Generalized Convexity in Economics

J.E. Martínez-Legaz Universitat Autònoma de Barcelona, Spain

2nd Summer School: Generalized Convexity Analysis Introduction to Theory and Applications

> JULY 19, 2008 KAOHSIUNG - TAIWAN

References:

John, Reinhard: Uses of generalized convexity and generalized monotonicity in economics. Handbook of generalized convexity and generalized monotonicity, 619–666, Nonconvex Optim. Appl., 76, Springer, New York, 2005.

Martínez-Legaz, Juan Enrique: Generalized convex duality and its economic applications. Handbook of generalized convexity and generalized monotonicity, 237–292, Nonconvex Optim. Appl., 76, Springer, New York, 2005.

1 Preference, Utility and Demand

n different types of commodities

 \mathbb{R}^n_+ the set of commodity bundles

 $\begin{array}{l} \succeq \text{ total preorder on } \mathbb{R}^n_+ : \\ x, y \in \mathbb{R}^n_+ \Longrightarrow x \succsim y \text{ or } y \succsim x \\ x \succsim y, y \succsim z \Longrightarrow x \succsim z \end{array}$

 \succeq is continuous if $graph(\succeq) := \left\{ (x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^n_+ : x \succeq y \right\}$ is closed.

PROPOSITION. A binary relation \succeq on \mathbb{R}^n_+ is a continuous total preorder if and only if there is a continuous function $u : \mathbb{R}^n_+ \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}^n_+$

$$x \succeq y \Longleftrightarrow u(x) \ge u(y)$$
.

 \succsim total preorder on \mathbb{R}^n_+

$$\succ$$
 is convex if
 $x \succeq y \Longrightarrow (1 - \lambda) x + \lambda y \succeq y$ for all $\lambda \in [0, 1]$.

$$x \succ y \qquad \Longleftrightarrow \qquad x \succeq y, y \not\gtrsim x$$

$$\begin{array}{l} \succeq \mbox{ is strictly convex if} \\ x \succeq y, x \neq y \Longrightarrow (1 - \lambda) \, x + \lambda y \succ y \mbox{ for all } \lambda \in (0, 1) \, . \\ \\ u : \mathbb{R}^n_+ \to \mathbb{R} \mbox{ utility re presentation of } \succeq \\ \\ \succeq \mbox{ is convex} \iff u \mbox{ is quasiconcave} \\ \\ \succeq \mbox{ is strictly convex} \iff u \mbox{ is strictly quasiconcave} \end{array}$$

The demand correspondence: $X = X_u : \mathbb{R}^n_{++} \rightrightarrows \mathbb{R}^n_+$

$$X(p) = \{ x \in \mathbb{R}^n_+ : \langle x, p \rangle \le 1, \ u(x) \ge u(y)$$
for all $y \in \mathbb{R}^n_+$ such that $\langle y, p \rangle \le 1 \}.$

 \succsim is said to be locally nonsatiated if

no relatively open subset of \mathbb{R}^n_+ has a \succeq -maximal element.

PROPOSITION.

(1) If \succeq is locally nonsatiated then, for every $p \in \mathbb{R}^n_{++}$ and $x \in X(p)$, $\langle x, p \rangle = 1$.

(2) If \succeq is convex then X is convex-valued and satisfies GARP: if $p^i \in \mathbb{R}^n_{++}, x^i \in X(p^i)$ (i = 1, ..., k) then $\min_{i=1,...,k-1} \left\langle x^i - x^{i+1}, p^i \right\rangle \ge 0 \Longrightarrow \left\langle x^k - x^1, p^k \right\rangle \le 0.$ (3) If u is u.s.c. and strictly quasiconcave then X is single-valued and satisfies SARP: if $p^i \in \mathbb{R}^n_{++}, x^i \in X(p^i)$ (i = 1, ..., k) then $\min_{i=1,...,k-1} \left\langle x^i - x^{i+1}, p^i \right\rangle \ge 0 \Longrightarrow \left\langle x^k - x^1, p^k \right\rangle < 0.$

