An Overview of Generalized Convexity

Dinh The Luc
University of Avignon, Avignon

Outline

\triangleright Brief history of convex analysis
\triangleright From convexity to generalized convexity
\triangleright Quasiconvex functions
\triangleright Pseudoconvex functions
\triangleright Invex functions
\triangleright Extensions of GC functions
\triangleright Generalized monotone operators
\triangleright References

Brief history of convex analysis

8. Ancient times : triangles, circles, polygons
\& Beginning of the 20th century (Brunn, Minkowski, Hermite, Hadamard, Farkas, Steinitz, Jensen ...)
\triangleright Convex bodies
\triangleright Convex sets
\triangleright Linear inequalities
\triangleright Convex functions
\& From the middle of the 20th century (Choquet, Klein, Milman, Hahn-Banach, Fenchel, Moreau, Rockafellar...) :
\triangleright Convex sets, separation
\triangleright Convex functions (continuity, differentiability, conjugate, subdifferential)
\triangleright Convex inequalities, duality etc.

Brief history of convex analysis

Attention : the same terminology in complex analysis
A function f of a complex variable is called convex if

$$
\operatorname{Re} \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}>0
$$

(the image of a convex domain is convex).

Convex sets :

$A \subseteq \mathbb{R}^{n}$ is said to be convex $\Leftrightarrow[a, b] \subseteq A \forall a, b \in A$.
What happens if $[a, b]$ is substituted by an arc from a family of functions?

- Two segments with a common fixed end-point \Longrightarrow star-shaped sets
- Geodesic arcs \Longrightarrow convex geodesic sets.
- Arcs parallel to coordinate axes \Longrightarrow orthogonal convex sets.
convexiny to

Convex functions :

$f: A \subseteq \rightarrow \mathbb{R}$ is said to be convex \Leftrightarrow

either of the following conditions holds

- Epif $=\{(x, t): x \in A, t \geq f(x)\}$ is convex
- $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$
- $f(y)-f(x) \geq f^{\prime}(x)(y-x)$ when f is differentiable.

What happens if

- Epif is not convex, but a generalized convex set ? (not so much studied except perhaps for IAR functions).
- Epi f is not convex but $\operatorname{Lev}(f)$ are convex ? \Longrightarrow quasi-convex functions.
- $f^{\prime}(x)(y-x)$ is substituted by a function of (x, y) ? \Longrightarrow invex functions.
- $f(t x+(1-t y))$ is substituted by $f(y)-t \alpha$ for some $\alpha>0$ and for all t sufficiently small $(f(y) \geq f(x))$ \Longrightarrow pseudo-convex functions.
- $f(t x+(1-t) y)$ is substituted by the minimum of f over the integers whose coordinates are within unit distance from $t x+(1-t) y \Longrightarrow$ discretely convex functions.

Why do we need generalized convex functions?

- Economics (analyse of microstructure, dislocation structure, demand functions, Cob-Douglas functions, equilibrium, noncooperative game)
- Mechanics (frictionless contact)
- Optimization (fractional programming, stochastic programming, multiobjective programming ...)
- Other areas of applied mathematics (statistics, differential equations, Hamilton-Jacobi equations, viscosity ...)

Who have initialized the study of generalized convex functions? And recently?

- Von Neumann in 1929 with minimax theorem (according to Guerraggio and Molho)
- De Finetti in 1949.
- Arrow, Avriel, Crouzeix, Demianov, Enthoven, Ferland, Karamardian, Mangasarian, Martos, Rubinov, Schaible, Ziemba, Zangin the sixties and seventies of the last century.
- WGGC members and others.

Quasiconvex functions

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be quasiconvex if either of the following equivalent conditions holds
(1) Sublevel sets of f are convex
(2) $f(t x+(1-t) y) \leq \max \{f(x), f(y))\}$

Quasiconvex functions

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be quasiconvex if either of the following equivalent conditions holds
(1) Sublevel sets of f are convex
(2) $f(t x+(1-t) y) \leq \max \{f(x), f(y))\}$

Other variants

- strictly quasiconvex functions (semi-strictly quasiconvex functions)

(2) is strict when $x \neq y$

- semi-strictly quasiconvex functions (explicitly quasiconvex functions)
(2) is strict when $f(x) \neq f(y)$

Quasiconvex functions

Characterizations via derivatives (Arrow-Enthoven, 1961)

$$
f \text { is } \mathrm{QC} \Longleftrightarrow \nabla f \text { is } \mathrm{QM}
$$

QM : $\max \{\langle\nabla f(x), x-y\rangle,\langle\nabla f(y), y-x\rangle\} \geq 0$
Equivalent conditions
(1) $f(y)<f(x)$ implies $\langle\nabla f(x), x-y\rangle\} \geq 0$
(2) $f(y) \leq f(x)$ implies $\langle\nabla f(x), x-y\rangle\} \geq 0$
(3) $f(y)<f(x)$ and $\langle\nabla f(x), x-y\rangle=0$ imply
$f(x) \leq f(x+t(x-y)), \forall t>0$.

