasiconvex on Q w.r.t. the polyhedral cone S ⊂ Cp;

(ii) Re
[∑k

i=1 λi f (ζ, ηi) + zHAu
]

is quasiconvex on ζ = (z, z) ∈ Q

and h(ζ) is strictly pseudoconvex on Q w.r.t. S ⊂ Cp;

(iii) Re
[∑k

i=1 λi f (ζ, ηi) + zHAu + 〈h(ζ), µ〉
]

is pseudoconvex on

ζ = (z, z) ∈ Q.

Then ζ0 = (z0, z0) is an optimal solution of (P).
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By the above optimality conds., we can establish two dual forms:

parametric dual (D1) and parameter free dual (D2)

problems, and prove three duality theorems:

weak, strong and strict converse theorem.

It is also proved that optimal values between the primal problem and

dual problems are no duality gap under some additional conditions.

Q: As a plausible problem for a minimax fractional programming in

complex spaces as the form:

min
ζ∈X

sup
η∈Y

Re [ f (ζ, η) + (zHAz)1/2]
Re [g(ζ, η) − (zHBz)1/2]

s.t. X =
{
ζ = (z, z) ∈ C2n | − h(ζ) ∈ S ⊂ Cp

}
Y is a compact subset of C2m

Then how about the optimality conditions and the duality theory?
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Thank you very much for your attention!!
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