2 Duality in Consumer Theory

 $u:\mathbb{R}^n_+\to\overline{\mathbb{R}}$ utility function

 $p \in \mathbb{R}^n_+$ price vector

 $M > \mathbf{0}$ income

$$\begin{array}{ll} (\mathcal{P}) & \mbox{maximize} & u(x) \\ & \mbox{subject to} & \langle x, p \rangle \leq M \end{array}$$

The indirect utility function $v:\mathbb{R}^n_+\to\overline{\mathbb{R}}:$

$$v(p) = \sup \{u(x) : \langle x, p \rangle \leq 1\}$$

$$S_{\lambda}(v) = \bigcap_{x:u(x) > \lambda} \left\{ p \in \mathbb{R}^{n}_{+} : \langle x, p \rangle > 1 \right\} \qquad (\lambda \in \mathbb{R})$$

THEOREM. Let $v : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$. There exists a utility function $u : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$ having v as its associated indirect utility function if and only if v is nonincreasing, evenly quasiconvex and satisfies

$$v(p) \leq \lim_{\alpha \to 1^{-}} \overline{v}(\alpha p) \qquad (p \in bd \ \mathbb{R}^{n}_{+}),$$

 \overline{v} denoting the l.s.c. hull of v.

In this case one can take u nondecreasing, evenly quasiconcave and satisfying

$$u(x) \ge \lim_{\alpha \to 1^{-}} \underline{u}(\alpha x) \qquad (x \in bd \ \mathbb{R}^{n}_{+}).$$
 (1)

Under these conditions u is unique, namely, u is the pointwise largest utility function inducing v; furthermore, it satisfies

$$u(x) = \inf \left\{ v(p) : \langle x, p \rangle \le 1 \right\} \qquad (x \in \mathbb{R}^n_+). \quad (2)$$

COROLLARY. For every $v : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$, the function $v_0 : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$ defined by

$$v_0(p) = \sup \{u(x) : \langle x, p \rangle \leq 1\},\$$

with u given by (2), is the pointwise largest nonincreasing evenly quasiconvex minorant of v that satisfies

$$v_0(p) \leq \lim_{\alpha \to 1^-} \overline{v_0}(\alpha p) \qquad (p \in bd \ \mathbb{R}^n_+).$$
 (3)

THEOREM. Let $u : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$. There exists a function $v : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$ such that (2) holds if and only if u is nondecreasing, evenly quasiconcave and satisfies (1).

In this case one can take v nonincreasing, evenly quasiconvex and satisfying (3). Under these conditions v is unique, namely, v is the pointwise smallest function such that (2) holds; furthermore, it is the indirect utility function associated with u. COROLLARY. For every $u : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$, the function $u^0 : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$ defined by

$$u^{0}(x) = \inf \left\{ v(p) : \langle x, p \rangle \leq 1 \right\},$$

v being the indirect utility function associated with u, is the pointwise smallest nondecreasing evenly quasiconcave majorant of u that satisfies

$$u^{0}(x) \geq \lim_{\alpha \to 1^{-}} \underline{u^{0}}(\alpha x) \qquad (x \in bd \mathbb{R}^{n}_{+}).$$

THEOREM. A nondecreasing evenly quasiconcave function $u : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$ satisfying (1) is finite-valued if and only if its associated indirect utility function $v : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$ is bounded from below and finite-valued on the interior of \mathbb{R}^n_+ .

THEOREM. The indirect utility function $v : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$ induced by a nondecreasing evenly quasiconcave function $u : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$ satisfying (1) is finite-valued if and only if u is bounded from above and finite-valued on the interior of \mathbb{R}^n_+ . COROLLARY. Let $u : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$ be a nondecreasing evenly quasiconcave function satisfying (1) and let v : $\mathbb{R}^n_+ \to \overline{\mathbb{R}}$ be its associated indirect utility function. The following statements are equivalent:

- (i) u and v are finite-valued.
- (ii) u is bounded.
- (iii) v is bounded.