Quasiconvex functions

Characterizations via directional derivatives (Komlosi, Luc)

$$
f \text { is } \mathrm{QC} \Longleftrightarrow f^{\prime}(. ; .) \text { is } \mathrm{QM}
$$

Here : $f^{\prime}(x ; u)$ is the directional derivative of f at x in direction u.
f^{\prime} may be

- Dini lower, upper directional derivatives for f lower semi-continuous on segments
- Clarke-Rockafellar's directional derivatives for f lower semicontinuous.
$\mathrm{QM}: \max \left\{f^{\prime}(x, x-y), f^{\prime}(y, y-x)\right\} \geq 0$

Quasiconvex functions

Characterizations via generalized derivatives (Elleia-Hassouni, Luc, Penot-Quang,
Aussel-Lassonde...)

$$
f \text { is } \mathrm{QC} \Longleftrightarrow \partial f(. ; .) \text { is } \mathrm{QM}
$$

Here : ∂f is a subdifferential of f.
∂ may be

- Clarke's subdifferential for lower semi-continuous functions;
- Pseudo-Jacobian for continuous functions.

QM : $\max \left\{\left\langle x^{*}, x-y\right\rangle,\left\langle y^{*}, y-x\right\rangle\right\} \geq 0$
for $x^{*} \in \partial f(x)$ and $y^{*} \in \partial f(y)$
PROOF. Mean-value theorems.

Quasiconvex functions

Characterizations via normal cones(Aussel, Crouzeix, Danidiilis, Hadjisavvas, Lassonde ...)
(f is continuous, or the space admits a Gâteaux smooth renorm)

$$
f \text { is } \mathrm{QC} \Longleftrightarrow N_{f} \text { is } \mathrm{QM} \text {. }
$$

Here N_{f} is Clarke's normal cone to sublevel sets of f QM : $\max \left\{\left\langle x^{*}, x-y\right\rangle,\left\langle y^{*}, y-x\right\rangle\right\} \geq 0$ for $x^{*} \in \partial f(x)$ and $y^{*} \in \partial f(y)$

Quasiconvex functions

Characterizations via normal cones(Aussel, Crouzeix, Daniliidis, Hadjisavvas, Lassonde ...)
Clarke's tangent cone

$$
T^{\circ}(C ; x)=\liminf _{y \in C \rightarrow x ; \downarrow \downarrow 0} \frac{C-y}{t}
$$

i.e. $v \in T \circ(C ; x)$ iff $\forall t_{n} \downarrow 0, y_{n} \in C \rightarrow x$ there are $x_{n} \in C$ such that $v=\lim \left(x_{n}-y_{n}\right) / t_{n}$.
Clarke's normal cone

$$
N^{\circ}(C ; x)=\left\{x^{*}:\left\langle x^{*}, v\right\rangle \leq 0, \forall v \in T \circ(C ; x)\right\} .
$$

Quasiconvex functions

Quasiconvex subdifferential(Greenberg-Pierskalla, Crouzeix, Daniilidis, Hadjisavvas, Martinez-Legaz, Sach...)

$$
\partial^{q c v} f(x)=\partial f(x) \cap N(f ; x)
$$

Here

$N(f ; x)$ is the convex normal cone to the sublevel set of f at x, i.e. $x^{*} \in N(f ; x)$ iff $\left\langle x^{*}, y-x\right\rangle \leq 0, \forall y$ with $f(y) \leq f(x)$.
$\partial f(x)$ is any subdifferential satisfying the mean-value inequality :
$f(y)>f(x) \Longrightarrow \exists x_{n} \rightarrow z \in[x, y), x_{n}^{*} \in \partial f\left(x_{n}\right)$
such that $\left\langle x_{n}^{*}, z+t(y-z)-x_{n}\right\rangle>0 \forall t$.

