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Approximately convex functions

A function f : X → R ∪ {+∞} is said to be approximately con-

vex (Ngai-Luc-Théra, 2000) (resp., directionally approximately convex

(Daniilidis-Georgiev, 2004, Georgiev, 1997) at x0 ∈ X, if:

For every ε > 0 (resp., and d ∈ SX) there exists δ > 0 such that for all

x, y ∈ B(x0, δ)∩dom f (resp., with x 6= y and (x−y)/‖x−y‖ ∈ B(d, δ))

one has:

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + εt(1− t)‖x− y‖, ∀t ∈ (0,1)

or, equivalently:

f(z)− f(x)

‖z − x‖
+

f(z)− f(y)

‖z − y‖
≤ ε, ∀z ∈ (x, y).

Caution: The term “approximately convex” is also used for a long

time for another type of functions, namely the ε-convex functions

in the sense of Hyers-Ulam (1952).



Examples of approximately convex functions

• Convex functions

• Semiconvex functions

• Strongly paraconvex functions

• Strictly differentiable functions

• (Daniilidis-Georgiev, 2004) In Rn, continuous approximately convex

functions coincide with lower-C1 functions, that is, functions locally

representable as a maximum of a compactly indexed family of C1

functions



Properties of convex functions shared by approxi-
mately convex functions

• (Ngai-Luc-Théra, 2000) A lower semicontinuous approximately convex

function is locally Lipschitz on the interior of its domain

• (Ngai-Luc-Théra, 2000) If f : X → R∪ {+∞} is approximately convex

at x0 ∈ X, then ∂Cf(x0) = ∂Ff(x0)

• (Daniilidis-Jules-Lassonde, 2009; Georgiev, 1997, for the continuous case) If

f : X → R ∪ {+∞} is directionally approximately convex at x0 ∈ X,

then ∂Cf(x0) = ∂Hf(x0)

• (Zaj́ıček, 2008) For approximately convex functions, Fréchet differ-

entiability coincide with strict differentiability

• (Zaj́ıček, 2008) In Asplund spaces, continuous approximately convex

functions are generically Fréchet differentiable on the interior of

their domain



Memo: Basic subdifferentials

Clarke:

∂Cf(x) := {x∗ ∈ X∗ | 〈x∗, h〉 ≤ f ′CR(x;h), ∀h ∈ X},

where

f ′CR(x;h) := sup
λ>0

lim sup
t↘0

x′→fx

inf
h′∈B(h,λ)

f(x′ + th′)− f(x′)

t
.

Hadamard:

∂Hf(x) := {x∗ ∈ X∗ | 〈x∗, h〉 ≤ lim inf
t↘0
h′→h

f(x + th′)− f(x)

t
, ∀h ∈ X}.

Fréchet:

∂Ff(x) := {x∗ ∈ X∗ | lim inf
‖h‖→0

f(x + h)− f(x)− 〈x∗, h〉
‖h‖

≥ 0}

Always:

∂Ff(x) ⊂ ∂Hf(x) ⊂ ∂Cf(x).



Submonotone operators

A set-valued operator T : X ⇒ X∗ is said to be submonotone

(Spingarn, 1981, Janin, 1982, Daniilidis-Georgiev, 2004)

(resp., directionally submonotone (Georgiev, 1997)) at x0 ∈ X, if:

For every ε > 0 (resp., and d ∈ SX) there exists δ > 0 such that for

all x, y ∈ B(x0, δ) (resp., with x 6= y and (x − y)/‖x − y‖ ∈ B(d, δ))

and all x∗ ∈ T (x) and y∗ ∈ T (y), one has

〈x∗ − y∗, x− y〉 ≥ −ε‖x− y‖.



Properties of monotone operators shared by sub-
monotone operators

• (Georgiev, 1997) A directionally submonotone operator is locally

bounded on the interior of its domain

• (Georgiev, 1997) In Asplund spaces, directionally submonotone op-

erators are generically single-valued and upper semicontinuous on

the interior of their domain



Background: subdifferential characterization of con-
vexity

A function f : X → R ∪ {+∞} is convex if for all x, y ∈ dom f :

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y), ∀t ∈ (0,1)

or, equivalently:

f(z)− f(x)

‖z − x‖
+

f(z)− f(y)

‖z − y‖
≤ 0, ∀z ∈ (x, y).

A set-valued operator T : X ⇒ X∗ is monotone if for all x, y ∈ X and

all x∗ ∈ T (x) and y∗ ∈ T (y):

〈x∗ − y∗, x− y〉 ≥ 0.

Thm (Correa-Jofré-Thibault) f convex ⇐⇒ ∂Cf monotone.



Proof of ∂Cf monotone =⇒ f convex

Case f differentiable based on the Mean Value Theorem:

MVT: ∀x, z ∈ X, x 6= z, ∃x̄ ∈ [x, z) : f(z)− f(x) = 〈f ′(x̄), z − x〉

Let x, y ∈ X and z ∈ (x, y). Apply MVT on [x, z) and on (z, y]:


f(z)−f(x)
‖z−x‖ = 〈f ′(x̄), z−x

‖z−x‖〉, for some x̄ ∈ [x, z)

f(z)−f(y)
‖z−y‖ = 〈f ′(ȳ), z−y

‖z−y‖〉, for some ȳ ∈ (z, y]

Put z−x
‖z−x‖ = − x̄−ȳ

‖x̄−ȳ‖ and z−y
‖z−y‖ = x̄−ȳ

‖x̄−ȳ‖ and add:

f(z)− f(x)

‖z − x‖
+

f(z)− f(y)

‖z − y‖
= 〈−f ′(x̄) + f ′(ȳ),

x̄− ȳ

‖x̄− ȳ‖
〉 ≤ 0.



Case f locally Lipschitz, same proof based on Lebourg Mean Value

Theorem:

∀x, z ∈ X, x 6= z, ∃x̄ ∈ [x, z) ∃x̄∗ ∈ ∂Cf(x̄) : f(z)− f(x) = 〈x̄∗, z − x〉

Case f : X → R ∪ {+∞} lower semicontinuous, same proof based

on Zagrodny two points mean value inequality:

Let f : X → R ∪ {+∞} be lower semicontinuous. Let x, z ∈ X with

x ∈ dom f and x 6= z, and let r ∈ R such that r ≤ f(z). Then, there

exist x̄ ∈ [x, z), and sequences {(xn, x∗n)}n ⊂ ∂Cf with xn →f x̄ such

that
r − f(x)

‖z − x‖
≤ lim inf

n
〈x∗n,

z − xn

‖z − xn‖
〉.



Subdifferential characterization of approximate con-
vexity

(Daniilidis-Jules-Lassonde, 2009) Let f : X → R ∪ {+∞} be lower semi-

continuous and let x0 ∈ X. The following are equivalent:

(i) f is (directionally) approximately convex at x0;

(ii) ∂Cf is (directionally) submonotone at x0.

Remarks. 1. For locally Lipschitz functions, the result was proved

by Daniilidis-Georgiev, 2004.

2. The case of approximately convex functions has been indepen-

dently established by Ngai-Penot, 2007.

3. The result is also valid for any subdifferential in appropriate

spaces.



Main tool: A three points mean value inequality

(Daniilidis-Jules-Lassonde, 2009) Let f : X → R ∪ {+∞} be lower semi-

continuous. Let x, y ∈ dom f with x 6= y, and let z ∈ (x, y) and

r ∈ R such that r ≤ f(z). Then, there exist x̄ ∈ [x, z), ȳ ∈ (z, y] and

sequences {(xn, x∗n)}n ⊂ ∂Cf with xn →f x̄, and {(yn, y∗n)}n ⊂ ∂Cf

with yn →f ȳ, such that

r − f(x)

‖z − x‖
+

r − f(y)

‖z − y‖
≤ lim inf

n
〈x∗n − y∗n,

yn − xn

‖yn − xn‖
〉.



Maximal submonotonicity of ∂Cf

A set-valued operator T : X ⇒ X∗ is said to be maximal directionally

submonotone at x0 ∈ X if it is directionally submonotone at x0 and

there is no operator S : X ⇒ X∗ directionally submonotone at x0

such that T (x) ⊂ S(x) for every x in some neighborhood of x0 and

T (x0) 6= S(x0).

(Daniilidis-Jules-Lassonde, 2009) Let f : X → R ∪ {+∞} be lower semi-

continuous and let x0 ∈ dom f . If ∂Cf is directionally submonotone

at x0, then ∂Cf is actually maximal directionally submonotone at

x0.

Remark. The result is also valid for any subdifferential in appropriate

spaces.
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