 $u: \mathbb{R}^n_+ \to \mathbb{R}$ utility function

The expenditure function: $e_u : \mathbb{R}^n_+ \times \mathbb{R} \to \mathbb{R}_+ \cup \{+\infty\}$ $e_u(p, \lambda) = \inf \{ \langle x, p \rangle : u(x) \ge \lambda \} \qquad ((p, \lambda) \in \mathbb{R}^n_+ \times \mathbb{R}).$ THEOREM. A function $e : \mathbb{R}^n_+ \times \mathbb{R} \to \mathbb{R}_+ \cup \{+\infty\}$ is the expenditure function e_u for some utility function $u : \mathbb{R}^n_+ \to \mathbb{R}$ if and only if the following conditions hold:

(i) For each $\lambda \in \mathbb{R}$, either $e(\cdot, \lambda)$ is finite-valued, concave, linearly homogeneous and u.s.c., or it is identically equal to $+\infty$.

(ii) For each $p \in \mathbb{R}^n_+$, $e(p, \cdot)$ is nondecreasing.

(iii) $\bigcup_{\lambda \in \mathbb{R}} \partial e(\cdot, \lambda)(0) = \mathbb{R}^n_+$, with $\partial e(\cdot, \lambda)(0)$ denoting the superdifferential of the concave function $e(\cdot, \lambda)$ at the origin, i.e.

$$\partial e(\cdot,\lambda)(\mathbf{0}) = \left\{ x \in \mathbb{R}^n_+ : \langle x,p \rangle \ge e(p,\lambda) \qquad orall \ p \in \mathbb{R}^n_+
ight\}.$$

THEOREM. The mapping $u \mapsto e_u$ is a bijection from the set of u.s.c. nondecreasing quasiconcave functions $u : \mathbb{R}^n_+ \to \mathbb{R}$ onto the set of functions $e : \mathbb{R}^n_+ \times \mathbb{R} \to \mathbb{R}_+ \cup \{+\infty\}$ that satisfy *(i)-(iii)*,

(iv)
$$\bigcap_{\lambda \in \mathbb{R}} \partial e(\cdot, \lambda)(0) = \emptyset$$

and

$$(v) \cap_{\mu < \lambda} \partial e(\cdot, \mu)(0) = \partial e(\cdot, \lambda)(0) \qquad (\lambda \in \mathbb{R}).$$

Furthermore, the inverse mapping is $e \longmapsto u_e$, with u_e : $\mathbb{R}^n_+ \to \mathbb{R}$ given by

$$u_e(x) = \sup \left\{ \lambda \in \mathbb{R} : x \in \partial e(\cdot, \lambda)(0) \right\}.$$

3 Monotonicity of Demand Functions

The demand correspondence: $X : \mathbb{R}^n_{++} \rightrightarrows \mathbb{R}^n_+$

$$X(p) = \left\{ x \in \mathbb{R}^n_+ : \langle x, p \rangle \le \mathbf{1}, \, u(x) = v(p)
ight\}$$

THEOREM. If the utility function $u : \mathbb{R}^n_+ \to \overline{\mathbb{R}}$ has no local maximum then the demand function $X : \mathbb{R}^n_{++} \Rightarrow \mathbb{R}^n_+$ is cyclically quasimonotone (in the decreasing sense), i.e. if $p^i \in \mathbb{R}^n_{++}, x^i \in X(p^i)$ (i = 1, ..., k)then

$$\min_{i=1,\dots,k} \left\langle x^i - x^{i+1}, p^i \right\rangle \le \mathbf{0}, \qquad \text{with } x^{k+1} = x^1.$$

X is quasimonotone (in the decreasing sense) if

$$p,q \in \mathbb{R}^n_{++}, x \in X(p), y \in Y(q)$$
$$\implies \min \{ \langle x - y, p \rangle, \langle y - x, q \rangle \} \leq 0.$$

 \boldsymbol{X} is monotone (in the decreasing sense) if

$$p,q \in \mathbb{R}^{n}_{++}, x \in X(p), y \in Y(q)$$
$$\implies \langle x - y, p \rangle + \langle y - x, q \rangle \leq 0.$$
(4)

$$u : \mathbb{R}^2_+ \to \mathbb{R}$$
$$u(x_1, x_2) = \begin{cases} x_1 + x_2 - 1 & \text{if } x_1 + x_2 < 1\\ x_1 & \text{if } x_1 + x_2 \ge 1 \end{cases}$$

maximize
$$u(x_1,x_2)$$

subject to $p_1x_1+p_2x_2\leq 1$

For $p_1 \ge 1$ and $1 \ge p_2 > 0$, the optimal solution is

$$x_1 = \frac{1 - p_2}{p_1 - p_2}, \qquad x_2 = \frac{p_1 - 1}{p_1 - p_2}.$$

Let $\overline{p} \in \mathbb{R}^n_{++}$ and $\overline{x} \in X(\overline{p})$.

