2nd Summer School on Generalized Convex Analysis

NSYSU, Kaohsiung, Taiwan ROC

Lecture # 3:

Fixed points and minimax

by Marc Lassonde Université Antilles-Guyane

July 15 to July 19, 2008

Sperner (1928): In \mathbb{R}^n with unit vectors $\{e_i \mid i \in I\}$, let n closed sets $\{A_i \mid i \in I\}$ satisfy: The union of the n sets contains the simplex conv $\{e_i \mid i \in I\}$ and each set A_i contains the \hat{i} -face conv $\{e_j \mid j \in I, j \neq i\}$. Then all the sets have a point in common.

Knaster-Kuratowski-Mazurkiewicz (1929): In \mathbb{R}^n with unit vectors $\{e_i \mid i \in I\}$, let n <u>closed</u> sets $\{A_i \mid i \in I\}$ satisfy: For every $J \subset I$ the J-face conv $\{e_j \mid j \in J\}$ is contained in the union $\bigcup \{A_j \mid j \in J\}$. Then all the sets have a point in common.

Klee (1951): In a topological vector space, let n <u>closed convex</u> sets satisfy:

The union of the n sets is convex and the intersection of every n-1 of them is nonempty.

Then all the sets have a point in common.

BASIC INTERSECTION THEOREMS REVISITED

(replacing \mathbb{R}^n with unit vectors $\{e_i \mid i \in I\}$ by a TVS with an arbitrary family of (not necessarily distinct) points $\{x_i \mid i \in I\}$)

Basic conditions implying that n sets have a point in common:

Sperner/Alexandroff-Pasynkoff (1957): In a TVS, n <u>closed</u> sets $\{A_i \mid i \in I\}$ with n points $\{x_i \mid i \in I\}$ such that: The union of the n sets contains the <u>convex</u> hull conv $\{x_i \mid i \in I\}$

and each set A_i contains the <u>convex</u> hull conv $\{x_j \mid j \in I, j \neq i\}$.

KKM/Ky Fan (1961): In a TVS, $n \text{ closed sets } \{A_i \mid i \in I\}$ with n points $\{x_i \mid i \in I\}$ such that: For every $J \subset I$ the <u>convex</u> hull conv $\{x_j \mid j \in J\}$ is contained in $\bigcup \{A_j \mid j \in J\}$.

Klee (1951): In a TVS, n closed convex sets with:

The union of the n sets is convex and the intersection of every n-1 of them is nonempty.

COMMENTS

- Passage from the simplex version to the TVS version is direct
- KKM \Rightarrow Sperner \Rightarrow Klee
- For <u>convex</u> sets, all the results are equivalent:
 KKM for convex sets ⇔ Sperner for convex sets ⇔ Klee
- For <u>convex</u> sets, proofs are easy
- For arbitrary (closed) sets, no elementary proof of KKM Theorem is known; original proof relies on Sperner combinatorial lemma
- All the results hold for open sets as well

APPLICATIONS OF THE CONVEX VERSIONS: MINIMAX (IN)EQUALITIES

Ky Fan minimax inequality (1972) (special case): Let K be a nonempty convex compact set in a TVS and let $\varphi : K \times K \to \mathbb{R}$ such that:

(1) For each $x \in K$, the function $y \mapsto \varphi(x, y)$ is quasi-concave,

(2) For each $y \in K$, the function $x \mapsto \varphi(x, y)$ is quasi-convex lsc,

(3) For each $x \in K$, $\varphi(x, x) \leq 0$.

Then, there exists $\overline{x} \in K$ such that $\varphi(\overline{x}, y) \leq 0$ for all $y \in K$, i.e., $\min_{x \in K} \sup_{y \in K} \varphi(x, y) \leq 0.$

Sion minimax equality (1958): Let C and D be two nonempty convex sets in TVS', one of them being compact, and let $f : C \times D \rightarrow \mathbb{R}$ such that f(.,y) is quasi-convex lsc and f(x,.) is quasi-concave usc. Then:

$$\inf_{x \in C} \sup_{y \in D} f(x, y) = \sup_{y \in D} \inf_{x \in C} f(x, y).$$

APPLICATIONS OF THE CONVEX VERSIONS: VARIATIONAL INEQUALITIES

Definitions. Let X be a TVS, X^* its topological dual and $T : X \rightrightarrows X^*$ a set-valued operator. We say that T is *monotone* if

 $\forall (x,x^*) \in gr(T), \ \forall (y,y^*) \in gr(T) : \langle y^* - x^*, y - x \rangle \geq 0$ and *quasi-monotone* if

 $\forall (x, x^*) \in gr(T), \ \forall (y, y^*) \in gr(T) : \ \langle x^*, y - x \rangle > 0 \Rightarrow \langle y^*, y - x \rangle \ge 0.$

Debrunner-Flor (1964) (special case)-Minty (1967): Let $K \subset X$ be a nonempty convex compact set in a TVS and let $T : X \rightrightarrows X^*$ be monotone with dom $T \subset K$. Then, there exists $\overline{y} \in K$ such that $\langle x^*, x - \overline{y} \rangle \ge 0$, $\forall (x, x^*) \in gr(T)$.

