
2nd Summer School on Generalized Convex Analysis

NSYSU, Kaohsiung, Taiwan ROC

Lecture # 3:

Fixed points and minimax

by Marc Lassonde
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BASIC INTERSECTION THEOREMS

Sperner (1928): In Rn with unit vectors { ei | i ∈ I }, let n closed

sets {Ai | i ∈ I } satisfy:

The union of the n sets contains the simplex conv { ei | i ∈ I } and

each set Ai contains the ı̂-face conv { ej | j ∈ I, j 6= i }.
Then all the sets have a point in common.

Knaster-Kuratowski-Mazurkiewicz (1929): In Rn with unit vectors

{ ei | i ∈ I }, let n closed sets {Ai | i ∈ I } satisfy:

For every J ⊂ I the J-face conv { ej | j ∈ J } is contained in the

union
⋃
{Aj | j ∈ J }.

Then all the sets have a point in common.

Klee (1951): In a topological vector space, let n closed convex sets

satisfy:

The union of the n sets is convex and the intersection of every n−1

of them is nonempty.

Then all the sets have a point in common.
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BASIC INTERSECTION THEOREMS REVISITED

(replacing Rn with unit vectors { ei | i ∈ I } by a TVS with an arbitrary family of

(not necessarily distinct) points {xi | i ∈ I })

Basic conditions implying that n sets have a point in common:

Sperner/Alexandroff-Pasynkoff (1957): In a TVS, n closed sets

{Ai | i ∈ I } with n points {xi | i ∈ I } such that:

The union of the n sets contains the convex hull conv {xi | i ∈ I }
and each set Ai contains the convex hull conv {xj | j ∈ I, j 6= i }.

KKM/Ky Fan (1961): In a TVS, n closed sets {Ai | i ∈ I } with n

points {xi | i ∈ I } such that:

For every J ⊂ I the convex hull conv {xj | j ∈ J } is contained in⋃
{Aj | j ∈ J }.

Klee (1951): In a TVS, n closed convex sets with:

The union of the n sets is convex and the intersection of every n−1

of them is nonempty.
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COMMENTS

• Passage from the simplex version to the TVS version is direct

• KKM ⇒ Sperner ⇒ Klee

• For convex sets, all the results are equivalent:

KKM for convex sets ⇔ Sperner for convex sets ⇔ Klee

• For convex sets, proofs are easy

• For arbitrary (closed) sets, no elementary proof of KKM Theorem

is known; original proof relies on Sperner combinatorial lemma

• All the results hold for open sets as well
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APPLICATIONS OF THE CONVEX VERSIONS:

MINIMAX (IN)EQUALITIES

Ky Fan minimax inequality (1972) (special case): Let K be a

nonempty convex compact set in a TVS and let ϕ : K × K → R
such that:

(1) For each x ∈ K, the function y 7→ ϕ(x, y) is quasi-concave,

(2) For each y ∈ K, the function x 7→ ϕ(x, y) is quasi-convex lsc,

(3) For each x ∈ K, ϕ(x, x) ≤ 0.

Then, there exists x̄ ∈ K such that ϕ(x̄, y) ≤ 0 for all y ∈ K, i.e.,

min
x∈K

sup
y∈K

ϕ(x, y) ≤ 0.

Sion minimax equality (1958): Let C and D be two nonempty con-

vex sets in TVS’, one of them being compact, and let f : C×D → R
such that f(., y) is quasi-convex lsc and f(x, .) is quasi-concave usc.

Then:

inf
x∈C

sup
y∈D

f(x, y) = sup
y∈D

inf
x∈C

f(x, y).
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APPLICATIONS OF THE CONVEX VERSIONS:
VARIATIONAL INEQUALITIES

Definitions. Let X be a TVS, X∗ its topological dual and T : X ⇒ X∗

a set-valued operator. We say that T is monotone if
∀(x, x∗) ∈ gr(T ), ∀(y, y∗) ∈ gr(T ) : 〈y∗ − x∗, y − x〉 ≥ 0

and quasi-monotone if
∀(x, x∗) ∈ gr(T ), ∀(y, y∗) ∈ gr(T ) : 〈x∗, y − x〉 > 0 ⇒ 〈y∗, y − x〉 ≥ 0.

Debrunner-Flor (1964) (special case)-Minty (1967): Let K ⊂ X be

a nonempty convex compact set in a TVS and let T : X ⇒ X∗ be

monotone with dom T ⊂ K. Then, there exists ȳ ∈ K such that

〈x∗, x− ȳ〉 ≥ 0, ∀(x, x∗) ∈ gr(T ).

