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1 Preference, Utility and Demand

n di¤erent types of commodities

Rn+ the set of commodity bundles

% total preorder on Rn+ :
x; y 2 Rn+ =) x % y or y % x

x % y; y % z =) x % z

% is continuous if
graph(%) :=

n
(x; y) 2 Rn+ � Rn+ : x % y

o
is closed.

PROPOSITION. A binary relation % on Rn+ is a contin-
uous total preorder if and only if there is a continuous
function u : Rn+ ! R such that for all x; y 2 Rn+

x % y () u (x) � u (y) :



% total preorder on Rn+

% is convex if
x % y =) (1� �)x+�y % y for all � 2 [0; 1] :

x � y () x % y; y 6% x

% is strictly convex if
x % y; x 6= y =) (1� �)x+�y � y for all � 2 (0; 1) :

u : Rn+ ! R utility re presentation of %

% is convex() u is quasiconcave

% is strictly convex() u is strictly quasiconcave

The demand correspondence: X = Xu : Rn++ � Rn+

X(p) = fx 2 Rn+ : hx; pi � 1; u (x) � u (y)

for all y 2 Rn+ such that hy; pi � 1g:



% is said to be locally nonsatiated if
no relatively open subset ofRn+ has a%-maximal element.

PROPOSITION.
(1) If % is locally nonsatiated then,
for every p 2 Rn++ and x 2 X(p); hx; pi = 1:

(2) If % is convex then X is convex-valued and satis�es
GARP:
if pi 2 Rn++; xi 2 X(pi) (i = 1; :::; k) then

min
i=1;:::;k�1

D
xi � xi+1; pi

E
� 0 =)

D
xk � x1; pk

E
� 0.

(3) If u is u.s.c. and strictly quasiconcave then X is
single-valued and satis�es SARP:
if pi 2 Rn++; xi 2 X(pi) (i = 1; :::; k) then

min
i=1;:::;k�1

D
xi � xi+1; pi

E
� 0 =)

D
xk � x1; pk

E
< 0.



2 Duality in Consumer Theory

u : Rn+ ! R utility function

p 2 Rn+ price vector

M > 0 income

(P) maximize u(x)
subject to hx; pi �M

The indirect utility function v : Rn+ ! R :

v(p) = sup fu(x) : hx; pi � 1g

S�(v) =
\

x:u(x)>�

n
p 2 Rn+ : hx; pi > 1

o
(� 2 R)



THEOREM. Let v : Rn+ ! R: There exists a utility
function u : Rn+ ! R having v as its associated indirect
utility function if and only if v is nonincreasing, evenly
quasiconvex and satis�es

v(p) � lim
�!1�

v(�p) (p 2 bd Rn+);

v denoting the l.s.c. hull of v:

In this case one can take u nondecreasing, evenly quasi-
concave and satisfying

u(x) � lim
�!1�

u(�x) (x 2 bd Rn+): (1)

Under these conditions u is unique, namely, u is the
pointwise largest utility function inducing v; furthermore,
it satis�es

u(x) = inf fv(p) : hx; pi � 1g (x 2 Rn+): (2)



COROLLARY. For every v : Rn+ ! R; the function
v0 : Rn+ ! R de�ned by

v0(p) = sup fu(x) : hx; pi � 1g ;

with u given by (2), is the pointwise largest nonincreasing
evenly quasiconvex minorant of v that satis�es

v0(p) � lim
�!1�

v0(�p) (p 2 bd Rn+): (3)

THEOREM. Let u : Rn+ ! R: There exists a function
v : Rn+ ! R such that (2) holds if and only if u is
nondecreasing, evenly quasiconcave and satis�es (1).

In this case one can take v nonincreasing, evenly
quasiconvex and satisfying (3). Under these conditions
v is unique, namely, v is the pointwise smallest function
such that (2) holds; furthermore, it is the indirect utility
function associated with u.