Aussel-Hadjisavvas (2004): Let $K \subset X$ be a nonempty convex compact set in a TVS and let $T : X \rightrightarrows X^*$ be quasi-monotone with dom T = K. Moreover, assume that T is hemicontinuous from Xinto (X^*, w^*) with convex w^* -compact values. Then, there exists $\bar{y} \in K$ et $\bar{y}^* \in T\bar{y}$ such that

$$\langle \bar{y}^*, x - \bar{y} \rangle \ge 0, \quad \forall x \in K.$$

EQUIVALENT FORMULATIONS OF THE KKM THEOREM: FIXED POINT AND MINIMAX

Fan (1961)-Browder (1968): Let K be a nonempty convex compact set in a TVS and let $\psi : K \rightrightarrows K$ a set-valued map verifying: (1) For each $x \in K$, the set $\psi(x)$ is convex, (2) For each $y \in K$, the set $\psi^{-1}(y)$ is open in K. Then, there exists $\bar{x} \in K$ such that $\psi(\bar{x}) = \emptyset$ or $\bar{x} \in \psi(\bar{x})$.

Ky Fan minimax inequality (1972): Let K be a nonempty convex compact set in a TVS and let $\varphi : K \times K \to \mathbb{R}$ such that: (1) For each $x \in K$, the function $y \mapsto \varphi(x, y)$ is quasi-concave, (2) For each $y \in K$, the function $x \mapsto \varphi(x, y)$ is lsc, (3) For each $x \in K$, $\varphi(x, x) \leq 0$. Then, there exists $\overline{x} \in K$ such that $\varphi(\overline{x}, y) \leq 0$ for all $y \in K$, i.e., $\min_{x \in K} \sup_{y \in K} \varphi(x, y) \leq 0$.

Brouwer (1909): Every continuous self-map $f : K \to K$ of a nonempty convex compact subset of \mathbb{R}^n possesses a fixed point.

EQUIVALENT FORMULATIONS OF THE KKM THEOREM: VARIATIONAL INEQUALITIES

Debrunner-Flor (1964)-Browder (1967): Let $K \subset X$ be a nonempty convex compact set in a TVS, $T : X \rightrightarrows X^*$ be monotone with dom $T \subset K$ and $u : K \to X^*$ be continuous. Then, there exists $\overline{y} \in K$ such that

 $\langle u(\bar{y}) + x^*, x - \bar{y} \rangle \ge 0, \quad \forall (x, x^*) \in gr(T).$

Hartman-Stampacchia (1966)-Browder (1968): Let $K \subset X$ be a nonempty convex compact set in a TVS and let $T : X \rightrightarrows X^*$ be monotone with dom T = K and $u : K \to X^*$ be continuous. Moreover, assume that T is hemicontinuous from X into (X^*, w^*) with convex w^* -compact values. Then, there exists $\overline{y} \in K$ et $\overline{y}^* \in T\overline{y}$ such that

 $\langle u(\bar{y}) + \bar{y}^*, x - \bar{y} \rangle \ge 0, \quad \forall x \in K.$

EQUIVALENT FORMULATIONS OF THE KKM THEOREM: TOPOLOGICAL KLEE-TYPE INTERSECTION THEOREM

Definition. A topological space X is said to be contractible provided there exists a continuous map $f: X \times [0,1] \to X$ such that f(1,.) is the identity map and f(0,.) is the constant map.

Horvath-Lassonde (1997): In a TVS, let n closed convex sets such that:

The union of the n sets is contractible and the intersection of every n-1 of them is nonempty.

Then all the sets have a point in common.

Proof of the equivalence.

Topolological Klee-type Theorem

- \Rightarrow The *n*-sphere is not contractible
- \Rightarrow Brouwer's Fixed Point Theorem
- \Rightarrow KKM Theorem
- \Rightarrow Topolological Klee-type Theorem !!

COMPETITIVE FAN-BROWDER FIXED POINT THEOREM

Notation. Let I be an arbitrary set of indices. Given a family $\{X_i \mid i \in I\}$ of topological spaces, we let $X = \prod_{i \in I} X_i$ be the topological product of the spaces and $\pi_i : X \to X_i$ be the projection of X onto X_i . We simply write $\pi_i(x) = x_i$.

Toussaint (1984): For each $i \in I$, assume:

(1) X_i is a nonempty convex compact set in a TVS;

(2) $\varphi_i : X \rightrightarrows X_i$ has convex values and open fibers.

Then, the following alternative holds:

(A) There exist $i \in I$ and $\bar{x} \in X$ such that $\bar{x}_i \in \varphi_i(\bar{x})$, or,

(B) There exists $\bar{x} \in X$ such that, for each $i \in I$, $\varphi_i(\bar{x}) = \emptyset$.

Remark. For finite dimensional spaces X_i and finite I, the first theorem of this type is due to Gale and Mas-Colell (1975) (see also Debreu (1950)).