Aussel-Hadjisavvas (2004): Let K ⊂ X be a nonempty convex com-

pact set in a TVS and let T : X ⇒ X∗ be quasi-monotone with

dom T = K. Moreover, assume that T is hemicontinuous from X

into (X∗, w∗) with convex w∗-compact values. Then, there exists

ȳ ∈ K et ȳ∗ ∈ T ȳ such that

〈ȳ∗, x− ȳ〉 ≥ 0, ∀x ∈ K .
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EQUIVALENT FORMULATIONS OF THE KKM THEOREM:
FIXED POINT AND MINIMAX

Fan (1961)-Browder (1968): Let K be a nonempty convex compact

set in a TVS and let ψ : K ⇒ K a set-valued map verifying:

(1) For each x ∈ K, the set ψ(x) is convex,

(2) For each y ∈ K, the set ψ−1(y) is open in K.

Then, there exists x̄ ∈ K such that ψ(x̄) = ∅ or x̄ ∈ ψ(x̄).

Ky Fan minimax inequality (1972): Let K be a nonempty convex

compact set in a TVS and let ϕ : K ×K → R such that:

(1) For each x ∈ K, the function y 7→ ϕ(x, y) is quasi-concave,

(2) For each y ∈ K, the function x 7→ ϕ(x, y) is lsc,

(3) For each x ∈ K, ϕ(x, x) ≤ 0.

Then, there exists x̄ ∈ K such that ϕ(x̄, y) ≤ 0 for all y ∈ K, i.e.,

min
x∈K

sup
y∈K

ϕ(x, y) ≤ 0.

Brouwer (1909): Every continuous self-map f : K → K of a

nonempty convex compact subset of Rn possesses a fixed point.
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EQUIVALENT FORMULATIONS OF THE KKM THEOREM:

VARIATIONAL INEQUALITIES

Debrunner-Flor (1964)-Browder (1967): Let K ⊂ X be a nonempty

convex compact set in a TVS, T : X ⇒ X∗ be monotone with

dom T ⊂ K and u : K → X∗ be continuous. Then, there exists

ȳ ∈ K such that

〈u(ȳ) + x∗, x− ȳ〉 ≥ 0, ∀(x, x∗) ∈ gr(T ).

Hartman-Stampacchia (1966)-Browder (1968): Let K ⊂ X be a

nonempty convex compact set in a TVS and let T : X ⇒ X∗ be

monotone with dom T = K and u : K → X∗ be continuous. More-

over, assume that T is hemicontinuous from X into (X∗, w∗) with

convex w∗-compact values. Then, there exists ȳ ∈ K et ȳ∗ ∈ T ȳ

such that

〈u(ȳ) + ȳ∗, x− ȳ〉 ≥ 0, ∀x ∈ K .
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EQUIVALENT FORMULATIONS OF THE KKM THEOREM:

TOPOLOGICAL KLEE-TYPE INTERSECTION THEOREM

Definition. A topological space X is said to be contractible provided

there exists a continuous map f : X × [0,1] → X such that f(1, .) is

the identity map and f(0, .) is the constant map.

Horvath-Lassonde (1997): In a TVS, let n closed convex sets such

that:

The union of the n sets is contractible and the intersection of every

n− 1 of them is nonempty.

Then all the sets have a point in common.

Proof of the equivalence.

Topolological Klee-type Theorem
⇒ The n-sphere is not contractible
⇒ Brouwer’s Fixed Point Theorem
⇒ KKM Theorem
⇒ Topolological Klee-type Theorem !!
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COMPETITIVE FAN-BROWDER FIXED POINT THEOREM

Notation. Let I be an arbitrary set of indices. Given a family

{Xi | i ∈ I} of topological spaces, we let X =
∏
i∈I Xi be the topo-

logical product of the spaces and πi : X → Xi be the projection of

X onto Xi. We simply write πi(x) = xi.

Toussaint (1984): For each i ∈ I, assume:

(1) Xi is a nonempty convex compact set in a TVS;

(2) ϕi : X ⇒ Xi has convex values and open fibers.

Then, the following alternative holds:

(A) There exist i ∈ I and x̄ ∈ X such that x̄i ∈ ϕi(x̄), or,

(B) There exists x̄ ∈ X such that, for each i ∈ I, ϕi(x̄) = ∅.