COROLLARY. For every u : Rn+ ! R; the function
u0 : Rn+ ! R de�ned by

u0(x) = inf fv(p) : hx; pi � 1g ;

v being the indirect utility function associated with u; is
the pointwise smallest nondecreasing evenly quasiconcave
majorant of u that satis�es

u0(x) � lim
�!1�

u0(�x) (x 2 bd Rn+):

THEOREM. A nondecreasing evenly quasiconcave func-
tion u : Rn+ ! R satisfying (1) is �nite-valued if and only
if its associated indirect utility function v : Rn+ ! R is
bounded from below and �nite-valued on the interior of
Rn+:

THEOREM. The indirect utility function v : Rn+ ! R
induced by a nondecreasing evenly quasiconcave function
u : Rn+ ! R satisfying (1) is �nite-valued if and only if
u is bounded from above and �nite-valued on the interior
of Rn+:



COROLLARY. Let u : Rn+ ! R be a nondecreasing
evenly quasiconcave function satisfying (1) and let v :
Rn+ ! R be its associated indirect utility function. The
following statements are equivalent:

(i) u and v are �nite-valued.

(ii) u is bounded.

(iii) v is bounded.

u : Rn+ ! R utility function

The expenditure function: eu : Rn+�R! R+[f+1g

eu(p; �) = inf fhx; pi : u(x) � �g
�
(p; �) 2 Rn+ � R

�
:



THEOREM. A function e : Rn+ � R ! R+ [ f+1g
is the expenditure function eu for some utility function
u : Rn+ ! R if and only if the following conditions hold:

(i) For each � 2 R; either e(�; �) is �nite-valued, con-
cave, linearly homogeneous and u.s.c., or it is identically
equal to +1:

(ii) For each p 2 Rn+; e(p; �) is nondecreasing.

(iii)
S
�2R @e(�; �)(0) = Rn+; with @e(�; �)(0) denoting

the superdi¤erential of the concave function e(�; �) at
the origin, i.e.

@e(�; �)(0) =
n
x 2 Rn+ : hx; pi � e(p; �) 8 p 2 Rn+

o
:



THEOREM. The mapping u 7�! eu is a bijection from
the set of u.s.c. nondecreasing quasiconcave functions
u : Rn+ ! R onto the set of functions
e : Rn+ � R! R+ [ f+1g that satisfy (i)-(iii),

(iv)
T
�2R @e(�; �)(0) = ;

and

(v)
T
�<� @e(�; �)(0) = @e(�; �)(0) (� 2 R) :

Furthermore, the inverse mapping is e 7�! ue; with ue :
Rn+ ! R given by

ue(x) = sup f� 2 R : x 2 @e(�; �)(0)g :



3 Monotonicity of Demand Func-

tions

The demand correspondence: X : Rn++ � Rn+

X(p) =
n
x 2 Rn+ : hx; pi � 1; u (x) = v (p)

o

THEOREM. If the utility function u : Rn+ ! R has no
local maximum then the demand function
X : Rn++ � Rn+ is cyclically quasimonotone (in the
decreasing sense), i.e.
if pi 2 Rn++; xi 2 X(pi) (i = 1; :::; k)

then

min
i=1;:::;k

D
xi � xi+1; pi

E
� 0; with xk+1 = x1.

X is quasimonotone (in the decreasing sense) if

p; q 2 Rn++; x 2 X(p); y 2 Y (q)
=) min fhx� y; pi ; hy � x; qig � 0:



X is monotone (in the decreasing sense) if

p; q 2 Rn++; x 2 X(p); y 2 Y (q)
=) hx� y; pi+ hy � x; qi � 0: (4)

u : R2+ ! R

u(x1; x2) =

(
x1 + x2 � 1 if x1 + x2 < 1
x1 if x1 + x2 � 1

maximize u(x1; x2)
subject to p1x1 + p2x2 � 1

For p1 � 1 and 1 � p2 > 0; the optimal solution is

x1 =
1� p2
p1 � p2

; x2 =
p1 � 1
p1 � p2

:



Let p 2 Rn++ and x 2 X(p):

p is an optimal solution to

minimize v(p)
subject to hx; pi � 1:

There exists � � 0 such that

rv(p) + �x = 0 and � (hx; pi � 1) = 0:

hrv(p); pi+ � hx; pi = 0 � hx; pi = �

� = �hrv(p); pi

rv(p)� hrv(p); pix = 0:



THEOREM. (Roy�s Identity) If the utility function u is
u.s.c. and its associated indirect utility function v is con-
tinuously di¤erentiable at p 2 Rn++; with rv(p) 6= 0;

then

X(p) =

(
1

hrv(p); pi
rv(p)

)
:

THEOREM. If the utility function u : Rn+ ! R is con-
cave, C2; has a componentwise strictly positive gradient
on Rn++, induces a demand function
' : Rn++ ! Rn+ (i.e. a single-valued demand correspon-
dence p 2 Rn++ � X(p) = f'(p)g); with ' of class
C1; and satis�es

�

D
x;r2u(x)x

E
hx;ru(x)i

< 4
�
x 2 Rn++

�
then ' is strictly monotone, i.e. it satis�es (4) as a strict
inequality whenever p 6= q:



X (p) =
n
x 2 Rn+ : u (x) = v (p)

o �
p 2 Rn++

�
X�1 (x) =

n
p 2 Rn++ : �v (p) = �u (x)

o �
x 2 Rn+

�
�u (x) = sup f�v(p) : hx; pi � 1g (x 2 Rn+)

PROPOSITION. For a C2 nondecreasing quasiconcave
utility function u : Rn+ ! R with no stationary points,
the following statements are equivalent:

(i) � hx;r
2u(x)xi

hx;ru(x)i � 4
�
x 2 Rn++

�
:

(ii) The function (x1; :::; xn) 2 Rn++ 7�! u(x
�13
1 ; :::; x

�13
n )

is convex-along-rays.

(iii) The restriction v : Rn++ ! R[f+1g of the indirect
utility function to the positive orthant has a representa-
tion of the type

v(p) = max
(y;c)2U

n
c� (hy; pi)3

o
(p 2 Rn++);

with U �
�
Rn++ [ f0g

�
� R:



THEOREM. Let ' : Rn++ ! Rn+ be a C1 demand func-
tion induced by a strictly quasiconcave utility function
u : Rn+ ! R; which is C2 on Rn++ and has a compo-

nentwise strictly positive gradient on Rn++ [ '
�
Rn++

�
:

Then ' is monotone if and only if

�

D
x;r2u(x)x

E
hx;ru(x)i

� 4� hx;ru(x)i�
ru(x);

�
r2u(x)

��1ru(x)�
8 x 2 Rn++ such that r2u(x) is nonsingular

and

�

D
x;r2u(x)x

E
hx;ru(x)i

� 4 8 x 2 Rn++ s. t. r2u(x) is singular.



PROPOSITION. Let u : Rn+ ! R be a utility function
and let v : Rn+ ! R[f+1g be its associated indirect
utility function. If the setn

(p; x) 2 Rn++ � Rn+ : u(x)� v(p) � 0
o

is convex (in particular, if the function

 : Rn++ � Rn+ ! R[f+1g

de�ned by

 (p; x) = u(x)� v(p)

is quasiconcave) and u has no maximum then the demand
correspondence X is monotone.

COROLLARY. Let u : Rn+ ! R be a utility function and
let v : Rn+ ! R[f+1g be its associated indirect utility
function. If u is concave and has no maximum and v is
convex then the demand correspondence X is monotone.



THEOREM. If u : Rn+ ! R is nondecreasing and the
function x 2 Rn++ 7�! u(x�1) is convex-along-rays
then the restriction v : Rn++ ! R[f+1g of the indirect
utility function to the positive orthant is convex. Con-
versely, if v : Rn++ ! R is bounded, nonincreasing and
convex then there is a nondecreasing quasiconcave utility
function u : Rn+ ! R such that x 2 Rn++ 7�! u(x�1)
is convex-along-rays and whose associated indirect utility
function extends v.

