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1 Preference, Utility and Demand

n different types of commodities
R? the set of commodity bundles

7, total preorder on R’} :
r,y€ R} =z Zyory T x
TLY YL E=T LR

>~ is continuous if
graph(z) = {(:c,y) e R xR 1z y} is closed.

PROPOSITION. A binary relation zZ on R} is a contin-
uous total preorder if and only if there is a continuous
function uw : R? — R such that for all z,y € R’}

Ty <= u(r)>u(y).



7 total preorder on R}

Y

is convex if
ry— (1—XN)z+Ay - yforall XA €[0,1].

T -y = x Y,y T T

>~ is strictly convex if

Y

zZy,xAy— (1—Nx+Ay = yforall A € (0,1).

u : R — R utility re presentation of

=~ is convex <= u is quasiconcave

>~ s strictly convex <= wu is strictly quasiconcave

The demand correspondence: X = X, : Ry , = Rl

X(p) ={z €R} : (z,p) <1, u(z) > u(y)
for all y € R} such that (y,p) < 1}.



>~ is said to be locally nonsatiated if
no relatively open subset of R”} has a Z-maximal element.

PROPOSITION.
(1) If = is locally nonsatiated then,
for every p € R | and z € X(p), (z,p) = 1.

(2) If 7 is convex then X is convex-valued and satisfies
GARP:
if p! € R 4, ' € X (pt) (¢ =1,...,k) then

z':lTTk—1 <xz B $i+1,pi> >0 — <$k B mljpkz> <o.

(3) If w is u.s.c. and strictly quasiconcave then X is

single-valued and satisfies SARP:
if pt e R, zt € X (p*) (¢ =1,...,k) then

min <:cz — xi+1,pi> > 0= <zck — xl,pk> < 0.



2 Duality in Consumer Theory

u: R — R utility function
p € R} price vector

M > 0 income

(P) maximize u(x)
subject to (x,p) < M

The indirect utility function v : R} — R :

v(p) = sup{u(z) : {z,p) <1}

Sy\(v) = ﬂ {p e RY : (z,p) > 1}
z:u(z)>\

(A € R)



THEOREM. Let v : R} — R. There exists a utility
function u : R} — R having v as its associated indirect
utility function if and only if v is nonincreasing, evenly
quasiconvex and satisfies
v(p) < lim v(ap)  (p € bd RY),
oa—1

v denoting the l.s.c. hull of v.

In this case one can take u nondecreasing, evenly quasi-
concave and satisfying

u(x) > lim u(ax) (x € bd RY). (1)

oa—1"

Under these conditions w is unique, namely, u is the
pointwise largest utility function inducing v; furthermore,
it satisfies

u(z) = inf{o(p) : (z,p) <1}  (ze€RY). (2)



COROLLARY. For every v : R} — R, the function
vo : R — R defined by

vo(p) = sup{u(z) : (z,p) < 1},

with u given by (2), is the pointwise largest nonincreasing
evenly quasiconvex minorant of v that satisfies

vo(p) < lim vp(ap)  (p€bdRY).  (3)

a—1—

THEOREM. Let u : R} — R. There exists a function
v : R — R such that (2) holds if and only if u is
nondecreasing, evenly quasiconcave and satisfies (1).

In this case one can take v nonincreasing, evenly
quasiconvex and satisfying (3). Under these conditions
v is unique, namely, v is the pointwise smallest function
such that (2) holds; furthermore, it is the indirect utility

function associated with w.



COROLLARY. For every u : R} — R, the function
uY : R" — R defined by

wO(z) = inf {v(p) : (z,p) < 1},

v being the indirect utility function associated with u, is
the pointwise smallest nondecreasing evenly quasiconcave
majorant of u that satisfies

WO(z) > lim «O(ax) (x € bd RY}).

a—1—

THEOREM. A nondecreasing evenly quasiconcave func-
tion u : R — R satisfying (1) is finite-valued if and 3n|y
If its associated indirect utility function v : R} — R is

bounded from below and finite-valued on the interior of
R .
_|_

THEOREM. The indirect utility function v : R} — R
induced by a nondecreasing evenly quasiconcave function
u: R} — R satisfying (1) is finite-valued if and only if
u is bounded from above and finite-valued on the interior
of R”.



COROLLARY. Let u : R" — R be a nondecreasing
evenly quasiconcave function satisfying (1) and let v :
R — R be its associated indirect utility function. The
following statements are equivalent:

(i) w and v are finite-valued.
(ii) u is bounded.
(iii) v is bounded.

v : R — R utility function

The expenditure function: ey : R X R — R4 U {+o0}

eu(p, \) = inf {(z,p) 1 u(x) > A} ((p,A) €RY xR).



THEOREM. A function e : R} x R — R4 U {+o0}
is the expenditure function e, for some utility function
u : Ry — R if and only if the following conditions hold:

(i) For each A € R, either e(-, \) is finite-valued, con-
cave, linearly homogeneous and u.s.c., or it is identically
equal to 4+o0.

(ii) For each p € R" | e(p, -) is nondecreasing.

(iii) Uxer 9e(+, A)(0) = R}, with de(-, A)(0) denoting
the superdifferential of the concave function e(-, A) at
the origin, I.e.

de(,A)(0) = {z €RY : (z,p) > e(p,A) VpeRL}.



THEOREM. The mapping u —— ey, is a bijection from
the set of u.s.c. nondecreasing quasiconcave functions
u : R} — IR onto the set of functions

e: R xR — Ry U{+oo} that satisfy (i)-(iii),

(iv) n)\GR a€(°, )\)(0) — @

and

(v) Nu<a Oe(-, 1)(0) = de(-,A)(0) (A €R).

Furthermore, the inverse mapping is e —— ue, with ue :
R? — R given by

ue(x) =sup{ A € R:x € de(-,A)(0)}.



3 Monotonicity of Demand Func-

tions

The demand correspondence: X Ry, =RV

X(p)={z € R} : (z,p) <1, u(z) = v (p)]

THEOREM. If the utility function uw : R} — R has no
local maximum then the demand function

X : R, = R% is cyclically quasimonotone (in the
decreasing sense), i.e.

if p € RY ., z' € X(p*) (:=1,..,k)

then

. Tin . <a:z — :ci+1,pi> < 0, with zFt1 = 21,
1=1,...,

X is quasimonotone (in the decreasing sense) if

p,g € Ri, z€X(p), veY(q)
— min{{(z —y,p),(y —xz,q)} <O0.



X is monotone (in the decreasing sense) if

p,g € Ri,, zeX(p), yeY(q)
— (r—y,p)+{y—=z,q) <0. (4

u:Ri—ﬂR
1 ifx1+xp>1

r1+ a0 — 1 if x1 4+ x>0 < 1
U(fﬂl,wz):{ L L

maximize u(xq, )
subject to pix1 + prro <1

For p; > 1 and 1 > pp > 0, the optimal solution is

1—po ~p1—1
To = :
P1 — D2 pP1 — p2



Let p € R | and T € X(p).

p is an optimal solution to

minimize v(p)
subject to (Z,p) < 1.

There exists A > 0 such that

Vu(p)+AX=0  and A((Z,p) — 1) =

(Vu(p),p) + A(Z,p) =0  A(Z,p) = A

A= — <V”U(Z_?)a]5>

Vu(p) — (Vv(p),p) T = 0.



THEOREM. (Roy’s Identity) If the utility function w is
u.s.c. and its associated indirect utility function v is con-
tinuously differentiable at p € R’ |, with Vu(p) # 0,
then

1

(Vu(p), p)

X(p) = { Vv(z‘o)} :

THEOREM. If the utility function u : R’ — R is con-
cave, Cz, has a componentwise strictly positive gradient
on R’ , induces a demand function

@ : R — R? (i.e. asingle-valued demand correspon-
dence p € R, = X(p) = {p(p)}), with ¢ of class
C1, and satisfies

<:c, V2u(:c):1:>
— <4 r € R
(z, Vu()) (7€ R3)

then ¢ is strictly monotone, i.e. it satisfies (4) as a strict

inequality whenever p # q.



X(p):{xERi:u(az):v(p)} (pERT‘HL)

X_l(a:):{pERfﬁJr:—v(p):—u(a:)} (:I:ERZL_)

—u (z) = sup{—v(p) : (x,p) <1} (x € RY)

PROPOSITION. For a C? nondecreasing quasiconcave
utility function w : R} — R with no stationary points,
the following statements are equivalent:

: z,V2u(z)z n
(i) — <(:I:,Vu((x))>> <4 (I‘ = R—l——l—) '

1

(i) The function (z1, ..., zn) € R} | u(zy 3, .., 20 3)
Is convex-along-rays.

W=

(iii) The restriction v : R”f ;| — RU{+o0} of the indirect
utility function to the positive orthant has a representa-
tion of the type

v(p) = max {c—(w.p)’}  (pERL),

with U C (R% U{0}) x R.



THEOREM. Let ¢ : R}, — R} be a C! demand func-
tion induced by a strictly quasiconcave utility function
u : Ry — R, which is C? on R, and has a compo-
nentwise strictly positive gradient on R , U ¢ (]R?H) :
Then ¢ is monotone if and only if

(@ Vu(@)z) (, Vu(x))

@ Vu@) " (Gu), (V2u(e) " Vule)

V x € R | such that V2u(z) is nonsingular

and

<:C, §72u(x)x> < 4 \V4 R™ 2 ST
\V4 = S . t. |
(x, u(:c)> ++ 3 u(x) IS singular




PROPOSITION. Let u : R — R be a utility function
and let v : R — RU{+o00} be its associated indirect
utility function. If the set

{(p,:c) e RV, xRY :u(z) —v(p) > O}
is convex (in particular, if the function
YR X RY — RU {400}
defined by
P(p, ) = u(z) — v(p)

is quasiconcave) and u has no maximum then the demand

correspondence X is monotone.

COROLLARY. Let u : R} — R be a utility function and
let v : R? — RU{+o00} be its associated indirect utility
function. If u is concave and has no maximum and v is
convex then the demand correspondence X is monotone.



THEOREM. If uw : R — IR is nondecreasing and the
function z € R, +— u(xz~1) is convex-along-rays
then the restriction v : R | — RU{+o00} of the indirect
utility function to the positive orthant is convex. Con-
versely, if v : Rff__i_ — IR is bounded, nonincreasing and
convex then there is a nondecreasing quasiconcave utility
function u : R — R such that z € R , — u(z1)
is convex-along-rays and whose associated indirect utility
function extends v.

COROLLARY. Let v : R} — R be a C? nondecreasing
quasiconcave utility function. The restriction

v : RY, — R of its associated indirect utility function
to the positive orthant is convex if and only if

< x, Vzu(az)x > +2 < Vu(z),z >>0 (x e R ,).



4 Consumer Theory without Util-
ity

Let 7 be a total preorder on R'}.

For x1,z, € R,

T] ~ T = Ty 7 T2, T2 T T1
r1 »~ T2 < xlzxg, xzle

The indirect preorder induced by ~~: Forp,po € R,

pLZip2 <=V a2 € B(py) = {x € R : (z,p2) <1}
Jdxzq1 € B(p1) s. t. 1 7 7.

> is a total preorder on R .
~? the associated indifferent relation

' the associated strict preorder



Let 72* be a total preorder on R7}.

The direct preorder induced by ~*: For p1,pp € R,

v 5wy <=V p€ B Y(a1) = {p € RY : (w1,p) <1}
Jpy € B Hxp) s. t. p1 T p2.

—*d is a total preorder on R .



THEOREM. Let 7 be a total preorder on R’}. The fol-
lowing statements are equivalent:

(i) = coincides with =@ |
(ii) 77 has the following properties:
(a) 7~ is nondecreasing.

(b) For every z1 € R" |
the set {x c R} 1z 7 az'l} is evenly convex.

(c) For every x1 € R},
if xo € cl {xERﬁ:xle} and a > 1 then axq =

L.

(d) For every x1,xp € R"},
if £1 ~ xp and x1 is a ZZ-maximal element of B(p1) for

some p; € R’} then x5 is a ZZ-maximal element of B(p>)
n
for some py € R}



Moreover, if conditions (a)-(d) hold, then >* has the
following properties:

, i . i
(a’) " is nonincreasing.

(b’) For every p1 € R"},
the set {p € R : py > p} is evenly convex.

(c’) For every p1 € R",
if po € cl {pERi:plffp} and a > 1 then p; ~*
p2.

(d’) For every p1,p2 € R},
if p1 "’ pp and py is a =* — minimal element of B—1(z1)
for some z1 € R’ then p; is a =t — minimal element
of B~1(x5) for some x5 € R%.

The duality mapping >~ — % is a bijection, with inverse
=% = i*d, from the set of all total preorders = on R}
with properties (a)-(d) onto the set of all total preorders
> on R with properties (a’)-(d’).



u:R2 — R

1 .
— fz2<1
— y+1 ! T
uy, =) { 1 ifz>1
v:RT — R
1 if r <1
fu(q’r): 0 ifrzlandq:O

_ﬁ if r>1and g >0

If v(q,7) = 0 then no > — maximal element exists in
B(q,r).

If v(g,r) # 0 then B(q,r) has at least a maximal ele-

ment.

v is a utility representation for = .