 \overline{p} is an optimal solution to

$$\begin{array}{ll} \text{minimize} & v(p) \\ \text{subject to} & \langle \overline{x}, p \rangle \leq 1. \end{array}$$

There exists $\lambda \geq 0$ such that

$$egin{aligned} \lambda &= -\left\langle
abla v(\overline{p}), \overline{p}
ight
angle \
abla v(\overline{p}) - \left\langle
abla v(\overline{p}), \overline{p}
ight
angle \overline{x} = 0. \end{aligned}$$

THEOREM. (Roy's Identity) If the utility function u is u.s.c. and its associated indirect utility function v is continuously differentiable at $\overline{p} \in \mathbb{R}^n_{++}$, with $\nabla v(\overline{p}) \neq 0$, then

$$X(\overline{p}) = \left\{ \frac{1}{\langle \nabla v(\overline{p}), \overline{p} \rangle} \nabla v(\overline{p}) \right\}.$$

THEOREM. If the utility function $u : \mathbb{R}^n_+ \to \mathbb{R}$ is concave, C^2 , has a componentwise strictly positive gradient on \mathbb{R}^n_{++} , induces a demand function $\varphi : \mathbb{R}^n_{++} \to \mathbb{R}^n_+$ (i.e. a single-valued demand correspondence $p \in \mathbb{R}^n_{++} \Rightarrow X(p) = \{\varphi(p)\}$), with φ of class C^1 , and satisfies

$$-rac{\left\langle x,
abla^2 u(x) x
ight
angle}{\left\langle x,
abla u(x)
ight
angle} < 4 \qquad \left(x \in \mathbb{R}^n_{++}
ight)$$

then φ is strictly monotone, i.e. it satisfies (4) as a strict inequality whenever $p \neq q$.

$$X(p) = \left\{ x \in \mathbb{R}^n_+ : u(x) = v(p) \right\} \qquad \left(p \in \mathbb{R}^n_{++} \right)$$
$$X^{-1}(x) = \left\{ p \in \mathbb{R}^n_{++} : -v(p) = -u(x) \right\} \qquad \left(x \in \mathbb{R}^n_+ \right)$$
$$-u(x) = \sup \left\{ -v(p) : \langle x, p \rangle \le 1 \right\} \qquad \left(x \in \mathbb{R}^n_+ \right)$$

PROPOSITION. For a C^2 nondecreasing quasiconcave utility function $u : \mathbb{R}^n_+ \to \mathbb{R}$ with no stationary points, the following statements are equivalent:

(i)
$$-\frac{\langle x, \nabla^2 u(x)x \rangle}{\langle x, \nabla u(x) \rangle} \leq 4$$
 $(x \in \mathbb{R}^n_{++}).$

(ii) The function $(x_1, ..., x_n) \in \mathbb{R}^n_{++} \mapsto u(x_1^{-\frac{1}{3}}, ..., x_n^{-\frac{1}{3}})$ is convex-along-rays.

(iii) The restriction $v : \mathbb{R}^n_{++} \to \mathbb{R} \cup \{+\infty\}$ of the indirect utility function to the positive orthant has a representation of the type

$$v(p) = \max_{(y,c)\in U} \left\{ c - (\langle y, p \rangle)^3 \right\} \qquad (p \in \mathbb{R}^n_{++}),$$

with $U \subseteq \left(\mathbb{R}^n_{++} \cup \{0\} \right) imes \mathbb{R}.$

THEOREM. Let $\varphi : \mathbb{R}_{++}^n \to \mathbb{R}_{+}^n$ be a C^1 demand function induced by a strictly quasiconcave utility function $u : \mathbb{R}_{+}^n \to \mathbb{R}$, which is C^2 on \mathbb{R}_{++}^n and has a componentwise strictly positive gradient on $\mathbb{R}_{++}^n \cup \varphi (\mathbb{R}_{++}^n)$. Then φ is monotone if and only if