COROLLARY. Let u : Rn+ ! R be a C2 nondecreasing
quasiconcave utility function. The restriction
v : Rn++ ! R of its associated indirect utility function
to the positive orthant is convex if and only if

< x;r2u(x)x > +2 < ru(x); x >� 0 (x 2 Rn++):



4 Consumer Theory without Util-

ity

Let % be a total preorder on Rn+:

For x1; x2 2 Rn+;

x1 s x2 () x1 % x2; x2 % x1

x1 � x2 () x1 % x2; x2 6% x1

The indirect preorder induced by%: For p;; p2 2 Rn+;

p1 %i p2 () 8 x2 2 B(p2) =
n
x 2 Rn+ : hx; p2i � 1

o
9 x1 2 B(p1) s. t. x1 % x2:

%i is a total preorder on Rn+:

vi the associated indi¤erent relation

�i the associated strict preorder



Let %� be a total preorder on Rn+:

The direct preorder induced by %�: For p1; p2 2 Rn+;

x1 %�d x2 () 8 p1 2 B�1(x1) =
n
p 2 Rn+ : hx1; pi � 1

o
9 p2 2 B�1(x2) s. t. p1 %� p2:

%�d is a total preorder on Rn+:



THEOREM. Let % be a total preorder on Rn+: The fol-
lowing statements are equivalent:

(i) % coincides with %id :

(ii) % has the following properties:

(a) % is nondecreasing.

(b) For every x1 2 Rn+;
the set

n
x 2 Rn+ : x % x1

o
is evenly convex.

(c) For every x1 2 Rn+;
if x2 2 cl

n
x 2 Rn+ : x % x1

o
and � > 1 then �x1 %

x2:

(d) For every x1; x2 2 Rn+;
if x1 s x2 and x1 is a %-maximal element of B(p1) for
some p1 2 Rn+ then x2 is a %-maximal element of B(p2)
for some p2 2 Rn+:



Moreover, if conditions (a)-(d) hold, then %i has the
following properties:

(a�) %i is nonincreasing.

(b�) For every p1 2 Rn+;
the set

n
p 2 Rn+ : p1 %i p

o
is evenly convex.

(c�) For every p1 2 Rn+;
if p2 2 cl

n
p 2 Rn+ : p1 %i p

o
and � > 1 then p1 %i

p2:

(d�) For every p1; p2 2 Rn+;
if p1 vi p2 and p1 is a%i �minimal element ofB�1(x1)
for some x1 2 Rn+ then p2 is a %i � minimal element
of B�1(x2) for some x2 2 Rn+:

The duality mapping % 7! %i is a bijection, with inverse
�� 7! ��d; from the set of all total preorders � on Rn+
with properties (a)-(d) onto the set of all total preorders
%i on Rn+ with properties (a�)-(d�).



u : R2+ �! R

u(y; z) =

(
� 1
y+1 if z � 1
1 if z > 1

v : R2+ �! R

v(q; r) =

8><>:
1 if r < 1
0 if r � 1 and q = 0
� q
q+1 if r � 1 and q > 0

:

If v(q; r) = 0 then no � � maximal element exists in
B(q; r):

If v(q; r) 6= 0 then B(q; r) has at least a maximal ele-
ment.

v is a utility representation for %i :



(0; 1) vi (0; 2)

(0; 1) is a %i � minimal element of B�1(1; 1)

No (y; z) 2 R2+ exists such that (0; 2) is a %i � minimal
element of B�1(y; z) :

If (y; z) 2 R2+; with y 6= 0, is such that (0; 2) 2
B�1(y; z) then (0; 2) �i

�
2�3z
2y ; 32

�
2 B�1(y; z);

if (0; z) 2 R2+ is such that (0; 2) 2 B�1(0; z) then

(0; 2) �i
�
3
2;
3
2

�
2 B�1(0; z):

%i 6=%idi



u0 : R2+ �! R

u0(y; z) =

8>><>>:
�1 if z � 1 and y = 0
z�1
y�z+1 if z � 1 and y > 0

1 if z > 1

u0 is a utility representation of %id :

For every (y; z) 2 B(0; 2), u0(y; z) < 0 = u0(1; 1)

(1; 1) 2 B(0; 1)

(0; 1) �idi (0; 2)

(0; 1) vi (0; 2)



PROPOSITION. Let % be a total preorder on Rn+ sat-
isfying properties (a)-(c). Then %id is the total preorder
whose strict preorder �id is de�ned as follows:

x1 �id x2 if and only if
either x1 � x2
or x1 v x2; x1 is not a % �maximal element in B(p)
for any p 2 Rn+ and x2 is a %-maximal element of B(p)
for some p 2 Rn+:

�id is an extension of � :

% is an extension of %id.

