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BASIC INTERSECTION THEOREMS

Sperner (1928): In R™ with unit vectors {e; |i € I}, let n closed
sets {A; | i € I} satisfy:

The union of the n sets contains the simplex conv{e; | i€ I} and
each set A; contains the i-face conv{e; |jc€l,j#i}.

Then all the sets have a point in common.

Knaster-Kuratowski-Mazurkiewicz (1929): In R™ with unit vectors
{e; |1 €1}, let n closed sets { A; | i € I} satisfy:

For every J C I the J-face conv{e;|j € J} is contained in the
union U{ A; | j € J }.

Then all the sets have a point in common.

Klee (1951): In a topological vector space, let n closed convex sets
satisfy:

T he union of the n sets is convex and the intersection of every n—1
of them is nonempty.

Then all the sets have a point in common.




BASIC INTERSECTION THEOREMS REVISITED

(replacing R™ with unit vectors {e; | i € I} by a TVS with an arbitrary family of
(not necessarily distinct) points {xz; |i € I})

Basic conditions implying that n sets have a point in common:

Sperner/Alexandroff-Pasynkoff (1957): In a TVS, n closed sets
{A;|i€l} withn points {x;|i€ I} such that:

The union of the n sets contains the convex hull conv{z; |i € I}
and each set A; contains the convex hull conv{x; |jel,j#1i}.

KKM/Ky Fan (1961): In a TVS, n closed sets { A; |i € [} with n
points {x; | « € I } such that:

For every J C I the convex hull conv{z;|j € J} is contained in
UlAj|ieJ}.

Klee (1951): In a TVS, n closed convex sets with:

The union of the n sets is convex and the intersection of every n—1
of them is nonempty.




COMMENTS

e Passage from the simplex version to the TVS version is direct

o KKM = Sperner = Klee

e For convex sets, all the results are equivalent:
KKM for convex sets < Sperner for convex sets < Klee

e For convex sets, proofs are easy

e For arbitrary (closed) sets, no elementary proof of KKM Theorem
IS known; original proof relies on Sperner combinatorial lemma

e All the results hold for open sets as well



APPLICATIONS OF THE CONVEX VERSIONS:
MINIMAX (IN)EQUALITIES

Ky Fan minimax inequality (1972) (special case): Let K be a
nonempty convex compact set in a TVS and let ¢ : K x K — R
such that:
(1) For each x € K, the function y — o(x,y) is quasi-concave,
(2) For each y € K, the function x — o(x,y) is quasi-convex Isc,
(3) For each x € K, p(x,z) < 0.

Then, there exists x € K such that o(x,y) <0 for all y € K, i.e

min sup ¢(x,y) < 0.

Sion minimax equality (1958): Let C and D be two nonempty con-
vex sets in TVS', one of them being compact, and let f : CxD — R
such that f(.,y) is quasi-convex Isc and f(x,.) iS quasi-concave usc.
Then:

mf sup flx,y) = Sup |nf f(x,y).
xeC ye




APPLICATIONS OF THE CONVEX VERSIONS:
VARIATIONAL INEQUALITIES

Definitions. Let X be a TVS, X*its topological dualand T : X = X*
a set-valued operator. We say that T is monotone if
V(x,x*) € gr(T), V(y,y*) € gr(T) : (y* —x*,y —x) >0
and quasi-monotone if
\VI(.CC,J?*) S gT‘(T}, ‘v’(y,y*) S g’)“(T) : <$*,y T CC> > 0= <y*7y T .SC> Z 0.

Debrunner-Flor (1964) (special case)-Minty (1967): Let K C X be
a nonempty convex compact set in a TVS and let T : X = X* be
monotone with domT C K. Then, there exists y € K such that

(x*,x —y) >0, V(x,z*) € gr(T).

Aussel-Hadjisavvas (2004): Let K C X be a nonempty convex com-
pact set in a TVS and let T : X = X* be quasi-monotone with
domT = K. Moreover, assume that T is hemicontinuous from X
into (X*,w*) with convex w*-compact values. Then, there exists
y € K et y* € Ty such that

(7,2 —7) >0, VrekK.




EQUIVALENT FORMULATIONS OF THE KKM THEOREM:
FIXED POINT AND MINIMAX

Fan (1961)-Browder (1968): Let K be a nonempty convex compact
set ina TVS and let ¢ : K = K a set-valued map verifying:

(1) For each x € K, the set ¢(x) is convex,

(2) For each y € K, the set v~1(y) is open in K.

Then, there exists * € K such that () =0 or z € ¥(Zx).

Ky Fan minimax inequality (1972): Let K be a nonempty convex
compact set in a TVS and let ¢ : K x K — R such that:
(1) For each x € K, the function y — ¢(x,y) is quasi-concave,
(2) For each y € K, the function x — o(x,y) is Isc,
(3) For each x € K, ¢(xz,x) < 0.
Then, there exists x € K such that o(x,y) <0 for all y € K, i.e

min sup o(x,y) <O0.

Brouwer (1909): Every continuous selff~map f : K — K of a
nonempty convex compact subset of R"™ possesses a fixed point.
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EQUIVALENT FORMULATIONS OF THE KKM THEOREM:
VARIATIONAL INEQUALITIES

Debrunner-Flor (1964)-Browder (1967): Let K C X be a nonempty
convex compact set in a TVS, T : X = X* be monotone with
domT C K and v : K — X* be continuous. Then, there exists

y € K such that
(u(y) +z*,z —y) >0, V(z,z*) € gr(T).