Quasiconvex functions

Quasiconvex subdifferential(Greenberg-Pierskalla, Crouzeix, Daniilidis, Hadjisavvas, Martinez-Legaz, Sach...)

$$
\partial^{q c v} f(x)=\partial f(x) \cap N(f ; x)
$$

Utility of quasiconvex subdifferential THEOREM : If f is lsc, radially continuous, then the following conditions are equivalent
(i) f is quasi-convex
(ii) $\partial^{q c v} f=\partial f$
(iii) $\partial^{q c v} f$ satisfies the mean-value inequality
(iv) The domain of $\partial^{q v c}$ is dense in the domain of f.

Quasiconvex functions

Quasiconvex conjugate
(Martinez-Legaz, Penot, Rubinov-Dutta, Singer, Volle ...)
c-conjugate for $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$:

$$
f^{c}\left(x^{*}, t\right)=-\inf \left\{f(x):\left\langle x, x^{*}\right\rangle \geq t\right\}
$$

c^{\prime}-conjugate for $g: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \overline{\mathbb{R}}:$

$$
g^{c^{\prime}}(x)=-\inf \left\{g\left(x^{*}, t\right):\left\langle x, x^{*}\right\rangle \geq t\right\}
$$

Quasiconvex functions

Quasiconvex conjugate
(Martinez-Legaz, Penot, Rubinov-Dutta, Singer, Volle ...)

Here " c " is referred to a special coupling function from an abstract scheme of level set conjugation :

$$
c\left(x, x^{*}, t\right)= \begin{cases}0 & \text { if }\left\langle x, x^{*}\right\rangle \geq t \\ -\infty & \text { otherwise }\end{cases}
$$

Quasiconvex functions

Quasiconvex conjugate
(Martinez-Legaz, Penot, Rubinov-Dutta, Singer,
Volle ...)
THEOREM : f is evenly quasiconvex $\Longleftrightarrow f=f^{c c^{\prime}}$. In particular, every evenly quasiconvex function is the pointwise supremum of a collection of evenly quasiaffine functions (quasiconvex and quasiconcave)

Quasiconvex functions

Quasiconvex conjugate
(Martinez-Legaz, Penot, Rubinov-Dutta, Singer, Volle ...)
f is evenly quasiconvex if its sublevel sets are intersections of open halfspaces.
Lower semicontinuous quasiconvex functions and upper semicontinuous quasiconvex functions are evenly quasiconvex.

Pseudoconvex functions

A differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be pseudoconvex if either of the following equivalent conditions holds
(1) $f(y)<f(x) \Longrightarrow\langle\nabla f(x), y-x\rangle<0$
(2) $\langle\nabla f(x), y-x\rangle>0 \Longrightarrow\langle\nabla f(y), y-x\rangle>0$
(3) $\langle\nabla f(x), y-x\rangle \geq 0 \Longrightarrow\langle\nabla f(y), y-x\rangle \geq 0$

Pseudoconvex functions

Other variants

- strictly pseudoconvex functions

$$
x \neq y \text { and } f(y) \leq f(x) \Longrightarrow\langle\nabla f(x), y-x\rangle<0
$$

- nondifferentiable pseudoconvex functions
$f(y)>f(x) \Longrightarrow \exists \beta(x, y)>0, \delta(x, y) \in(0,1]$ such
that

$$
f(y)-f(t x+(1-t) y) \geq t \beta(x, y) \forall t \in(0, \delta(x, y))
$$

- nondifferentiable strictly pseudoconvex functions Inequality holds whenever $f(y) \geq f(x), x \neq y$.

Pseudoconvex functions

THEOREM : f is a differentiable function.

- If f is pseudoconvex, then f is quasiconvex and attains a global minimum at every x with $\nabla f(x)=0$.
- If f is quasiconvex and attains a local minimum at any x with $\nabla f(x)=0$, then f is pseudoconvex.
- f is pseudoconvex $\Longleftrightarrow \nabla f$ is PM (pseudomonotone).

Here ∇f is PM if

$$
\max \{\langle\nabla f(x), x-y\rangle,\langle\nabla f(x), x-y\rangle\}>0
$$

when both of two terms are nonzero.

