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Brief history of convex analysis

♣ Ancient times : triangles, circles, polygons
♣ Beginning of the 20th century (Brunn, Minkowski,

Hermite, Hadamard, Farkas, Steinitz, Jensen ...)
. Convex bodies
. Convex sets
. Linear inequalities
. Convex functions

♣ From the middle of the 20th century (Choquet, Klein,
Milman, Hahn-Banach, Fenchel, Moreau,
Rockafellar...) :
. Convex sets, separation
. Convex functions (continuity, differentiability,

conjugate, subdifferential)
. Convex inequalities, duality etc.
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Brief history of convex analysis

Attention : the same terminology in complex analysis

A function f of a complex variable is called convex if

Re
(zf ′(z))′

f ′(z)
> 0

(the image of a convex domain is convex).
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From convexity to generalized
convexity

Convex sets :

A ⊆ Rn is said to be convex⇔ [a, b] ⊆ A ∀a, b ∈ A.

What happens if [a, b] is substituted by an arc from a
family of functions ?
• Two segments with a common fixed end-point =⇒

star-shaped sets
• Geodesic arcs =⇒ convex geodesic sets.
• Arcs parallel to coordinate axes =⇒ orthogonal

convex sets.
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From convexity to generalized
convexity

Convex functions :

f : A ⊆→ R is said to be convex⇔

either of the following conditions holds
• Epif = {(x, t) : x ∈ A, t ≥ f(x)} is convex
• f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)
• f(y)− f(x) ≥ f ′(x)(y − x) when f is differentiable.
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From convexity to generalized
convexity

What happens if
• Epif is not convex, but a generalized convex set ? (not

so much studied except perhaps for IAR functions).
• Epif is not convex but Lev(f) are convex ? =⇒

quasi-convex functions.
• f ′(x)(y − x) is substituted by a function of (x, y) ?

=⇒ invex functions.
• f(tx+ (1− ty)) is substituted by f(y)− tα for some
α > 0 and for all t sufficiently small (f(y) ≥ f(x))
=⇒ pseudo-convex functions.
• f(tx+ (1− t)y) is substituted by the minimum of f

over the integers whose coordinates are within unit
distance from tx+ (1− t)y =⇒ discretely convex
functions. Summer School, Kaohsiung, July 2008 – p.7/43



From convexity to generalized
convexity

Why do we need generalized convex functions ?
• Economics (analyse of microstructure, dislocation

structure, demand functions, Cob-Douglas functions,
equilibrium, noncooperative game ....)
• Mechanics (frictionless contact)
• Optimization (fractional programming, stochastic

programming, multiobjective programming ...)
• Other areas of applied mathematics (statistics,

differential equations, Hamilton-Jacobi equations,
viscosity ...)
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From convexity to generalized
convexity

Who have initialized the study of generalized convex
functions ? And recently ?
• Von Neumann in 1929 with minimax theorem

(according to Guerraggio and Molho)
• De Finetti in 1949.
• Arrow, Avriel, Crouzeix, Demianov, Enthoven,

Ferland, Karamardian, Mangasarian, Martos, Rubinov,
Schaible, Ziemba, Zang ....in the sixties and seventies
of the last century.
• WGGC members and others.
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Quasiconvex functions

A function f : Rn → R is said to be quasiconvex if either
of the following equivalent conditions holds
(1) Sublevel sets of f are convex
(2) f(tx+ (1− t)y) ≤ max{f(x), f(y))}
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Quasiconvex functions

A function f : Rn → R is said to be quasiconvex if either
of the following equivalent conditions holds
(1) Sublevel sets of f are convex
(2) f(tx+ (1− t)y) ≤ max{f(x), f(y))}
Other variants
• strictly quasiconvex functions (semi-strictly

quasiconvex functions)

(2) is strict when x 6= y

• semi-strictly quasiconvex functions (explicitly
quasiconvex functions)

(2) is strict when f(x) 6= f(y)
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Quasiconvex functions