THEOREM. For every total preorder % on Rn+; %idid
coincides with %id :



THEOREM. Let % be a total preorder on Rn+ such that
for every p 2 Rn++ the set B(p) has a % �maximal
element. Then %i has the following properties:

(a) %i is nonincreasing.

(b) For every p1 2 Rn+; the set
n
p 2 Rn+ : p1 �i p

o
is

evenly convex.

(c) For every p1 2 Rn+; if p2 2 cl
n
p 2 Rn+ : p1 �i p

o
and � > 1 then p1 % �p2:

Conversely, if %� is a total preorder on Rn+ such that (a)-
(c) hold with%i replaced by%� then, for every p 2 Rn++;
the set B(p) has a %�d �maximal element and %�di
coincides with %� :



THEOREM. Let % be a total preorder on Rn+ that coin-
cides with %id : The following statements are equivalent:
(i) For every p1 2 Rn++ the setB(p1) has a% �maximal
element.

(ii) For every p1 2 Rn+; the set
n
p 2 Rn+ : p1 �i p

o
is

evenly convex.

(iii) For every p1 2 Rn++; the set
n
p 2 Rn+ : p1 �i p

o
is

evenly convex.

% partial preorder on Rn+

The expenditure function: e% : Rn+ � Rn+ ! R+

e%(p; x) = inf
nD
x0; p

E
: x0 % x

o �
p 2 Rn+; x 2 Rn+

�
:

(HCP) For all x1; x2 2 Rn+;

co

�
S
x1
% + Rn+

�
� co

�
S
x2
% + Rn+

�
=) S

x1
% � S

x2
%



THEOREM. The mapping% 7�! e� is a bijection from
the set of all preorders % on Rn+ whose upper contour

sets Sx% =
n
x0 2 Rn+ : x0 % x

o
satisfy (HCP) onto the

set of functions e : Rn+ � Rn+ ! R+ that satisfy the
following properties:

(a) For every x 2 Rn+; the mapping e(�; x) is concave,
positively homogeneous and upper semicontinuous.

(b) For every x 2 Rn+; the closed convex hull of the
set

n
x0 2 Rn+ : e(�; x0) � e(�; x)

o
+ Rn+ coincides with

@e(�; x)(0); the superdi¤erential of the concave function
e(�; x) at the origin.

The inverse mapping is e 7�! %e; with %e denoting
the preorder on Rn+ de�ned by x1 %e x2 if and only
if e (�; x1) � e (�; x2) (pointwise).



THEOREM. The mapping % 7�! e% is a bijection
from the set of all nondecreasing preorders % on Rn+
whose upper contour sets are closed and convex onto the
set of functions e : Rn+ � Rn+ ! R+ that satisfy the
following properties:

(a) For every x 2 Rn+; the mapping e(�; x) is concave,
positively homogeneous and upper semicontinuous.

(b�)For every x 2 Rn+;n
x0 2 Rn+ : e(�; x0) � e(�; x)

o
= @e(�; x)(0):

The inverse mapping e 7�! %e is given by: x1 %e x2 if
and only if x1 2 @e(�; x2)(0).

% total preorder on Rn+

The demand correspondence: X : Rn++ � Rn+

X(p) = fx 2 B(p) : x % y 8 y 2 B(p)g

% on Rn+ is said to be locally nonsatiated if no relatively
open subset of Rn+ has a %-maximal element.



PROPOSITION. Let % be a locally nonsatiated total pre-
order in Rn+ and let X be its associated demand corre-
spondence. If the setn

(x; p) 2 Rn+ � Rn++ : x % y 8 y 2 B(p)
o

is convex then X is monotone.

PROPOSITION. Let % be a nondecreasing total preorder
in Rn+, X be its associated demand correspondence, and
assume that % satis�es the following condition:

x1 % �y
x2 % �y

� > 0; � > 0

9>=>; =) 1

2
(x1 + x2) % 2

��

�+ �
y:

Then X is monotone.

If graph(%) =
n
(x; y) 2 Rn+ � Rn+ : x % y

o
is convex

set then one has

x1 % �y
x2 % �y

� > 0; � > 0

9>=>; =) 1
2 (x1 + x2) % �+�

2 y � 2 ��
�+�y:


