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Approximately convex functions

A function f : X — RU {40} is said to be approximately con-
vex (Ngai-Luc-Théra, 2000) (resp., directionally approximately convex
(Daniilidis-Georgiev, 2004, Georgiev, 1997) at xg € X, if:

For every € > 0 (resp., and d € Sy ) there exists § > 0 such that for all
z,y € B(zg,8)Ndom f (resp., with z # y and (z—v)/||lz—vy| € B(d,9))
one has:

[z + (1 =0)y) <tf(x) + Q-0 f(y) +et(1-t)|lz—y|, Vie(0,1)

or, equivalently:

f) = f@) G =1 o e,

|z — =| Iz =yl

Caution: The term “approximately convex” is also used for a long
time for another type of functions, namely the s-convex functions
in the sense of Hyers-Ulam (1952).




Examples of approximately convex functions
e Convex functions

e Semiconvex functions

e Strongly paraconvex functions

e Strictly differentiable functions

e (Daniilidis-Georgiev, 2004) In R"™, continuous approximately convex
functions coincide with lower-Cl functions, that is, functions locally
representable as a maximum of a compactly indexed family of c1
functions



Properties of convex functions shared by approxi-
mately convex functions

e (Ngai-Luc-Théra, 2000) A lower semicontinuous approximately convex
function is locally Lipschitz on the interior of its domain

e (Ngai-Luc-Théra, 2000) If f: X — RU {400} is approximately convex
at g € X, then 80]“(3;0) = apf(zvo)

e (Daniilidis-Jules-Lassonde, 2009; Georgiev, 1997, for the continuous case) If
f: X — RU{+o0} is directionally approximately convex at zg € X,

then 9¢ f(zg) = O f(x0)

e (Zajicek, 2008) For approximately convex functions, Fréchet differ-
entiability coincide with strict differentiability

e (Zajicek, 2008) In Asplund spaces, continuous approximately convex
functions are generically Fréchet differentiable on the interior of
their domain



Memo: Basic subdifferentials

Clarke:
dof(w) i={z* € X* | (z*,h) < fhg(z;h), Yh € X},
where
. f(&" +th') — f(&)
h) ;= sup limsu inf .
fCR(m ) 1= >\>g £\0 ph’eB(h,A) t
x —>f£C
Hadamard:

Ouf(a) = {a* € X* | (", ) < lim inf LT ) = F(@)
t\0 t
h!—h

, Vh € X }.

Fréchet:

Opf(z) :={z" € X™| Img\g Ak _IIJ;L(IIQE) mCL) > 0}

Always:
Opf(z) COopf(z) CIcf(x).



Submonotone operators

A set-valued operator T : X = X* is said to be submonotone
(Spingarn, 1981, Janin, 1982, Daniilidis-Georgiev, 2004)
(resp., directionally submonotone (Georgiev, 1997)) at xg € X, if:

For every ¢ > 0 (resp., and d € Sy ) there exists § > 0 such that for
all z,y € B(xg,6) (resp., with = # y and (z — y)/||z — yl| € B(d,5))
and all z* € T'(xz) and y* € T'(y), one has

(x* —y*,x —y) > —¢llz —yl.




Properties of monotone operators shared by sub-
monotone operators

e (Georgiev, 1997) A directionally submonotone operator is locally
bounded on the interior of its domain

e (Georgiev, 1997) In Asplund spaces, directionally submonotone op-
erators are generically single-valued and upper semicontinuous on
the interior of their domain



Background: subdifferential characterization of con-
vexity

A function f: X — RU{+4oc} is convex if for all z,y € dom f:

fx+ (1 -t)y) <tf(z) + (1 -t)f(y), Vte(0,1)
or, equivalently:

fz) = f(z) |
Iz — z|] Iz =yl

) —FW) g v, e (2.7).

A set-valued operator T : X = X™* is monotone if for all x,y € X and
all z* € T'(xz) and y* € T'(y):

Thm (Correa-Jofré-Thibault) f convex <= dof monotone.



Proof of 0of monotone — f convex

m Case f differentiable based on the Mean Value Theorem:

MVT: Vz,z€ X,z 7# 2,3z € [z,2) : f(z) — f(z) = {f(Z),z — x)

Let z,y € X and z € (x,y). Apply MVT on [z,z) and on (z,y]:

( f(ﬁ; iﬁm) — <f/(513)7 || > for some x € [x, 2)
| LELw) — (), Z=i), for some € (2, ]
Put ﬁz—“?% and =% = Z=Y  and add:
2=z z—y|| lz—yll — llz—yll
f(2) = f@) | f(2) = f(y) — L E) + ), §> <0

Iz = z|] Iz =yl ||_ yl



m Case f locally Lipschitz, same proof based on Lebourg Mean Value
Theorem:

Ve,z € X,x # z,3x € [x,z) x* € 0o f(x) : f(z) — f(x) = (¥, z — x)

m Case f: X - RU{+4+} lower semicontinuous, same proof based
on Zagrodny two points mean value inequality:

Let f: X — RU {400} be lower semicontinuous. Let x,z € X with
x €dom f and x = z, and let r € R such that r < f(z). Then, there
exist x € [x,2), and sequences {(xn,zy)}n C Ocf With xn —f T such
that

P S@®) iming 2, 2,
|z — |l n |z — zn|




Subdifferential characterization of approximate con-
veXity

(Daniilidis-Jules-Lassonde, 2009) Let f : X — RU {4} be lower semi-
continuous and let xg € X. The following are equivalent:

(i) f is (directionally) approximately convex at xq,
(ii) Ocf is (directionally) submonotone at xg.

Remarks. 1. For locally Lipschitz functions, the result was proved
by Daniilidis-Georgiev, 2004.

2. The case of approximately convex functions has been indepen-
dently established by Ngai-Penot, 2007.

3. The result is also valid for any subdifferential in appropriate
spaces.



Main tool: A three points mean value inequality

(Daniilidis-Jules-Lassonde, 2009) Let f : X — RU {400} be lower semi-
continuous. Let xz,y € dom f with x # vy, and let z € (x,y) and
r € R such that r < f(z). Then, there exist x € [x,2), ¥y € (z,y] and
sequences {(xn,zy)}tn C Ocf with zn —¢ x, and {(yn,yp)}n C Ocf
with yn — ¢y, such that

r— f(z) -+ r— fw) < Iimninf (x) —y

lz ==l = llz =yl —

« Yn — In

n»
lyn — znl|

).




Maximal submonotonicity of o f

A set-valued operator T : X = X* is said to be maximal directionally
submonotone at xzqg € X if it is directionally submonotone at zg and
there is no operator S : X = X™ directionally submonotone at zg
such that T'(x) C S(x) for every z in some neighborhood of zg and

T(xg) = S(x0).

(Daniilidis-Jules-Lassonde, 2009) Let f : X — RU{4occ} be lower semi-
continuous and let xq € dom f. If Oc f is directionally submonotone
at xg, then Ocf is actually maximal directionally submonotone at

Q-

Remark. The result is also valid for any subdifferential in appropriate
spaces.
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