PROOF OF THE COMPETITIVE FAN-BROWDER FIXED POINT THEOREM

Suppose (B) is not verified, that is, $X = \bigcup \{ \text{dom } \varphi_i \mid i \in I \}$ where dom $\varphi_i = \{x \in X \mid \varphi_i(x) \neq \emptyset \}$ is open. Since X is compact, there exist a finite subset $J \subset I$ and, for each $j \in J$, a closed subset $A^j \subset$ dom φ_j so that $X = \bigcup \{A^j \mid j \in J\}$. Consider the map $\varphi : X \rightrightarrows X$ defined by

$$\varphi(x) = \{ y \in X \mid y_j \in \varphi_j(x) \,\,\forall \, j \in J(x) \},\$$

where $J(x) = \{j \in J \mid x \in A^j\}$ is finite and not empty. It is easily verified that φ has nonempty convex values and open fibers, so by Fan-Browder's Theorem there is $\bar{x} \in X$ such that $\bar{x} \in \varphi(\bar{x})$, in particular there is $j \in J$ such that $\bar{x}_j \in \varphi_j(\bar{x})$, that is, (A) is verified.

NASH EQUILIBRIA

Notation. For $x \in X$, $i \in I$ and $y_i \in X_i$, we denote by (x^i, y_i) the point in X with the same coordinates as x except the *i*-th which is replaced by y_i .

Nash (1950): For each $i \in I$, assume: (1) X_i is a nonempty convex compact set in a TVS; (2) $u_i : X \to \mathbb{R}$ is continuous and, for each $x \in X$, $y_i \mapsto u_i(x^i, y_i)$ is quasi-concave. Then, there exists $\bar{x} \in X$ verifying: $\forall i \in I, \forall y_i \in X_i, \quad u_i(\bar{x}^i, y_i) < u_i(\bar{x}).$

Proof. Apply the competitive Fan-Browder Theorem with $\varphi_i : X \rightrightarrows X_i$ defined by $\varphi_i(x) = \{y_i \in X_i \mid u_i(x^i, y_i) > u_i(x)\}$ for each $x \in X$.

APPROXIMATION OF USC MULTI-MAP AND KAKUTANI-FAN-GLICKSBERG THEOREM

Approximation: Let X be a paracompact space, Y a LCTVS and $\varphi : X \rightrightarrows Y$ a USC map with compact convex values. Then, for any neighborhood \mathcal{U} of $gr(\varphi)$ in $X \times Y$, there exists a map $\varphi' : X \rightrightarrows Y$ with open graph and convex values such that $gr(\varphi) \subset gr(\varphi') \subset \mathcal{U}$.

Kakutani (1941), Ky Fan (1952), Glicksberg (1952): Let K be a nonempty convex compact set in a LCTVS and $\varphi : K \rightrightarrows K$ a USC map with nonempty compact convex values. Then, there exists $\bar{x} \in K$ such that $\varphi(\bar{x}) = \emptyset$ or $\bar{x} \in \varphi(\bar{x})$.

Proof. Suppose φ has no fixed point, that is, $gr(\varphi)$ is contained in the open set $\Delta^c = \{(x,y) \mid x \neq y\}$. So there is $\varphi' : K \rightrightarrows K$ with open fibers and convex values such that $gr(\varphi) \subset gr(\varphi') \subset \Delta^c$. Since φ' has no fixed point, by Fan-Browder Theorem there is $\bar{x} \in K$ such that $\varphi'(\bar{x}) = \emptyset$, hence also $\varphi(\bar{x}) = \emptyset$.

CONSTRAINED KAKUTANI-FAN-GLICKSBERG FIXED POINT THEOREM

Let K be a nonempty convex compact set in a LCTVS X. Assume: (1) $\varphi : K \rightrightarrows K$ is USC with nonempty compact convex values; (2) $\psi : K \rightrightarrows K$ has open fibers, convex values and no fixed point; (3) $V = \{x \in K \mid \varphi(x) \cap \psi(x) \neq \emptyset\}$ is open.

Then, there exists $\bar{x} \in \varphi(\bar{x})$ such that $\varphi(\bar{x}) \cap \psi(\bar{x}) = \emptyset$.

Let K be a nonempty convex compact set in a LCTVS X. Assume:
(1)
$$\varphi : K \rightrightarrows K$$
 is USC with nonempty compact convex values;
(2) $f : K \times K \to \mathbb{R}$ verifies

$$\begin{cases}
\forall y \in K, \ x \mapsto f(x, y) \text{ is lsc,} \\
\forall x \in K, \ y \mapsto f(x, y) \text{ is quasi-concave,} \\
\forall x \in K, \ f(x, x) \leq 0;
\end{cases}$$
(3) The set $\left\{x \in K \mid \sup_{y \in \varphi(x)} f(x, y) > 0\right\}$ is open.
Then, there exists $\overline{x} \in K$ such that
 $\left\{\begin{array}{l}
\overline{x} \in \varphi(\overline{x}), \\
\sup_{y \in \varphi(\overline{x})} f(\overline{x}, y) \leq 0.
\end{array}\right.$

Note. In case $f(x,y) = \langle Ax, x-y \rangle$ with $A : K \to X^*$, the constrained minimax inequality is called *quasi-variational inequality*.