Characterizations via derivatives (Arrow-Enthoven,
1961)

f is QC⇐⇒ ∇f is QM

QM : max{〈∇f(x), x− y〉, 〈∇f(y), y − x〉} ≥ 0

Equivalent conditions
(1) f(y) < f(x) implies 〈∇f(x), x− y〉} ≥ 0
(2) f(y) ≤ f(x) implies 〈∇f(x), x− y〉} ≥ 0
(3) f(y) < f(x) and 〈∇f(x), x− y〉 = 0 imply
f(x) ≤ f(x+ t(x− y)),∀t > 0.
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Quasiconvex functions

Characterizations via directional derivatives
(Komlosi, Luc ....)

f is QC⇐⇒ f ′(.; .) is QM

Here : f ′(x;u) is the directional derivative of f at x
in direction u.
f ′ may be
◦ Dini lower, upper directional derivatives for f
lower semi-continuous on segments
◦ Clarke-Rockafellar’s directional derivatives for f
lower semicontinuous.

QM : max{f ′(x, x− y), f ′(y, y − x)} ≥ 0
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Quasiconvex functions

Characterizations via generalized derivatives
(Elleia-Hassouni, Luc, Penot-Quang,
Aussel-Lassonde...)

f is QC⇐⇒ ∂f(.; .) is QM

Here : ∂f is a subdifferential of f .
∂ may be
◦ Clarke’s subdifferential for lower semi-continuous
functions ;
◦ Pseudo-Jacobian for continuous functions.
QM : max{〈x∗, x− y〉, 〈y∗, y − x〉} ≥ 0
for x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y)
PROOF. Mean-value theorems.
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Quasiconvex functions

Characterizations via normal cones(Aussel, Crouzeix,
Danidiilis, Hadjisavvas, Lassonde ...)
(f is continuous, or the space admits a G
ateaux
smooth renorm)

f is QC⇐⇒ Nf is QM.

Here Nf is Clarke’s normal cone to sublevel sets of f
QM : max{〈x∗, x− y〉, 〈y∗, y − x〉} ≥ 0
for x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y)
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Quasiconvex functions

Characterizations via normal cones(Aussel, Crouzeix,
Daniliidis, Hadjisavvas, Lassonde ...)
Clarke’s tangent cone

T ◦(C;x) = lim inf
y∈C→x;t↓0

C − y
t

i.e. v ∈ T ◦ (C;x) iff ∀tn ↓ 0, yn ∈ C → x there are
xn ∈ C such that v = lim(xn − yn)/tn.
Clarke’s normal cone

N ◦(C;x) = {x∗ : 〈x∗, v〉 ≤ 0,∀v ∈ T ◦ (C;x)}.
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Quasiconvex functions

Quasiconvex subdifferential(Greenberg-Pierskalla,
Crouzeix, Daniilidis, Hadjisavvas, Martinez-Legaz,
Sach...)

∂qcvf(x) = ∂f(x) ∩N(f ;x)

Here
N(f ;x) is the convex normal cone to the sublevel
set of f at x, i.e. x∗ ∈ N(f ;x) iff 〈x∗, y− x〉 ≤ 0,∀y
with f(y) ≤ f(x).
∂f(x) is any subdifferential satisfying the
mean-value inequality :
f(y) > f(x) =⇒ ∃xn → z ∈ [x, y), x∗n ∈ ∂f(xn)
such that 〈x∗n, z + t(y − z)− xn〉 > 0∀t.
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Quasiconvex functions

Quasiconvex subdifferential(Greenberg-Pierskalla,
Crouzeix, Daniilidis, Hadjisavvas, Martinez-Legaz,
Sach...)

∂qcvf(x) = ∂f(x) ∩N(f ;x)

Utility of quasiconvex subdifferential
THEOREM : If f is lsc, radially continuous, then the
following conditions are equivalent
(i) f is quasi-convex
(ii) ∂qcvf = ∂f
(iii) ∂qcvf satisfies the mean-value inequality
(iv) The domain of ∂qvc is dense in the domain of f .
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Quasiconvex functions

Quasiconvex conjugate
(Martinez-Legaz, Penot, Rubinov-Dutta, Singer,
Volle ...)

c-conjugate for f : Rn → R :

f c(x∗, t) = − inf{f(x) : 〈x, x∗〉 ≥ t}

c′-conjugate for g : Rn × R→ R :

gc
′
(x) = − inf{g(x∗, t) : 〈x, x∗〉 ≥ t}
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Quasiconvex functions

Quasiconvex conjugate
(Martinez-Legaz, Penot, Rubinov-Dutta, Singer,
Volle ...)

Here "c" is referred to a special coupling function
from an abstract scheme of level set conjugation :

c(x, x∗, t) =

{

0 if 〈x, x∗〉 ≥ t

−∞ otherwise
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Quasiconvex functions

Quasiconvex conjugate
(Martinez-Legaz, Penot, Rubinov-Dutta, Singer,
Volle ...)

THEOREM : f is evenly quasiconvex ⇐⇒ f = f cc
′
.

In particular, every evenly quasiconvex function is
the pointwise supremum of a collection of evenly
quasiaffine functions (quasiconvex and quasiconcave)
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Quasiconvex functions

Quasiconvex conjugate
(Martinez-Legaz, Penot, Rubinov-Dutta, Singer,
Volle ...)

f is evenly quasiconvex if its sublevel sets are
intersections of open halfspaces.
Lower semicontinuous quasiconvex functions and
upper semicontinuous quasiconvex functions are
evenly quasiconvex.
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Pseudoconvex functions

A differentiable function f : Rn → R is said to be
pseudoconvex if either of the following equivalent
conditions holds
(1) f(y) < f(x) =⇒ 〈∇f(x), y − x〉 < 0
(2) 〈∇f(x), y − x〉 > 0 =⇒ 〈∇f(y), y − x〉 > 0
(3) 〈∇f(x), y − x〉 ≥ 0 =⇒ 〈∇f(y), y − x〉 ≥ 0
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Pseudoconvex functions

Other variants
• strictly pseudoconvex functions
x 6= y and f(y) ≤ f(x) =⇒ 〈∇f(x), y − x〉 < 0
• nondifferentiable pseudoconvex functions
f(y) > f(x) =⇒ ∃β(x, y) > 0, δ(x, y) ∈ (0, 1] such
that

f(y)− f(tx+ (1− t)y) ≥ tβ(x, y)∀t ∈ (0, δ(x, y))

• nondifferentiable strictly pseudoconvex functions
Inequality holds whenever f(y) ≥ f(x), x 6= y.
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Pseudoconvex functions

THEOREM : f is a differentiable function.
• If f is pseudoconvex, then f is quasiconvex and

attains a global minimum at every x with∇f(x) = 0.
• If f is quasiconvex and attains a local minimum at any
x with∇f(x) = 0, then f is pseudoconvex.
• f is pseudoconvex⇐⇒ ∇f is PM (pseudomonotone).

Here∇f is PM if

max{〈∇f(x), x− y〉, 〈∇f(x), x− y〉} > 0

when both of two terms are nonzero.
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Pseudoconvex functions

Nondifferentiable pseudoconvex functions
THEOREM :
f is pseudoconvex⇐⇒ f+(.; .) is PM.

Here
• f+(x;u) is Dini upper directional derivative of f at x

in direction u ;
• f+ is PM if

max{f+(x;x− y), f+(y; y − x)} > 0

provided both of the two terms are nonzero.
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Pseudoconvex functions

Nondifferentiable pseudoconvex functions
THEOREM :
♣f is pseudoconvex =⇒
(1) ∂f is QM
(2) f(x) < f(y)⇒ ∃y∗ ∈ ∂f(y) : 〈y∗, x− y〉 < 0.
♣f is pseudoconvex⇐= ∂f is PM.

Here
• ∂f may be Clarke’s subdifferential when f is locally

Lipschitz and Pseudo-Jacobian when f is continuous.
• ∂f is PM if max{〈x∗, x− y〉, 〈y∗, y − x〉} > 0

with x∗ ∈ ∂f(x), y∗ ∈ ∂f(y) provided both of the two
terms are nonzero.
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Pseudoconvex functions

Nondifferentiable pseudoconvex functions (lower
semicontinuous and continuous on segments)
REMARK :
If one modifies the definition of pseudoconvexity by
using a given subdifferential :
f is pseudoconvex if ∃x∗ ∈ ∂f(x) : 〈x∗, y − x〉 ≥ 0 =⇒
f(z) ≤ f(y)∀z ∈ [x, y], then

f is pseudoconvex⇐⇒ ∂f is PM

where ∂f is a subdifferential satisfying a mean value
inequality.
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Invex functions

f is differentiable (Hanson, Craven)
DEFINITION : f is invex if there is a vector function η
of two variables such that

f(x)− f(y) ≥ 〈∇f(y), η(x, y)〉

THEOREM :
f is invex⇐⇒ every x with∇f(x) = 0 is a global
minimum point.
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Extensions of GC functions

Vector quasiconvex functions :
DEFINITION : f : Rn → Rm is QC if its sublevel sets
are convex.
Other variants
• QC : f(x) ≤ f(y) =⇒ f(tx+ (1− t)y) ≤ f(y)

(Cambini, Martein ...)
• Semistrictly quasiconvex functions, strictly

quasiconvex functions.
• Set-valued quasiconvex maps.
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Extensions of GC functions

Vector quasiconvex functions :
THEOREM : f is QC⇐⇒ λ ◦ f is QC for all extreme
directions λ of the ordering cone.

(Luc : polyhedral cone
Benoist-Borwein-Popovici : convex cone)
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Extensions of GC functions

REMARK :
• Similar extensions for pseudoconvex, invex functions.
• Several applications in vector optimization (existence,

optimality conditions, local-global property,
topological properties of solution sets ...),
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Generalized monotone operators

Monotone operators :
DEFINITION : F : E → E ′ is monotone if

〈F (x), x− y〉+ 〈F (y), y − x〉 ≤ 0

EXAMPLE : Linear positive semi-definite operators
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Generalized monotone operators

Monotone operators :
DEFINITION : F : E → E ′ is monotone if

〈F (x), x− y〉+ 〈F (y), y − x〉 ≤ 0

IMPORTANT FEATURES :
♦ (Kachurovskii) The derivative of a convex function is

monotone.
♦ Equation Ax = b has a solution in a separable,

reflexive B-space for every b if
• A is monotone
• A is continuous on finite dimensional subspaces
• A is coercive : 〈Ax, x〉/‖x‖ → ∞ as ‖x‖ → ∞.
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Generalized monotone operators

Generalization of monotone operators :
♦ The first feature of monotone operators

⇓
Generalized monotonicity of the derivative of
generalized convex functions
• quasimonotone/ semistrictly quasimonotone/ strictly

quasimonotone operators
• pseudomonotone/ strictly pseudomonotone operators
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Generalized monotone operators

Quasimonotone operator

max{〈F (x), x− y〉, 〈F (y), y − x〉 ≥ 0

♦ f is QC⇐⇒ ∇f is QM/ CQM
(cyclically quasimonotone :
min{〈F (xi), xi+1 − xi〉 : i = 1, ..., n;xn+1 = x1} ≤ 0)

Summer School, Kaohsiung, July 2008 – p.36/43



Generalized monotone operators

Characterization of QM operators

max{〈F (x), x− y〉, 〈F (y), y − x〉 ≥ 0

♦ A differentiable operator F is QM⇐⇒
(i) 〈F (x), u〉 = 0⇒ 〈F ′(x)u, u〉 ≥ 0
(ii) F (x) = 0, F ′(x)u = 0⇒ ∀s > 0,∃t ∈ (0, s] :
〈F (x+ tu), u〉 ≥ 0.

