Generalized Convexity in Economics

J.E. Martínez-Legaz

Universitat Autònoma de Barcelona, Spain
2nd Summer School: Generalized Convexity Analysis Introduction to Theory and Applications

JULY 19, 2008
KAOHSIUNG - TAIWAN

References:

John, Reinhard: Uses of generalized convexity and generalized monotonicity in economics. Handbook of generalized convexity and generalized monotonicity, 619-666, Nonconvex Optim. Appl., 76, Springer, New York, 2005.

Martínez-Legaz, Juan Enrique: Generalized convex duality and its economic applications. Handbook of generalized convexity and generalized monotonicity, 237-292, Nonconvex Optim. Appl., 76, Springer, New York, 2005.

1 Preference, Utility and Demand

n different types of commodities
\mathbb{R}_{+}^{n} the set of commodity bundles
\succsim total preorder on \mathbb{R}_{+}^{n} :
$x, y \in \mathbb{R}_{+}^{n} \Longrightarrow x \succsim y$ or $y \succsim x$
$x \succsim y, y \succsim z \Longrightarrow x \succsim z$
\succsim is continuous if
$\operatorname{graph}(\succsim):=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n}: x \succsim y\right\}$ is closed.

PROPOSITION. A binary relation \succsim on \mathbb{R}_{+}^{n} is a continuous total preorder if and only if there is a continuous function $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}_{+}^{n}$

$$
x \succsim y \Longleftrightarrow u(x) \geq u(y) .
$$

\succsim total preorder on \mathbb{R}_{+}^{n}
\succsim is convex if

$$
x \succsim y \Longrightarrow(1-\lambda) x+\lambda y \succsim y \text { for all } \lambda \in[0,1] .
$$

$$
x \succ y \quad \Longleftrightarrow \quad x \succsim y, y \nsucceq x
$$

\succsim is strictly convex if
$x \succsim y, x \neq y \Longrightarrow(1-\lambda) x+\lambda y \succ y$ for all $\lambda \in(0,1)$.
$u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ utility re presentation of \succsim
\succsim is convex $\Longleftrightarrow u$ is quasiconcave
\succsim is strictly convex $\Longleftrightarrow u$ is strictly quasiconcave

The demand correspondence: $\quad X=X_{u}: \mathbb{R}_{++}^{n} \rightrightarrows \mathbb{R}_{+}^{n}$

$$
\begin{aligned}
X(p)=\left\{x \in \mathbb{R}_{+}^{n}\right. & :\langle x, p\rangle \leq 1, u(x) \geq u(y) \\
& \text { for all } \left.y \in \mathbb{R}_{+}^{n} \text { such that }\langle y, p\rangle \leq 1\right\} .
\end{aligned}
$$

\succsim is said to be locally nonsatiated if no relatively open subset of \mathbb{R}_{+}^{n} has a \succsim-maximal element.

PROPOSITION.

(1) If \succsim is locally nonsatiated then, for every $p \in \mathbb{R}_{++}^{n}$ and $x \in X(p),\langle x, p\rangle=1$.
(2) If \succsim is convex then X is convex-valued and satisfies GARP:

$$
\text { if } p^{i} \in \mathbb{R}_{++}^{n}, x^{i} \in X\left(p^{i}\right) \quad(i=1, \ldots, k) \text { then }
$$

$\min _{i=1, \ldots, k-1}\left\langle x^{i}-x^{i+1}, p^{i}\right\rangle \geq 0 \Longrightarrow\left\langle x^{k}-x^{1}, p^{k}\right\rangle \leq 0$.
(3) If u is u.s.c. and strictly quasiconcave then X is single-valued and satisfies SARP:
if $p^{i} \in \mathbb{R}_{++}^{n}, x^{i} \in X\left(p^{i}\right) \quad(i=1, \ldots, k)$ then
$\min _{i=1, \ldots, k-1}\left\langle x^{i}-x^{i+1}, p^{i}\right\rangle \geq 0 \Longrightarrow\left\langle x^{k}-x^{1}, p^{k}\right\rangle<0$.