$$-\frac{\left\langle x, \nabla^2 u(x)x\right\rangle}{\left\langle x, \nabla u(x)\right\rangle} \le 4 - \frac{\left\langle x, \nabla u(x)\right\rangle}{\left\langle \nabla u(x), \left(\nabla^2 u(x)\right)^{-1} \nabla u(x)\right\rangle}$$
$$\forall \ x \in \mathbb{R}^n_{++} \text{ such that } \nabla^2 u(x) \text{ is nonsingular}$$

and

$$-\frac{\left\langle x, \nabla^2 u(x)x\right\rangle}{\left\langle x, \nabla u(x)\right\rangle} \leq 4 \qquad \forall \, x \in \mathbb{R}^n_{++} \text{ s. t. } \nabla^2 u(x) \text{ is singular.}$$

PROPOSITION. Let $u : \mathbb{R}^n_+ \to \mathbb{R}$ be a utility function and let $v : \mathbb{R}^n_+ \to \mathbb{R} \cup \{+\infty\}$ be its associated indirect utility function. If the set

$$\left\{(p,x)\in\mathbb{R}^n_{++}\times\mathbb{R}^n_+:u(x)-v(p)\geq\mathbf{0}\right\}$$

is convex (in particular, if the function

$$\psi: \mathbb{R}^n_{++} \times \mathbb{R}^n_+ \to \mathbb{R} \cup \{+\infty\}$$

defined by

$$\psi(p,x) = u(x) - v(p)$$

is quasiconcave) and u has no maximum then the demand correspondence X is monotone.

COROLLARY. Let $u : \mathbb{R}^n_+ \to \mathbb{R}$ be a utility function and let $v : \mathbb{R}^n_+ \to \mathbb{R} \cup \{+\infty\}$ be its associated indirect utility function. If u is concave and has no maximum and v is convex then the demand correspondence X is monotone. THEOREM. If $u : \mathbb{R}^n_+ \to \mathbb{R}$ is nondecreasing and the function $x \in \mathbb{R}^n_{++} \mapsto u(x^{-1})$ is convex-along-rays then the restriction $v : \mathbb{R}^n_{++} \to \mathbb{R} \cup \{+\infty\}$ of the indirect utility function to the positive orthant is convex. Conversely, if $v : \mathbb{R}^n_{++} \to \mathbb{R}$ is bounded, nonincreasing and convex then there is a nondecreasing quasiconcave utility function $u : \mathbb{R}^n_+ \to \mathbb{R}$ such that $x \in \mathbb{R}^n_{++} \mapsto u(x^{-1})$ is convex-along-rays and whose associated indirect utility function extends v.

COROLLARY. Let $u : \mathbb{R}^n_+ \to \mathbb{R}$ be a C^2 nondecreasing quasiconcave utility function. The restriction $v : \mathbb{R}^n_{++} \to \mathbb{R}$ of its associated indirect utility function to the positive orthant is convex if and only if

 $\langle x, \nabla^2 u(x)x \rangle + 2 \langle \nabla u(x), x \rangle \ge 0$ ($x \in \mathbb{R}^n_{++}$).

4 Consumer Theory without Utility

Let \succeq be a total preorder on \mathbb{R}^n_+ .

For $x_1, x_2 \in \mathbb{R}^n_+$, $x_1 \sim x_2 \iff x_1 \succeq x_2, x_2 \succeq x_1$ $x_1 \succ x_2 \iff x_1 \succeq x_2, x_2 \succeq x_1$

The indirect preorder induced by \succeq : For $p_i, p_2 \in \mathbb{R}^n_+$, $p_1 \succeq^i p_2 \iff \forall x_2 \in B(p_2) = \left\{ x \in \mathbb{R}^n_+ : \langle x, p_2 \rangle \leq 1 \right\}$ $\exists x_1 \in B(p_1) \text{ s. t. } x_1 \succeq x_2.$

 \succeq^i is a total preorder on \mathbb{R}^n_+ .

 \sim^i the associated indifferent relation

$$\succ^i$$
 the associated strict preorder

Let \succeq^* be a total preorder on \mathbb{R}^n_+ .