Hartman-Stampacchia (1966)-Browder (1968): Let K C X be a
nonempty convex compact set in a TVS and let T : X = X* be
monotone with domT = K and u : K — X* be continuous. More-
over, assume that T is hemicontinuous from X into (X*, w*) with
convex w*-compact values. Then, there exists y € K et y* € Ty
such that

(u(y) +y*,x—y) >0, VxeK.




EQUIVALENT FORMULATIONS OF THE KKM THEOREM:
TOPOLOGICAL KLEE-TYPE INTERSECTION THEOREM

Definition. A topological space X is said to be contractible provided
there exists a continuous map f: X x [0,1] — X such that f(1,.) is
the identity map and f(0,.) is the constant map.

Horvath-Lassonde (1997): In a TVS, let n closed convex sets such

that:
T he union of the n sets is contractible and the intersection of every

n — 1 of them is nonempty.
T hen all the sets have a point in common.

Proof of the equivalence.

Topolological Klee-type Theorem

The n-sphere is not contractible
Brouwer’s Fixed Point Theorem
KKM Theorem

Topolological Klee-type Theorem !!
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COMPETITIVE FAN-BROWDER FIXED POINT THEOREM

Notation. Let I be an arbitrary set of indices. Given a family
{X; | © € I} of topological spaces, we let X = [[;c; X; be the topo-
logical product of the spaces and m; : X — X, be the projection of

X onto X;. We simply write 7;(x) = x;.

Toussaint (1984): For each i € I, assume:
(1) X; is a nonempty convex compact set in a TVS;
(2) ¢; : X = X, has convex values and open fibers.

Then, the following alternative holds:
(A) There exist i € I and x € X such that x; € p;(x), or,
(B) There exists x € X such that, for each i € I, p;(Z) = 0.

Remark. For finite dimensional spaces X; and finite I, the first
theorem of this type is due to Gale and Mas-Colell (1975) (see also

Debreu (1950)).
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PROOF OF THE COMPETITIVE FAN-BROWDER FIXED
POINT THEOREM

Suppose (B) is not verified, that is, X = U{dom ¢; | i« € I} where
dom ¢, = {z € X | p;(x) # 0} is open. Since X is compact, there
exist a finite subset J C I and, for each 5 € J, a closed subset Al C
dom ¢, so that X = {4’ | j € J}. Consider the map ¢ : X = X
defined by

p(x) ={y e X |y; € pj(z) Vje J(x)}

where J(z) = {j € J |« € AJ} is finite and not empty. It is easily
verified that ¢ has nonempty convex values and open fibers, so
by Fan-Browder's Theorem there is x € X such that z € ¢(z), in
particular there is j € J such that z; € ¢;(z), that is, (A) is verified.
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NASH EQUILIBRIA

Notation. For z € X, i € I and y; € X;, we denote by (z*,y;) the
point in X with the same coordinates as x except the -th which is
replaced by y;.

Nash (1950): For each i € I, assume:

(1) X; is a nonempty convex compact set in a TVS;

(2) u; : X — R is continuous and, for each z € X, y; — u;(z%, y;)
IS quasi-concave.

Then, there exists x € X verifying:

Viel, Yy € X,  ui(Z,y) < ui(Z).

Proof. Apply the competitive Fan-Browder Theorem with ¢; : X =
X; defined by ¢;(z) = {y; € X; | ui(z’,y;) > u;(x)} for each z € X.
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APPROXIMATION OF USC MULTI-MAP AND
KAKUTANI-FAN-GLICKSBERG THEOREM

Approximation: Let X be a paracompact space, ¥ a LCTVS and
w: X ==Y a USC map with compact convex values. Then, for any
neighborhood U of gr(y) in X xY, there exists a map ¢ : X =Y
with open graph and convex values such that gr(¢) C gr(y¢’) C U.

Kakutani (1941), Ky Fan (1952), Glicksberg (1952): Let K be a
nonempty convex compact set in a LCTVS and ¢ : K = K a USC
map with nonempty compact convex values. Then, there exists
x € K such that o(z) =0 or x € p(Z).

Proof. Suppose ¢ has no fixed point, that is, gr(y) is contained in
the open set A¢ = {(z,y) | z # y}. So there is ¢’ : K = K with
open fibers and convex values such that gr(yp) C gr(y¢’) C AC. Since
©’ has no fixed point, by Fan-Browder Theorem there is £ € K such
that ¢'(z) = 0, hence also ¢(z) = 0. .
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CONSTRAINED KAKUTANI-FAN-GLICKSBERG FIXED POINT
THEOREM

Let K be a nonempty convex compact set in a LCTVS X. Assume:
(1) ¢ : K = K is USC with nonempty compact convex values;
(2) v : K = K has open fibers, convex values and no fixed point;
B)V={xe K|plx)ny(x)#=0D} is open.

Then, there exists T € o(Z) such that o(x) Ny (x) = 0.
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CONSTRAINED MINIMAX INEQUALITY

Let K be a nonempty convex compact set in a LCTVS X. Assume:
(1) o : K = K is USC with nonempty compact convex values;
(2) f: K x K — R verifies

Vye K, z— f(x,y) is Isc,
Vee K, y— f(x,y) is quasi-concave,
Ve e K, f(z,z)<0;

(3) Thesetx e K| sup f(x,y) >0} is open.
ycp(x)
T hen, there exists x € K such that

T € (),
sup f(z,y) <O0.
yep(x)

Note. In case f(x,y) = (Ax,z —y) with A: K — X*, the constrained
Minimax inequality is called quasi-variational inequality.
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