2 Duality in Consumer Theory

$u: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ utility function
$p \in \mathbb{R}_{+}^{n}$ price vector
$M>0$ income

$$
(\mathcal{P}) \quad \begin{array}{ll}
\text { maximize } & u(x) \\
\text { subject to }
\end{array}\langle x, p\rangle \leq M
$$

The indirect utility function $v: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$:

$$
\begin{gathered}
v(p)=\sup \{u(x):\langle x, p\rangle \leq 1\} \\
S_{\lambda}(v)=\bigcap_{x: u(x)>\lambda}\left\{p \in \mathbb{R}_{+}^{n}:\langle x, p\rangle>1\right\} \quad(\lambda \in \mathbb{R})
\end{gathered}
$$

THEOREM. Let $v: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$. There exists a utility function $u: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ having v as its associated indirect utility function if and only if v is nonincreasing, evenly quasiconvex and satisfies

$$
v(p) \leq \lim _{\alpha \rightarrow 1^{-}} \bar{v}(\alpha p) \quad\left(p \in b d \mathbb{R}_{+}^{n}\right)
$$

\bar{v} denoting the l.s.c. hull of v.

In this case one can take u nondecreasing, evenly quasiconcave and satisfying

$$
\begin{equation*}
u(x) \geq \lim _{\alpha \rightarrow 1^{-}} \underline{u}(\alpha x) \quad\left(x \in b d \mathbb{R}_{+}^{n}\right) . \tag{1}
\end{equation*}
$$

Under these conditions u is unique, namely, u is the pointwise largest utility function inducing v; furthermore, it satisfies

$$
\begin{equation*}
u(x)=\inf \{v(p):\langle x, p\rangle \leq 1\} \quad\left(x \in \mathbb{R}_{+}^{n}\right) . \tag{2}
\end{equation*}
$$

COROLLARY. For every $v: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$, the function $v_{0}: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ defined by

$$
v_{0}(p)=\sup \{u(x):\langle x, p\rangle \leq 1\},
$$

with u given by (2), is the pointwise largest nonincreasing evenly quasiconvex minorant of v that satisfies

$$
\begin{equation*}
v_{0}(p) \leq \lim _{\alpha \rightarrow 1^{-}} \overline{v_{0}}(\alpha p) \quad\left(p \in b d \mathbb{R}_{+}^{n}\right) \tag{3}
\end{equation*}
$$

THEOREM. Let $u: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$. There exists a function $v: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ such that (2) holds if and only if u is nondecreasing, evenly quasiconcave and satisfies (1).

In this case one can take v nonincreasing, evenly quasiconvex and satisfying (3). Under these conditions v is unique, namely, v is the pointwise smallest function such that (2) holds; furthermore, it is the indirect utility function associated with u.

COROLLARY. For every $u: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$, the function $u^{0}: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ defined by

$$
u^{0}(x)=\inf \{v(p):\langle x, p\rangle \leq 1\}
$$

v being the indirect utility function associated with u, is the pointwise smallest nondecreasing evenly quasiconcave majorant of u that satisfies

$$
u^{0}(x) \geq \lim _{\alpha \rightarrow 1^{-}} \frac{u^{0}}{}(\alpha x) \quad\left(x \in b d \mathbb{R}_{+}^{n}\right)
$$

THEOREM. A nondecreasing evenly quasiconcave function $u: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ satisfying (1) is finite-valued if and only if its associated indirect utility function $v: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ is bounded from below and finite-valued on the interior of \mathbb{R}_{+}^{n}.

THEOREM. The indirect utility function $v: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ induced by a nondecreasing evenly quasiconcave function $u: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ satisfying (1) is finite-valued if and only if u is bounded from above and finite-valued on the interior of \mathbb{R}_{+}^{n}.

COROLLARY. Let $u: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ be a nondecreasing evenly quasiconcave function satisfying (1) and let v : $\mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ be its associated indirect utility function. The following statements are equivalent:
(i) u and v are finite-valued.
(ii) u is bounded.
(iii) v is bounded.
$u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ utility function
The expenditure function: $e_{u}: \mathbb{R}_{+}^{n} \times \mathbb{R} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ $e_{u}(p, \lambda)=\inf \{\langle x, p\rangle: u(x) \geq \lambda\} \quad\left((p, \lambda) \in \mathbb{R}_{+}^{n} \times \mathbb{R}\right)$.