The direct preorder induced by \succeq^* : For $p_1, p_2 \in \mathbb{R}^n_+$,

$$x_1 \succeq^{*d} x_2 \iff \forall p_1 \in B^{-1}(x_1) = \left\{ p \in \mathbb{R}^n_+ : \langle x_1, p \rangle \le 1 \right\}$$

$$\exists p_2 \in B^{-1}(x_2) \text{ s. t. } p_1 \succeq^* p_2.$$

 \gtrsim^{*d} is a total preorder on \mathbb{R}^n_+ .

THEOREM. Let \succeq be a total preorder on \mathbb{R}^n_+ . The following statements are equivalent:

(i) \succeq coincides with \succeq^{id} .

(ii) \succeq has the following properties:

(a) \succeq is nondecreasing.

(b) For every $x_1 \in \mathbb{R}^n_+$, the set $\left\{ x \in \mathbb{R}^n_+ : x \succeq x_1 \right\}$ is evenly convex.

(c) For every $x_1 \in \mathbb{R}^n_+$, if $x_2 \in cl \ \left\{ x \in \mathbb{R}^n_+ : x \succeq x_1 \right\}$ and $\alpha > 1$ then $\alpha x_1 \succeq x_2$.

(d) For every $x_1, x_2 \in \mathbb{R}^n_+$, if $x_1 \sim x_2$ and x_1 is a \succeq -maximal element of $B(p_1)$ for some $p_1 \in \mathbb{R}^n_+$ then x_2 is a \succeq -maximal element of $B(p_2)$ for some $p_2 \in \mathbb{R}^n_+$. Moreover, if conditions (a)-(d) hold, then \succeq^i has the following properties:

(a') \succeq^i is nonincreasing.

(b') For every $p_1 \in \mathbb{R}^n_+$, the set $\left\{ p \in \mathbb{R}^n_+ : p_1 \succeq^i p \right\}$ is evenly convex.

(c') For every $p_1 \in \mathbb{R}^n_+$, if $p_2 \in cl \ \left\{ p \in \mathbb{R}^n_+ : p_1 \succeq^i p \right\}$ and $\alpha > 1$ then $p_1 \succeq^i p_2$.

(d') For every $p_1, p_2 \in \mathbb{R}^n_+$, if $p_1 \sim^i p_2$ and p_1 is a $\succeq^i - \text{minimal element of } B^{-1}(x_1)$ for some $x_1 \in \mathbb{R}^n_+$ then p_2 is a $\succeq^i - \text{minimal element}$ of $B^{-1}(x_2)$ for some $x_2 \in \mathbb{R}^n_+$.

The duality mapping $\succeq \mapsto \succeq^i$ is a bijection, with inverse $\succeq^* \mapsto \succeq^{*d}$, from the set of all total preorders \succeq on \mathbb{R}^n_+ with properties (a)-(d) onto the set of all total preorders \succeq^i on \mathbb{R}^n_+ with properties (a')-(d').

$$u: \mathbb{R}^2_+ \longrightarrow \mathbb{R}$$
 $u(y, z) = \left\{egin{array}{cc} -rac{1}{y+1} & ext{if } z \leq 1 \ 1 & ext{if } z > 1 \end{array}
ight.$

$$v: \mathbb{R}^2_+ \longrightarrow \mathbb{R}$$

 $v(q,r) = \left\{ egin{array}{ccc} 1 & ext{if } r < 1 \ 0 & ext{if } r \geq 1 ext{ and } q = 0 \ -rac{q}{q+1} & ext{if } r \geq 1 ext{ and } q > 0 \end{array}
ight.$

٠

If v(q,r) = 0 then no $\succeq -$ maximal element exists in B(q,r).

If $v(q,r) \neq 0$ then B(q,r) has at least a maximal element.

v is a utility representation for \succsim^i .

$$(0,1) \backsim^i (0,2)$$

 $(0,1)$ is a $\succeq^i - minimal$ element of $B^{-1}(1,1)$
No $(y,z) \in \mathbb{R}^2_+$ exists such that $(0,2)$ is a $\succeq^i - minimal$ element of $B^{-1}(y,z)$:

If $(y,z) \in \mathbb{R}^2_+$, with $y \neq 0$, is such that $(0,2) \in B^{-1}(y,z)$ then $(0,2) \succ^i \left(\frac{2-3z}{2y}, \frac{3}{2}\right) \in B^{-1}(y,z)$;

if $(0, z) \in \mathbb{R}^2_+$ is such that $(0, 2) \in B^{-1}(0, z)$ then $(0, 2) \succ^i \left(\frac{3}{2}, \frac{3}{2}\right) \in B^{-1}(0, z).$