Remark. For finite dimensional spaces Xi and finite I, the first

theorem of this type is due to Gale and Mas-Colell (1975) (see also

Debreu (1950)).
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PROOF OF THE COMPETITIVE FAN-BROWDER FIXED

POINT THEOREM

Suppose (B) is not verified, that is, X =
⋃
{dom ϕi | i ∈ I} where

dom ϕi = {x ∈ X | ϕi(x) 6= ∅} is open. Since X is compact, there

exist a finite subset J ⊂ I and, for each j ∈ J, a closed subset Aj ⊂
dom ϕj so that X =

⋃
{Aj | j ∈ J}. Consider the map ϕ : X ⇒ X

defined by

ϕ(x) = {y ∈ X | yj ∈ ϕj(x) ∀ j ∈ J(x)},

where J(x) = {j ∈ J | x ∈ Aj} is finite and not empty. It is easily

verified that ϕ has nonempty convex values and open fibers, so

by Fan-Browder’s Theorem there is x̄ ∈ X such that x̄ ∈ ϕ(x̄), in

particular there is j ∈ J such that x̄j ∈ ϕj(x̄), that is, (A) is verified.
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NASH EQUILIBRIA

Notation. For x ∈ X, i ∈ I and yi ∈ Xi, we denote by (xi, yi) the

point in X with the same coordinates as x except the i-th which is

replaced by yi.

Nash (1950): For each i ∈ I, assume:

(1) Xi is a nonempty convex compact set in a TVS;

(2) ui : X → R is continuous and, for each x ∈ X, yi 7→ ui(x
i, yi)

is quasi-concave.

Then, there exists x̄ ∈ X verifying:

∀i ∈ I, ∀yi ∈ Xi, ui(x̄
i, yi) ≤ ui(x̄).

Proof. Apply the competitive Fan-Browder Theorem with ϕi : X ⇒
Xi defined by ϕi(x) = {yi ∈ Xi | ui(xi, yi) > ui(x)} for each x ∈ X.
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APPROXIMATION OF USC MULTI-MAP AND

KAKUTANI-FAN-GLICKSBERG THEOREM

Approximation: Let X be a paracompact space, Y a LCTVS and

ϕ : X ⇒ Y a USC map with compact convex values. Then, for any

neighborhood U of gr(ϕ) in X × Y , there exists a map ϕ′ : X ⇒ Y

with open graph and convex values such that gr(ϕ) ⊂ gr(ϕ′) ⊂ U.

Kakutani (1941), Ky Fan (1952), Glicksberg (1952): Let K be a

nonempty convex compact set in a LCTVS and ϕ : K ⇒ K a USC

map with nonempty compact convex values. Then, there exists

x̄ ∈ K such that ϕ(x̄) = ∅ or x̄ ∈ ϕ(x̄).

Proof. Suppose ϕ has no fixed point, that is, gr(ϕ) is contained in

the open set ∆c = {(x, y) | x 6= y}. So there is ϕ′ : K ⇒ K with

open fibers and convex values such that gr(ϕ) ⊂ gr(ϕ′) ⊂ ∆c. Since

ϕ′ has no fixed point, by Fan-Browder Theorem there is x̄ ∈ K such

that ϕ′(x̄) = ∅, hence also ϕ(x̄) = ∅.
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CONSTRAINED KAKUTANI-FAN-GLICKSBERG FIXED POINT

THEOREM

Let K be a nonempty convex compact set in a LCTVS X. Assume:

(1) ϕ : K ⇒ K is USC with nonempty compact convex values;

(2) ψ : K ⇒ K has open fibers, convex values and no fixed point;

(3) V = {x ∈ K | ϕ(x) ∩ ψ(x) 6= ∅} is open.

Then, there exists x̄ ∈ ϕ(x̄) such that ϕ(x̄) ∩ ψ(x̄) = ∅.
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CONSTRAINED MINIMAX INEQUALITY

Let K be a nonempty convex compact set in a LCTVS X. Assume:

(1) ϕ : K ⇒ K is USC with nonempty compact convex values;

(2) f : K ×K → R verifies
∀ y ∈ K, x 7→ f(x, y) is lsc,
∀x ∈ K, y 7→ f(x, y) is quasi-concave,
∀x ∈ K, f(x, x) ≤ 0;

(3) The set

x ∈ K | sup
y∈ϕ(x)

f(x, y) > 0

 is open.

Then, there exists x̄ ∈ K such that x̄ ∈ ϕ(x̄),
sup

y∈ϕ(x̄)
f(x̄, y) ≤ 0 .

Note. In case f(x, y) = 〈Ax, x− y〉 with A : K → X∗, the constrained

minimax inequality is called quasi-variational inequality.
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