THEOREM. A function $e: \mathbb{R}_{+}^{n} \times \mathbb{R} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ is the expenditure function e_{u} for some utility function $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ if and only if the following conditions hold:
(i) For each $\lambda \in \mathbb{R}$, either $e(\cdot, \lambda)$ is finite-valued, concave, linearly homogeneous and u.s.c., or it is identically equal to $+\infty$.
(ii) For each $p \in \mathbb{R}_{+}^{n}, e(p, \cdot)$ is nondecreasing.
(iii) $\cup_{\lambda \in \mathbb{R}} \partial e(\cdot, \lambda)(0)=\mathbb{R}_{+}^{n}$, with $\partial e(\cdot, \lambda)(0)$ denoting the superdifferential of the concave function $e(\cdot, \lambda)$ at the origin, i.e.

$$
\partial e(\cdot, \lambda)(0)=\left\{x \in \mathbb{R}_{+}^{n}:\langle x, p\rangle \geq e(p, \lambda) \quad \forall p \in \mathbb{R}_{+}^{n}\right\} .
$$

THEOREM. The mapping $u \longmapsto e_{u}$ is a bijection from the set of u.s.c. nondecreasing quasiconcave functions $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ onto the set of functions $e: \mathbb{R}_{+}^{n} \times \mathbb{R} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ that satisfy (i)-(iii),
(iv) $\bigcap_{\lambda \in \mathbb{R}} \partial e(\cdot, \lambda)(0)=\emptyset$
and
$(v) \bigcap_{\mu<\lambda} \partial e(\cdot, \mu)(0)=\partial e(\cdot, \lambda)(0) \quad(\lambda \in \mathbb{R})$.

Furthermore, the inverse mapping is $e \longmapsto u_{e}$, with u_{e} : $\mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ given by

$$
u_{e}(x)=\sup \{\lambda \in \mathbb{R}: x \in \partial e(\cdot, \lambda)(0)\}
$$

3 Monotonicity of Demand Functions

The demand correspondence: $\quad X: \mathbb{R}_{++}^{n} \rightrightarrows \mathbb{R}_{+}^{n}$

$$
X(p)=\left\{x \in \mathbb{R}_{+}^{n}:\langle x, p\rangle \leq 1, u(x)=v(p)\right\}
$$

THEOREM. If the utility function $u: \mathbb{R}_{+}^{n} \rightarrow \overline{\mathbb{R}}$ has no local maximum then the demand function $X: \mathbb{R}_{++}^{n} \rightrightarrows \mathbb{R}_{+}^{n}$ is cyclically quasimonotone (in the decreasing sense), i.e.
if $p^{i} \in \mathbb{R}_{++}^{n}, x^{i} \in X\left(p^{i}\right) \quad(i=1, \ldots, k)$
then

$$
\min _{i=1, \ldots, k}\left\langle x^{i}-x^{i+1}, p^{i}\right\rangle \leq 0, \quad \text { with } x^{k+1}=x^{1}
$$

X is quasimonotone (in the decreasing sense) if

$$
\begin{aligned}
p, q & \in \quad \mathbb{R}_{++}^{n}, x \in X(p), y \in Y(q) \\
& \Longrightarrow \quad \min \{\langle x-y, p\rangle,\langle y-x, q\rangle\} \leq 0
\end{aligned}
$$

X is monotone (in the decreasing sense) if

$$
\begin{align*}
p, q & \in \mathbb{R}_{++}^{n}, x \in X(p), y \in Y(q) \\
& \Longrightarrow\langle x-y, p\rangle+\langle y-x, q\rangle \leq 0 \tag{4}
\end{align*}
$$

$u: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$

$$
u\left(x_{1}, x_{2}\right)= \begin{cases}x_{1}+x_{2}-1 & \text { if } x_{1}+x_{2}<1 \\ x_{1} & \text { if } x_{1}+x_{2} \geq 1\end{cases}
$$

maximize $u\left(x_{1}, x_{2}\right)$
subject to $p_{1} x_{1}+p_{2} x_{2} \leq 1$

For $p_{1} \geq 1$ and $1 \geq p_{2}>0$, the optimal solution is

$$
x_{1}=\frac{1-p_{2}}{p_{1}-p_{2}}, \quad x_{2}=\frac{p_{1}-1}{p_{1}-p_{2}}
$$

Let $\bar{p} \in \mathbb{R}_{++}^{n}$ and $\bar{x} \in X(\bar{p})$.
\bar{p} is an optimal solution to

$$
\begin{array}{ll}
\underset{\operatorname{minimize}}{\min } & v(p) \\
\text { subject to }
\end{array}\langle\bar{x}, p\rangle \leq 1 .
$$

There exists $\lambda \geq 0$ such that

$$
\begin{gathered}
\nabla v(\bar{p})+\lambda \bar{x}=0 \quad \text { and } \quad \lambda(\langle\bar{x}, \bar{p}\rangle-1)=0 . \\
\langle\nabla v(\bar{p}), \bar{p}\rangle+\lambda\langle\bar{x}, \bar{p}\rangle=0 \quad \lambda\langle\bar{x}, \bar{p}\rangle=\lambda
\end{gathered}
$$

$$
\begin{gathered}
\lambda=-\langle\nabla v(\bar{p}), \bar{p}\rangle \\
\nabla v(\bar{p})-\langle\nabla v(\bar{p}), \bar{p}\rangle \bar{x}=0 .
\end{gathered}
$$

THEOREM. (Roy's Identity) If the utility function u is u.s.c. and its associated indirect utility function v is continuously differentiable at $\bar{p} \in \mathbb{R}_{++}^{n}$, with $\nabla v(\bar{p}) \neq 0$, then

$$
X(\bar{p})=\left\{\frac{1}{\langle\nabla v(\bar{p}), \bar{p}\rangle} \nabla v(\bar{p})\right\}
$$

THEOREM. If the utility function $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is concave, C^{2}, has a componentwise strictly positive gradient on \mathbb{R}_{++}^{n}, induces a demand function
$\varphi: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}_{+}^{n}$ (i.e. a single-valued demand correspondence $\left.p \in \mathbb{R}_{++}^{n} \rightrightarrows X(p)=\{\varphi(p)\}\right)$, with φ of class C^{1}, and satisfies

$$
-\frac{\left\langle x, \nabla^{2} u(x) x\right\rangle}{\langle x, \nabla u(x)\rangle}<4 \quad\left(x \in \mathbb{R}_{++}^{n}\right)
$$

then φ is strictly monotone, i.e. it satisfies (4) as a strict inequality whenever $p \neq q$.

$$
\begin{aligned}
X(p) & =\left\{x \in \mathbb{R}_{+}^{n}: u(x)=v(p)\right\} \quad\left(p \in \mathbb{R}_{++}^{n}\right) \\
X^{-1}(x) & =\left\{p \in \mathbb{R}_{++}^{n}:-v(p)=-u(x)\right\} \quad\left(x \in \mathbb{R}_{+}^{n}\right) \\
-u(x) & =\sup \{-v(p):\langle x, p\rangle \leq 1\} \quad\left(x \in \mathbb{R}_{+}^{n}\right)
\end{aligned}
$$

PROPOSITION. For a C^{2} nondecreasing quasiconcave utility function $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ with no stationary points, the following statements are equivalent:
(i) $-\frac{\left\langle x, \nabla^{2} u(x) x\right\rangle}{\langle x, \nabla u(x)\rangle} \leq 4 \quad\left(x \in \mathbb{R}_{++}^{n}\right)$.
(ii) The function $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{++}^{n} \longmapsto u\left(x_{1}^{-\frac{1}{3}}, \ldots, x_{n}^{-\frac{1}{3}}\right)$ is convex-along-rays.
(iii) The restriction $v: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ of the indirect utility function to the positive orthant has a representation of the type

$$
v(p)=\max _{(y, c) \in U}\left\{c-(\langle y, p\rangle)^{3}\right\} \quad\left(p \in \mathbb{R}_{++}^{n}\right)
$$

with $U \subseteq\left(\mathbb{R}_{++}^{n} \cup\{0\}\right) \times \mathbb{R}$.

THEOREM. Let $\varphi: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}_{+}^{n}$ be a C^{1} demand function induced by a strictly quasiconcave utility function $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$, which is C^{2} on \mathbb{R}_{++}^{n} and has a componentwise strictly positive gradient on $\mathbb{R}_{++}^{n} \cup \varphi\left(\mathbb{R}_{++}^{n}\right)$. Then φ is monotone if and only if
$-\frac{\left\langle x, \nabla^{2} u(x) x\right\rangle}{\langle x, \nabla u(x)\rangle} \leq 4-\frac{\langle x, \nabla u(x)\rangle}{\left\langle\nabla u(x),\left(\nabla^{2} u(x)\right)^{-1} \nabla u(x)\right\rangle}$
$\forall x \in \mathbb{R}_{++}^{n}$ such that $\nabla^{2} u(x)$ is nonsingular
and
$-\frac{\left\langle x, \nabla^{2} u(x) x\right\rangle}{\langle x, \nabla u(x)\rangle} \leq 4 \quad \forall x \in \mathbb{R}_{++}^{n}$ s. t. $\nabla^{2} u(x)$ is singular.

PROPOSITION. Let $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ be a utility function and let $v: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be its associated indirect utility function. If the set

$$
\left\{(p, x) \in \mathbb{R}_{++}^{n} \times \mathbb{R}_{+}^{n}: u(x)-v(p) \geq 0\right\}
$$

is convex (in particular, if the function

$$
\psi: \mathbb{R}_{++}^{n} \times \mathbb{R}_{+}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}
$$

defined by

$$
\psi(p, x)=u(x)-v(p)
$$

is quasiconcave) and u has no maximum then the demand correspondence X is monotone.

COROLLARY. Let $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ be a utility function and let $v: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be its associated indirect utility function. If u is concave and has no maximum and v is convex then the demand correspondence X is monotone.

THEOREM. If $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is nondecreasing and the function $x \in \mathbb{R}_{++}^{n} \longmapsto u\left(x^{-1}\right)$ is convex-along-rays then the restriction $v: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ of the indirect utility function to the positive orthant is convex. Conversely, if $v: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}$ is bounded, nonincreasing and convex then there is a nondecreasing quasiconcave utility function $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ such that $x \in \mathbb{R}_{++}^{n} \longmapsto u\left(x^{-1}\right)$ is convex-along-rays and whose associated indirect utility function extends v.

COROLLARY. Let $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ be a C^{2} nondecreasing quasiconcave utility function. The restriction $v: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}$ of its associated indirect utility function to the positive orthant is convex if and only if
$<x, \nabla^{2} u(x) x>+2<\nabla u(x), x>\geq 0 \quad\left(x \in \mathbb{R}_{++}^{n}\right)$.

4 Consumer Theory without Utility

Let \succsim be a total preorder on \mathbb{R}_{+}^{n}.

For $x_{1}, x_{2} \in \mathbb{R}_{+}^{n}$,

$$
\begin{array}{lll}
x_{1} \sim x_{2} & \Longleftrightarrow & x_{1} \succsim x_{2}, x_{2} \succsim x_{1} \\
x_{1} \succ x_{2} & \Longleftrightarrow & x_{1} \succsim x_{2}, x_{2} \nsucceq x_{1}
\end{array}
$$

The indirect preorder induced by $\succsim: \quad$ For $p, p_{2} \in \mathbb{R}_{+}^{n}$,
$p_{1} \succsim^{i} p_{2} \Longleftrightarrow \forall x_{2} \in B\left(p_{2}\right)=\left\{x \in \mathbb{R}_{+}^{n}:\left\langle x, p_{2}\right\rangle \leq 1\right\}$
$\exists x_{1} \in B\left(p_{1}\right)$ s. t. $x_{1} \succsim x_{2}$.
\succsim^{i} is a total preorder on \mathbb{R}_{+}^{n}.
\checkmark^{i} the associated indifferent relation
\succ^{i} the associated strict preorder

Let \succsim^{*} be a total preorder on \mathbb{R}_{+}^{n}.
The direct preorder induced by \succsim^{*} :
For $p_{1}, p_{2} \in \mathbb{R}_{+}^{n}$,

$$
\begin{aligned}
x_{1} \succsim^{* d} x_{2} \Longleftrightarrow & \forall p_{1} \in B^{-1}\left(x_{1}\right)=\left\{p \in \mathbb{R}_{+}^{n}:\left\langle x_{1}, p\right\rangle \leq 1\right\} \\
& \exists p_{2} \in B^{-1}\left(x_{2}\right) \text { s. t. } p_{1} \succsim^{*} p_{2} .
\end{aligned}
$$

$\succsim^{* d}$ is a total preorder on \mathbb{R}_{+}^{n}.

THEOREM. Let \succsim be a total preorder on \mathbb{R}_{+}^{n}. The following statements are equivalent:
(i) \succsim coincides with $\succsim^{i d}$.
(ii) \succsim has the following properties:
(a) \succsim is nondecreasing.
(b) For every $x_{1} \in \mathbb{R}_{+}^{n}$, the set $\left\{x \in \mathbb{R}_{+}^{n}: x \succsim x_{1}\right\}$ is evenly convex.
(c) For every $x_{1} \in \mathbb{R}_{+}^{n}$,
if $x_{2} \in c l\left\{x \in \mathbb{R}_{+}^{n}: x \succsim x_{1}\right\}$ and $\alpha>1$ then $\alpha x_{1} \succsim$ x_{2}.
(d) For every $x_{1}, x_{2} \in \mathbb{R}_{+}^{n}$,
if $x_{1} \sim x_{2}$ and x_{1} is a \succsim-maximal element of $B\left(p_{1}\right)$ for some $p_{1} \in \mathbb{R}_{+}^{n}$ then x_{2} is a \succsim-maximal element of $B\left(p_{2}\right)$ for some $p_{2} \in \mathbb{R}_{+}^{n}$.

Moreover, if conditions (a)-(d) hold, then \succsim^{i} has the following properties:
(a^{\prime}) \succsim^{i} is nonincreasing.
(b') For every $p_{1} \in \mathbb{R}_{+}^{n}$, the set $\left\{p \in \mathbb{R}_{+}^{n}: p_{1} \succsim^{i} p\right\}$ is evenly convex.
(c') For every $p_{1} \in \mathbb{R}_{+}^{n}$,
if $p_{2} \in c l\left\{p \in \mathbb{R}_{+}^{n}: p_{1} \succsim^{i} p\right\}$ and $\alpha>1$ then $p_{1} \succsim^{i}$ p_{2}.
(d') For every $p_{1}, p_{2} \in \mathbb{R}_{+}^{n}$, if $p_{1} \backsim^{i} p_{2}$ and p_{1} is a \succsim^{i} - minimal element of $B^{-1}\left(x_{1}\right)$ for some $x_{1} \in \mathbb{R}_{+}^{n}$ then p_{2} is a $\succsim^{i}-$ minimal element of $B^{-1}\left(x_{2}\right)$ for some $x_{2} \in \mathbb{R}_{+}^{n}$.

The duality mapping $\succsim \mapsto \succsim^{i}$ is a bijection, with inverse $\succeq^{*} \mapsto \succeq^{* d}$, from the set of all total preorders \succeq on \mathbb{R}_{+}^{n} with properties (a)-(d) onto the set of all total preorders \succsim^{i} on \mathbb{R}_{+}^{n} with properties ($\left.a^{\prime}\right)-\left(d^{\prime}\right)$.
$u: \mathbb{R}_{+}^{2} \longrightarrow \mathbb{R}$

$$
u(y, z)=\left\{\begin{array}{cc}
-\frac{1}{y+1} & \text { if } z \leq 1 \\
1 & \text { if } z>1
\end{array}\right.
$$

$$
v: \mathbb{R}_{+}^{2} \longrightarrow \mathbb{R}
$$

$$
v(q, r)=\left\{\begin{array}{ll}
1 & \text { if } r<1 \\
0 & \text { if } r \geq 1 \text { and } q=0 \\
-\frac{q}{q+1} & \text { if } r \geq 1 \text { and } q>0
\end{array} .\right.
$$

If $v(q, r)=0$ then no $\succeq-$ maximal element exists in $B(q, r)$.

If $v(q, r) \neq 0$ then $B(q, r)$ has at least a maximal element.
v is a utility representation for \succsim^{i}.
$(0,1) \backsim^{i}(0,2)$
$(0,1)$ is a $\succsim^{i}-$ minimal element of $B^{-1}(1,1)$
No $(y, z) \in \mathbb{R}_{+}^{2}$ exists such that $(0,2)$ is a $\succsim^{i}-$ minimal element of $B^{-1}(y, z)$:

If $(y, z) \in \mathbb{R}_{+}^{2}$, with $y \neq 0$, is such that $(0,2) \in$ $B^{-1}(y, z)$ then $(0,2) \succ^{i}\left(\frac{2-3 z}{2 y}, \frac{3}{2}\right) \in B^{-1}(y, z)$;
if $(0, z) \in \mathbb{R}_{+}^{2}$ is such that $(0,2) \in B^{-1}(0, z)$ then $(0,2) \succ^{i}\left(\frac{3}{2}, \frac{3}{2}\right) \in B^{-1}(0, z)$.
$\succsim^{i} \neq \succsim^{i d i}$
$u^{0}: \mathbb{R}_{+}^{2} \longrightarrow \mathbb{R}$

$$
u^{0}(y, z)=\left\{\begin{array}{cc}
-1 & \text { if } z \leq 1 \text { and } y=0 \\
\frac{z-1}{y-z+1} & \text { if } z \leq 1 \text { and } y>0 \\
1 & \text { if } z>1
\end{array}\right.
$$

u^{0} is a utility representation of $\succsim^{i d}$.
For every $(y, z) \in B(0,2), u^{0}(y, z)<0=u^{0}(1,1)$
$(1,1) \in B(0,1)$
$(0,1) \succ^{i d i}(0,2)$
$(0,1) \backsim^{i}(0,2)$

PROPOSITION. Let \succsim be a total preorder on \mathbb{R}_{+}^{n} satisfying properties (a)-(c). Then $\succsim^{i d}$ is the total preorder whose strict preorder $\succ^{i d}$ is defined as follows:
$x_{1} \succ^{i d} x_{2}$ if and only if
either $x_{1} \succ x_{2}$
or $x_{1} \backsim x_{2}, x_{1}$ is not a \succsim-maximal element in $B(p)$ for any $p \in \mathbb{R}_{+}^{n}$ and x_{2} is a \succsim-maximal element of $B(p)$ for some $p \in \mathbb{R}_{+}^{n}$.
$\succ^{i d}$ is an extension of \succ.
\succsim is an extension of $\succsim^{i d}$.
THEOREM. For every total preorder \succsim on \mathbb{R}_{+}^{n}, $\succsim^{\text {idid }}$ coincides with $\succsim^{i d}$.

THEOREM. Let \succsim be a total preorder on \mathbb{R}_{+}^{n} such that for every $p \in \mathbb{R}_{++}^{n}$ the set $B(p)$ has a \succsim-maximal element. Then \succsim^{i} has the following properties:
(a) \succsim^{i} is nonincreasing.
(b) For every $p_{1} \in \mathbb{R}_{+}^{n}$, the set $\left\{p \in \mathbb{R}_{+}^{n}: p_{1} \succ^{i} p\right\}$ is evenly convex.
(c) For every $p_{1} \in \mathbb{R}_{+}^{n}$, if $p_{2} \in c l\left\{p \in \mathbb{R}_{+}^{n}: p_{1} \succ^{i} p\right\}$ and $\alpha>1$ then $p_{1} \succsim \alpha p_{2}$.

Conversely, if \succsim^{*} is a total preorder on \mathbb{R}_{+}^{n} such that (a)(c) hold with \succsim^{i} replaced by \succsim^{*} then, for every $p \in \mathbb{R}_{++}^{n}$, the set $B(p)$ has a $\succsim^{* d}$-maximal element and $\succsim^{* d i}$ coincides with \succsim^{*}.

THEOREM. Let \succsim be a total preorder on \mathbb{R}_{+}^{n} that coincides with $\succsim^{i d}$. The following statements are equivalent:
(i) For every $p_{1} \in \mathbb{R}_{++}^{n}$ the set $B\left(p_{1}\right)$ has a \succsim-maximal element.
(ii) For every $p_{1} \in \mathbb{R}_{+}^{n}$, the set $\left\{p \in \mathbb{R}_{+}^{n}: p_{1} \succ^{i} p\right\}$ is evenly convex.
(iii) For every $p_{1} \in \mathbb{R}_{++}^{n}$, the set $\left\{p \in \mathbb{R}_{+}^{n}: p_{1} \succ^{i} p\right\}$ is evenly convex.
\succsim partial preorder on \mathbb{R}_{+}^{n}

The expenditure function: $\quad e_{\succsim}: \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$ $e_{\succsim}(p, x)=\inf \left\{\left\langle x^{\prime}, p\right\rangle: x^{\prime} \succsim x\right\} \quad\left(p \in \mathbb{R}_{+}^{n}, x \in \mathbb{R}_{+}^{n}\right)$.
(HCP) For all $x_{1}, x_{2} \in \mathbb{R}_{+}^{n}$,
$\overline{c o}\left(S_{\succsim}^{x_{1}}+\mathbb{R}_{+}^{n}\right) \subseteq \overline{c o}\left(S_{\succsim}^{x_{2}}+\mathbb{R}_{+}^{n}\right) \quad \Longrightarrow \quad S_{\succsim}^{x_{1}} \subseteq S_{\succsim}^{x_{2}}$

THEOREM. The mapping $\succsim \longmapsto e_{\succeq}$ is a bijection from the set of all preorders \succsim on \mathbb{R}_{+}^{n} whose upper contour sets $S_{\succsim}^{x}=\left\{x^{\prime} \in \mathbb{R}_{+}^{n}: x^{\prime} \succsim x\right\}$ satisfy (HCP) onto the set of functions $e: \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$that satisfy the following properties:
(a) For every $x \in \mathbb{R}_{+}^{n}$, the mapping $e(\cdot, x)$ is concave, positively homogeneous and upper semicontinuous.
(b) For every $x \in \mathbb{R}_{+}^{n}$, the closed convex hull of the set $\left\{x^{\prime} \in \mathbb{R}_{+}^{n}: e\left(\cdot, x^{\prime}\right) \geq e(\cdot, x)\right\}+\mathbb{R}_{+}^{n}$ coincides with $\partial e(\cdot, x)(0)$, the superdifferential of the concave function $e(\cdot, x)$ at the origin.

The inverse mapping is $e \longmapsto \succsim e$, with $\succsim e$ denoting the preorder on \mathbb{R}_{+}^{n} defined by $x_{1} \succsim e x_{2}$ if and only if $e\left(\cdot, x_{1}\right) \geq e\left(\cdot, x_{2}\right)$ (pointwise).

THEOREM. The mapping $\succsim \longmapsto e_{\succsim}$ is a bijection from the set of all nondecreasing preorders \succsim on \mathbb{R}_{+}^{n} whose upper contour sets are closed and convex onto the set of functions $e: \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$that satisfy the following properties:
(a) For every $x \in \mathbb{R}_{+}^{n}$, the mapping $e(\cdot, x)$ is concave, positively homogeneous and upper semicontinuous.
(b')For every $x \in \mathbb{R}_{+}^{n}$,

$$
\left\{x^{\prime} \in \mathbb{R}_{+}^{n}: e\left(\cdot, x^{\prime}\right) \geq e(\cdot, x)\right\}=\partial e(\cdot, x)(0)
$$

The inverse mapping $e \longmapsto \succsim e$ is given by: $x_{1} \succsim_{e} x_{2}$ if and only if $x_{1} \in \partial e\left(\cdot, x_{2}\right)(0)$.
\succsim total preorder on \mathbb{R}_{+}^{n}

The demand correspondence: $\quad X: \mathbb{R}_{++}^{n} \rightrightarrows \mathbb{R}_{+}^{n}$

$$
X(p)=\{x \in B(p): x \succsim y \quad \forall y \in B(p)\}
$$

\succsim on \mathbb{R}_{+}^{n} is said to be locally nonsatiated if no relatively open subset of \mathbb{R}_{+}^{n} has a \succsim-maximal element.

PROPOSITION. Let \succsim be a locally nonsatiated total preorder in \mathbb{R}_{+}^{n} and let X be its associated demand correspondence. If the set

$$
\left\{(x, p) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{++}^{n}: x \succsim y \quad \forall y \in B(p)\right\}
$$

is convex then X is monotone.

PROPOSITION. Let \succsim be a nondecreasing total preorder in \mathbb{R}_{+}^{n}, X be its associated demand correspondence, and assume that \succsim satisfies the following condition:

$$
\left.\begin{array}{c}
x_{1} \succsim \lambda y \\
x_{2} \succsim \mu y \\
\lambda>0, \mu>0
\end{array}\right\} \Longrightarrow \frac{1}{2}\left(x_{1}+x_{2}\right) \succsim 2 \frac{\lambda \mu}{\lambda+\mu} y .
$$

Then X is monotone.

If $\operatorname{graph}(\succsim)=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n}: x \succsim y\right\}$ is convex set then one has

$$
\left.\begin{array}{c}
x_{1} \succsim \lambda y \\
x_{2} \succsim \mu y \\
\lambda>0, \mu>0
\end{array}\right\} \Longrightarrow \frac{1}{2}\left(x_{1}+x_{2}\right) \succsim \frac{\lambda+\mu}{2} y \geq 2 \frac{\lambda \mu}{\lambda+\mu} y .
$$