(0,1) A (0,2)
(0,1) is a == — minimal element of B71(1,1)

No (y, z) € ]R%r exists such that (0, 2) is a = — minimal
element of B™1(y, 2) :

If (y,z) € R2, with y # 0, is such that (0,2) &

B~1(y, 2) then (0,2) ' (2522,3) € B~1(y, 2);

if (0,2) € Ri is such that (0,2) € B~1(0, z) then
(0,2) = (3,3) € B0, 2).



w9 :R2 — R

—1 f z<landy =20
uO(y, z) = 4 ny-lu if z<1andy>0
1 ifz>1

u0 is a utility representation of =%

For every (y, z) € B(0,2), u®(y, z) < 0 = u9(1,1)

(1,1) € B(0,1)
(0,1) =¥ (0,2)

(07 1) A (07 2)



PROPOSITION. Let 7 be a total preorder on R’} sat-
isfying properties (a)-(c). Then > is the total preorder
whose strict preorder i js defined as follows:

1 s id x> if and only if

either 1 > o

or x1 v~ xo, x1 is not a 72 —maximal element in B(p)
for any p € R"} and x5 is a ZZ-maximal element of B(p)
for some p € R} .

14 is an extension of > .
>~ is an extension of iid.

THEOREM. For every total preorder 7 on R”, »iaid
coincides with zid .



THEOREM. Let = be a total preorder on R’} such that
for every p € R'f}@r the set B(p) has a =~ —maximal
element. Then =" has the following properties:

(a) 7Z* is nonincreasing.

(b) For every p1 € R", the set {p c R : py - p} is
evenly convex.

(c) For every p1 € R, if pp € cl {p € R : pp 0 p}
and « > 1 then p; = aps.

Conversely, if 7Z* is a total preorder on R’} such that (a)-
(c) hold with =% replaced by >=* then, for every p € Rﬁ;ﬂ
the set B(p) has a =*¢ —maximal element and >*@
coincides with 7=* .



THEOREM. Let Z be a total preorder on R”} that coin-
cides with =@ . The following statements are equivalent:

(i) For every p1 € R} | the set B(py) hasa 7 —maximal
element.

(ii) For every p1 € R, the set {p € R :pg N p} is
evenly convex.

(iii) For every p1 € R, , the set {p € R%} :py N p} is
evenly convex.

I n
7 partial preorder on R}
The expenditure function: ex R? x R? — Ry

ez(p,x):inf{<a}/,p>:x’§x} (pE]Rn, xERi).

(HCP) For all 1,25 € R},

e (s;’il + M) C o (sf? + M) —  ShC g™

Y



THEOREM. The mapping 2 +—— ey is a bijection from
the set of all preorders =~ on R’ whose upper contour
sets Si = {x’ cRY 2’ :r;} satisfy (HCP) onto the
set of functions e : R} X R? — Ry that satisfy the
following properties:

(a) For every x € R"', the mapping e(-, ) is concave,

positively homogeneous and upper semicontinuous.

(b) For every x € R", the closed convex hull of the
set {:U’ e R} :e(, ') > e(-,x)} + R” coincides with
Oe(-, x)(0), the superdifferential of the concave function
e(-,x) at the origin.

The inverse mapping is e —— ¢, with 7~ denoting
the preorder on R’} defined by z1 Ze x2 if and only

Y

if e(-,z1) > e(-,x2) (pointwise).



THEOREM. The mapping =~ +—— es is a bijection
from the set of all nondecreasing preorders = on R’}
whose upper contour sets are closed and convex onto the
set of functions e : R} X R} — R4 that satisfy the
following properties:

(a) For every x € R, the mapping e(-, x) is concave,
positively homogeneous and upper semicontinuous.

(b’')For every x € R},

{a €RY :e(-,a) > e(-,2)} = De(-, 2)(0).
The inverse mapping e —— ¢ is given by: 21 ¢ x5 if
and only if 1 € Oe(-, x2)(0).

7, total preorder on R}
The demand correspondence: X RV, = R

X(p)={z € B(p):zZy YyecB(p)}

7 on R” is said to be locally nonsatiated if no relatively
open subset of R’} has a 7Z-maximal element.



PROPOSITION. Let =~ be a locally nonsatiated total pre-
order in R’y and let X be its associated demand corre-
spondence. If the set

{(z,p) eRYL xRy, :z 2y Vye B(p)]

Is convex then X Is monotone.

PROPOSITION. Let = be a nondecreasing total preorder
in R, X be its associated demand correspondence, and
assume that 7~ satisfies the following condition:

T1 2 AY 1 A\
7
T2 T Y — 5 (r1+22) Z Zﬁy.
A>0, u>0 H

Then X 1s monotone.

If graph(Z) = {(az,y) c R xR 1z 7 y} is convex
set then one has

T1 Y \ .
T2 7 Y :>%($1+902)§#y22ﬁy-
A>0, u>0