Pseudoconvex functions

Nondifferentiable pseudoconvex functions THEOREM :
f is pseudoconvex $\Longleftrightarrow f^{+}(. ;$.$) is PM.$

Here

- $f^{+}(x ; u)$ is Dini upper directional derivative of f at x in direction u;
- f^{+}is PM if

$$
\max \left\{f^{+}(x ; x-y), f^{+}(y ; y-x)\right\}>0
$$

provided both of the two terms are nonzero.

Pseudoconvex functions

Nondifferentiable pseudoconvex functions THEOREM :
© f is pseudoconvex \Longrightarrow
(1) ∂f is QM
(2) $f(x)<f(y) \Rightarrow \exists y^{*} \in \partial f(y):\left\langle y^{*}, x-y\right\rangle<0$.

C f is pseudoconvex $\Longleftarrow \partial f$ is PM.

Here

- ∂f may be Clarke's subdifferential when f is locally Lipschitz and Pseudo-Jacobian when f is continuous.
- ∂f is PM if $\max \left\{\langle x *, x-y\rangle,\left\langle y^{*}, y-x\right\rangle\right\}>0$ with $x^{*} \in \partial f(x), y^{*} \in \partial f(y)$ provided both of the two terms are nonzero.

Pseudoconvex functions

Nondifferentiable pseudoconvex functions (lower semicontinuous and continuous on segments) REMARK :
If one modifies the definition of pseudoconvexity by using a given subdifferential :
f is pseudoconvex if $\exists x^{*} \in \partial f(x):\langle x *, y-x\rangle \geq 0 \Longrightarrow$ $f(z) \leq f(y) \forall z \in[x, y]$, then
f is pseudoconvex $\Longleftrightarrow \partial f$ is PM
where ∂f is a subdifferential satisfying a mean value inequality.

Invex functions

f is differentiable (Hanson, Craven)
DEFINITION : f is invex if there is a vector function η of two variables such that

$$
f(x)-f(y) \geq\langle\nabla f(y), \eta(x, y)\rangle
$$

THEOREM :

f is invex \Longleftrightarrow every x with $\nabla f(x)=0$ is a global minimum point.

Extensions of GC functions

Vector quasiconvex functions :
DEFINITION : $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is QC if its sublevel sets are convex.
Other variants

- QC : $f(x) \leq f(y) \Longrightarrow f(t x+(1-t) y) \leq f(y)$
(Cambini, Martein ...)
- Semistrictly quasiconvex functions, strictly quasiconvex functions.
- Set-valued quasiconvex maps.

Extensions of GC functions

Vector quasiconvex functions :
THEOREM : f is QC $\Longleftrightarrow \lambda \circ f$ is QC for all extreme directions λ of the ordering cone.
(Luc : polyhedral cone
Benoist-Borwein-Popovici : convex cone)

Extensions of GC functions

REMARK :

- Similar extensions for pseudoconvex, invex functions.
- Several applications in vector optimization (existence, optimality conditions, local-global property, topological properties of solution sets ...),

Generalized monotone operators

Monotone operators :
DEFINITION : $F: E \rightarrow E^{\prime}$ is monotone if

$$
\langle F(x), x-y\rangle+\langle F(y), y-x\rangle \leq 0
$$

EXAMPLE : Linear positive semi-definite operators

Generalized monotone operators

Monotone operators :
DEFINITION : $F: E \rightarrow E^{\prime}$ is monotone if

$$
\langle F(x), x-y\rangle+\langle F(y), y-x\rangle \leq 0
$$

IMPORTANT FEATURES :

(Kachurovskii) The derivative of a convex function is monotone.
\diamond Equation $A x=b$ has a solution in a separable, reflexive B-space for every b if

- A is monotone
- A is continuous on finite dimensional subspaces
- A is coercive : $\langle A x, x\rangle /\|x\| \rightarrow \infty$ as $\|x\| \rightarrow \infty$.

Generalized monotone operators

Generalization of monotone operators :
\diamond The first feature of monotone operators
\Downarrow
Generalized monotonicity of the derivative of generalized convex functions

- quasimonotone/ semistrictly quasimonotone/ strictly quasimonotone operators
- pseudomonotone/ strictly pseudomonotone operators

Generalized monotone operators

Quasimonotone operator

$$
\max \{\langle F(x), x-y\rangle,\langle F(y), y-x\rangle \geq 0
$$

$\diamond f$ is $\mathrm{QC} \Longleftrightarrow \nabla f$ is $\mathrm{QM} / \mathrm{CQM}$ (cyclically quasimonotone : $\left.\min \left\{\left\langle F\left(x_{i}\right), x_{i+1}-x_{i}\right\rangle: i=1, \ldots, n ; x_{n+1}=x_{1}\right\} \leq 0\right)$