 $\gtrsim^{i} \neq \gtrsim^{idi}$

$$u^{0}: \mathbb{R}^{2}_{+} \longrightarrow \mathbb{R}$$
$$u^{0}(y, z) = \begin{cases} -1 & \text{if } z \leq 1 \text{ and } y = 0\\ \frac{z-1}{y-z+1} & \text{if } z \leq 1 \text{ and } y > 0\\ 1 & \text{if } z > 1 \end{cases}$$

 $u^{\mathbf{0}}$ is a utility representation of \succsim^{id} .

For every $(y,z) \in B(0,2)$, $u^0(y,z) < 0 = u^0(1,1)$

 $egin{aligned} (1,1) \in B(0,1) \ (0,1) \succ^{idi} (0,2) \ (0,1) \backsim^i (0,2) \end{aligned}$

PROPOSITION. Let \succeq be a total preorder on \mathbb{R}^n_+ satisfying properties (a)-(c). Then \succeq^{id} is the total preorder whose strict preorder \succ^{id} is defined as follows:

$$x_1 \succ^{id} x_2$$
 if and only if
either $x_1 \succ x_2$
or $x_1 \backsim x_2, x_1$ is not a $\succeq -$ maximal element in $B(p)$
for any $p \in \mathbb{R}^n_+$ and x_2 is a \succeq -maximal element of $B(p)$
for some $p \in \mathbb{R}^n_+$.

$$\succ^{id}$$
 is an extension of \succ

$$\succeq$$
 is an extension of \succeq^{id} .

THEOREM. For every total preorder \succeq on \mathbb{R}^n_+ , \succeq^{idid} coincides with \succeq^{id} .

THEOREM. Let \succeq be a total preorder on \mathbb{R}^n_+ such that for every $p \in \mathbb{R}^n_{++}$ the set B(p) has a \succeq -maximal element. Then \succeq^i has the following properties:

(a) \succeq^i is nonincreasing.

(b) For every $p_1 \in \mathbb{R}^n_+$, the set $\{p \in \mathbb{R}^n_+ : p_1 \succ^i p\}$ is evenly convex.

(c) For every $p_1 \in \mathbb{R}^n_+$, if $p_2 \in cl \ \left\{ p \in \mathbb{R}^n_+ : p_1 \succ^i p \right\}$ and $\alpha > 1$ then $p_1 \succeq \alpha p_2$.

Conversely, if \succeq^* is a total preorder on \mathbb{R}^n_+ such that (a)-(c) hold with \succeq^i replaced by \succeq^* then, for every $p \in \mathbb{R}^n_{++}$, the set B(p) has a \succeq^{*d} -maximal element and \succeq^{*di} coincides with \succeq^* . THEOREM. Let \succeq be a total preorder on \mathbb{R}^n_+ that coincides with \succeq^{id} . The following statements are equivalent: (i) For every $p_1 \in \mathbb{R}^n_{++}$ the set $B(p_1)$ has a \succeq -maximal element.

(ii) For every $p_1 \in \mathbb{R}^n_+$, the set $\{p \in \mathbb{R}^n_+ : p_1 \succ^i p\}$ is evenly convex.

(iii) For every $p_1 \in \mathbb{R}^n_{++}$, the set $\left\{ p \in \mathbb{R}^n_+ : p_1 \succ^i p \right\}$ is evenly convex.

 \succeq partial preorder on \mathbb{R}^n_+

The expenditure function: $e_{\succeq} : \mathbb{R}^n_+ \times \mathbb{R}^n_+ \to \mathbb{R}_+$ $e_{\succeq}(p, x) = \inf \left\{ \left\langle x', p \right\rangle : x' \succeq x \right\} \qquad \left(p \in \mathbb{R}^n_+, \ x \in \mathbb{R}^n_+ \right).$