PROOF. Differential equation + implicit function
theorem (Crouzeix-Ferland ; Luc-Schaible)

COROLLARY : Second-order characterizations of
quasiconvex functions ( Hessian matrix of f instead of
F ′.)
INTERESTING CASE : f is a quadratic function
(Ferland, Martos, Schaible) Summer School, Kaohsiung, July 2008 – p.37/43



Generalized monotone operators

Generalization of monotone operators :
♦ The second feature of monotone operators

⇓
Generalized monotonicity for solving inequalities and
inclusions
• proper quasimonotone/ pseudomonotone operators
• Brezis’ pseudomonotone/ monotone-like operators
• KKM-operators
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Generalized monotone operators

• properly quasimonotone :

x ∈ conv{x1, ..., xk} =⇒ ∃i : 〈F (xi), x− xi〉 ≥ 0

Other name : diagonally quasiconvex function

APPLICATIONS : Variational inequalities, equilibrium

(Aussel, Flores-Bazan, Hadjisavvas, Luc, Tan,...)
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Generalized monotone operators

• Brezis’ pseudomonotone operator :
lim supxn⇀x〈F (xn), xn − x〉 ≤ 0 =⇒
lim infxn⇀x〈F (xn), xn − y〉 ≥ 〈F (x), x− y〉∀y.

Particular cases :
1) Monotone and hemicontinuous operators are
B-pseudomonotone
2) Strongly continuous operators are B-pseudomonotone
3) Continuous operators in finite dimensional spaces are
B-pseudomonotone.

APPLICATIONS : Variational inequalities (Aubin, Bre-

zis, Browder, Minty, Chowdhury, Tan, Yao ....)
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Generalized monotone operators

• KKM-relation : R ⊆ E × E is KKM if

a ∈ conv{a1, ..., ak} =⇒ ∃i : (a, ai) ∈ R

Particular cases :
1) Properly quasimonotone operator
2) Quasiconvex inclusions (Hai-Khanh ; Lin-Chen)
3) KKM mapping
APPLICATIONS : Variational relation problems
including quasi-variational inequalities, inclusions,
generalized quasi-equilibrium problems ... (Anh, Ansari,
Chadli, Li, Lin, Chen, Huang, Hai, Khanh, Tan, Sach...)

Summer School, Kaohsiung, July 2008 – p.41/43



References
1. Avriel M., Diewert W.E., Schaible S. and Zang I., Generalized

Concavity, Plenum Publishing Corp., New York, 1988.
2. Hadjisavvas N., Komlosi S. and Schaible S. (Eds.), Handbook of

generalized convexity aand generalized monotonicity, Springer,
2005
3. Proceedings of GCM1-GCM8

Summer School, Kaohsiung, July 2008 – p.42/43



References
? GCM1 by Schaible and Ziemba ( Acad. Press, 1981.)
? GCM2 by Sing and Dass ( Dehli, 1989. )
? GCM3 by Cambini, Castagnoli, Martein, Mazzoleni, Schaible (

Springer, 1990.)
? GCM4 by Komlosi, Rapscak, Schaible (Springer 1994.)
? GCM5 by Crouzeix, Martinez-Legaz, Volle (Kluwer Acad. Publ.,

1997.)
? GCM6 by Hadjisavvas, Martinez-Legas, Penot ( Springer 2001.)
? GCM7 by Eberhard, Hadjisavvas, Luc (Springer 2005.)
? GCM8 by Konnov, Luc, Rubinov (Springer 2006.)

Summer School, Kaohsiung, July 2008 – p.43/43


	Outline
	Brief history of convex analysis
	Brief history of convex analysis
	From convexity to generalized convexity
	From convexity to generalized convexity
	From convexity to generalized convexity
	From convexity to generalized convexity
	From convexity to generalized convexity
	Quasiconvex functions
	Quasiconvex functions
	Quasiconvex functions
	Quasiconvex functions
	Quasiconvex functions
	Quasiconvex functions
	Quasiconvex functions
	Quasiconvex functions
	Quasiconvex functions
	Quasiconvex functions
	Quasiconvex functions
	Quasiconvex functions
	Quasiconvex functions
	Pseudoconvex functions
	Pseudoconvex functions
	Pseudoconvex functions
	Pseudoconvex functions
	Pseudoconvex functions
	Pseudoconvex functions
	Invex functions
	Extensions of GC functions
	Extensions of GC functions
	Extensions of GC functions
	Generalized monotone operators
	Generalized monotone operators
	Generalized monotone operators
	Generalized monotone operators
	Generalized monotone operators
	Generalized monotone operators
	Generalized monotone operators
	Generalized monotone operators
	Generalized monotone operators
	References
	References