Generalized monotone operators

Characterization of QM operators

$$
\max \{\langle F(x), x-y\rangle,\langle F(y), y-x\rangle \geq 0
$$

\diamond A differentiable operator F is $\mathrm{QM} \Longleftrightarrow$
(i) $\langle F(x), u\rangle=0 \Rightarrow\left\langle F^{\prime}(x) u, u\right\rangle \geq 0$
(ii) $F(x)=0, F^{\prime}(x) u=0 \Rightarrow \forall s>0, \exists t \in(0, s]$: $\langle F(x+t u), u\rangle \geq 0$.
PROOF. Differential equation + implicit function theorem (Crouzeix-Ferland; Luc-Schaible)
COROLLARY : Second-order characterizations of quasiconvex functions (Hessian matrix of f instead of F^{\prime}.)
INTERESTING CASE : f is a quadratic function (Ferland, Martos, Schaible)

Generalized monotone operators

Generalization of monotone operators :
\diamond The second feature of monotone operators
\Downarrow
Generalized monotonicity for solving inequalities and inclusions

- proper quasimonotone/ pseudomonotone operators
- Brezis' pseudomonotone/ monotone-like operators
- KKM-operators

Generalized monotone operators

- properly quasimonotone :

$$
x \in \operatorname{conv}\left\{x_{1}, \ldots, x_{k}\right\} \Longrightarrow \exists i:\left\langle F\left(x_{i}\right), x-x_{i}\right\rangle \geq 0
$$

Other name : diagonally quasiconvex function APPLICATIONS : Variational inequalities, equilibrium (Aussel, Flores-Bazan, Hadjisavvas, Luc, Tan,...)

Generalized monotone operators

- Brezis' pseudomonotone operator :
$\lim \sup _{x_{n} \rightarrow x}\left\langle F\left(x_{n}\right), x_{n}-x\right\rangle \leq 0 \Longrightarrow$
$\liminf x_{x_{n} \rightarrow x}\left\langle F\left(x_{n}\right), x_{n}-y\right\rangle \geq\langle F(x), x-y\rangle \forall y$.
Particular cases :

1) Monotone and hemicontinuous operators are

B-pseudomonotone
2) Strongly continuous operators are B-pseudomonotone
3) Continuous operators in finite dimensional spaces are

B-pseudomonotone.
APPLICATIONS : Variational inequalities (Aubin, Brezis, Browder, Minty, Chowdhury, Tan, Yao)

Generalized monotone operators

- KKM-relation : $R \subseteq E \times E$ is KKM if

$$
a \in \operatorname{conv}\left\{a_{1}, \ldots, a_{k}\right\} \Longrightarrow \exists i:\left(a, a_{i}\right) \in R
$$

Particular cases :

1) Properly quasimonotone operator
2) Quasiconvex inclusions (Hai-Khanh ; Lin-Chen)
3) KKM mapping

APPLICATIONS : Variational relation problems including quasi-variational inequalities, inclusions, generalized quasi-equilibrium problems ... (Anh, Ansari, Chadli, Li, Lin, Chen, Huang, Hai, Khanh, Tan, Sach...)

References

1. Avriel M., Diewert W.E., Schaible S. and Zang I., Generalized Concavity, Plenum Publishing Corp., New York, 1988.
2. Hadjisavvas N., Komlosi S. and Schaible S. (Eds.), Handbook of generalized convexity aand generalized monotonicity, Springer, 2005
3. Proceedings of GCM1-GCM8

References

* GCM1 by Schaible and Ziemba (Acad. Press, 1981.)
* GCM2 by Sing and Dass (Dehli, 1989.)
* GCM3 by Cambini, Castagnoli, Martein, Mazzoleni, Schaible (Springer, 1990.)
* GCM4 by Komlosi, Rapscak, Schaible (Springer 1994.)
* GCM5 by Crouzeix, Martinez-Legaz, Volle (Kluwer Acad. Publ., 1997.)
^ GCM6 by Hadjisavvas, Martinez-Legas, Penot (Springer 2001.)
* GCM7 by Eberhard, Hadjisavvas, Luc (Springer 2005.)
^ GCM8 by Konnov, Luc, Rubinov (Springer 2006.)