(HCP) For all $x_1, x_2 \in \mathbb{R}^n_+$, $\overline{co}\left(S^{x_1}_{\succeq} + \mathbb{R}^n_+\right) \subseteq \overline{co}\left(S^{x_2}_{\succeq} + \mathbb{R}^n_+\right) \implies S^{x_1}_{\succeq} \subseteq S^{x_2}_{\succeq}$ THEOREM. The mapping $\succeq \longmapsto e_{\succeq}$ is a bijection from the set of all preorders \succeq on \mathbb{R}^n_+ whose upper contour sets $S^x_{\succeq} = \{x' \in \mathbb{R}^n_+ : x' \succeq x\}$ satisfy *(HCP)* onto the set of functions $e : \mathbb{R}^n_+ \times \mathbb{R}^n_+ \to \mathbb{R}_+$ that satisfy the following properties:

(a) For every $x \in \mathbb{R}^n_+$, the mapping $e(\cdot, x)$ is concave, positively homogeneous and upper semicontinuous.

(b) For every $x \in \mathbb{R}^n_+$, the closed convex hull of the set $\{x' \in \mathbb{R}^n_+ : e(\cdot, x') \ge e(\cdot, x)\} + \mathbb{R}^n_+$ coincides with $\partial e(\cdot, x)(0)$, the superdifferential of the concave function $e(\cdot, x)$ at the origin.

The inverse mapping is $e \mapsto \succeq e$, with $\succeq e$ denoting the preorder on \mathbb{R}^n_+ defined by $x_1 \succeq e x_2$ if and only if $e(\cdot, x_1) \ge e(\cdot, x_2)$ (pointwise). THEOREM. The mapping $\succeq \longmapsto e_{\succeq}$ is a bijection from the set of all nondecreasing preorders \succeq on \mathbb{R}^n_+ whose upper contour sets are closed and convex onto the set of functions $e : \mathbb{R}^n_+ \times \mathbb{R}^n_+ \to \mathbb{R}_+$ that satisfy the following properties:

(a) For every $x \in \mathbb{R}^n_+$, the mapping $e(\cdot, x)$ is concave, positively homogeneous and upper semicontinuous.

(b')For every $x \in \mathbb{R}^n_+$,

$$\left\{x' \in \mathbb{R}^n_+ : e(\cdot, x') \ge e(\cdot, x)\right\} = \partial e(\cdot, x)(0).$$

The inverse mapping $e \mapsto \succeq_e$ is given by: $x_1 \succeq_e x_2$ if and only if $x_1 \in \partial e(\cdot, x_2)(0)$.

 \succeq total preorder on \mathbb{R}^n_+

The demand correspondence: $X : \mathbb{R}^n_{++} \rightrightarrows \mathbb{R}^n_+$

$$X(p) = \{x \in B(p) : x \succeq y \quad \forall \ y \in B(p)\}$$

 \succeq on \mathbb{R}^n_+ is said to be locally nonsatiated if no relatively open subset of \mathbb{R}^n_+ has a \succeq -maximal element.

PROPOSITION. Let \succeq be a locally nonsatiated total preorder in \mathbb{R}^n_+ and let X be its associated demand correspondence. If the set

$$ig\{(x,p)\in \mathbb{R}^n_+ imes \mathbb{R}^n_{++}:x\succsim y \ \ orall \ y\in B(p)ig\}$$

is convex then X is monotone.

PROPOSITION. Let \succeq be a nondecreasing total preorder in \mathbb{R}^n_+ , X be its associated demand correspondence, and assume that \succeq satisfies the following condition:

$$\left. \begin{array}{c} x_1 \succsim \lambda y \\ x_2 \succsim \mu y \\ \lambda > 0, \ \mu > 0 \end{array} \right\} \Longrightarrow \frac{1}{2} \left(x_1 + x_2 \right) \succsim 2 \frac{\lambda \mu}{\lambda + \mu} y.$$

Then X is monotone.

If $graph(\succeq) = \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^n_+ : x \succeq y\}$ is convex set then one has

$$\left. \begin{array}{c} x_1 \succsim \lambda y \\ x_2 \succsim \mu y \\ \lambda > 0, \ \mu > 0 \end{array} \right\} \Longrightarrow \frac{1}{2} \left(x_1 + x_2 \right) \succsim \frac{\lambda + \mu}{2} y \ge 2 \frac{\lambda \mu}{\lambda + \mu} y.$$