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Zs. Páles (University of Debrecen) Geodesic Convexity and Optimization Kaohsiung, July 15–19, 2008 2 / 20



Professor Tamás Rapcsák
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Family data, Education, Degrees

Born: March 18, 1947, Debrecen.

Died: March 24, 2008, Cuba.

He was married to Krisztina, they had two children.

Education, Degrees:
MSc in Mathematics, Lajos Kossuth University of Sciences,
Debrecen, 1965-70
PhD in Operations Research, Lajos Kossuth University of
Sciences, Debrecen, 1974
Candidate of Science, Hungarian Academy of Sciences, 1985
Habilitation in Applied Mathematics, Operations Research,
Technical University of Budapest, 1995
Doctor of Science, Operations Research and Decision Systems,
Hungarian Academy of Sciences, 1998
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Positions

1970—1976: Computer and Automation Research Institute,
Hungarian Academy of Sciences (MTA SZTAKI), Department of
Operations Research, Researcher
1976: Électricité de France, Paris, Scholarship Fellow
1976—1978: MTA SZTAKI, Department of Operations Research,
Researcher
1978—1980: Computer Centre of the Ministry for the
Management of Water Supplies, Alger, Algeria, Expert
1980—1989: MTA SZTAKI, Department of Operations Research,
Senior Researcher
1989—1990: MTA SZTAKI, Department of Operations Research,
Head of Department of Operations Research, Senior Researcher
1991—2008: MTA SZTAKI, Laboratory and Department of
Operations Research and Decision Systems, Head of Laboratory
and Department
1995—2008: Corvinus University of Budapest, Full Professor and
Head of Department of Decisions in Economy
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Committees, Societies

Vice-president, Hungarian Operational Research Society,
1991-1994
President, Hungarian Operational Research Society, 1994-1996
Member, Committee for Operations Research, Hungarian
Academy of Sciences, 1991-2008
Representative of the Hungarian Operational Research Society in
European Operational Research Society, 1991-2008
Member, Mathematical Programming Society
Vice-President, Committee for Operations Research, Hungarian
Academy of Sciences, 1996-1999
Member, Committee for Mathematics at Higher Education,
Accreditation Committee, 1997-2000
President, Hungarian Operational Research Society, 1998-2000
Member, Board for Hungarian Operatinal Research Society,
2006-2008
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Editorial Boards

Journal of Optimization Theory and Applications (JOTA)
Journal of Global Optimization (JoGO)
Central European Journal for Operations Research (CEJOR)
Pure Mathematics and Applications (PuMA)
Alkalmazott Matematikai Lapok (Applied Mathematics Letters)
Journal of ICT
Optimization Letters
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Awards

1978: Gyula Farkas Prize
1978, 1986, 1992, 1996, 1999, 2001: Institute Award, MTA
SZTAKI
1996: ANBAR Citation of Highest Quality Rating
1997, 2000, 2006: Institute Publication Award, MTA SZTAKI
1999-2002: Széchenyi Professor Fellowship
2003: Gold Medal of Corvinus University of Budapest
2003: Bolyai Farkas Prize, Hungarian Academy of Sciences
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A. Prékopa, T. Rapcsák, and I. Zsuffa, A new method for serially linked reservoir
system design using stochastic programming, Tanulmányok—MTA Számitástech.
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Geodesically Convex Sets

Let M ⊂ Rn denote a k -dimensional Riemannian Cm-manifold.

Definition
A curve γ : [0,1]→ M is called geodesic if its tangent is parallel along
the curve. (Equivalently, the curve is the shorthest path between any
two close points of the curve.)

Definition
A set A ⊂ M is called g-convex if any two points of A are joined by a
geodesic belonging to A, i.e., for all x , y ∈ A, there exists a geodesic
curve γ : [0,1]→ A such that γ(0) = x and γ(1) = y .

Examples
1. A connected, complete Riemannian manifold is always g-convex.
2. For every point p ∈ M, there is a neighborhood U of p which is
g-convex; for any two points in U, there is a unique geodesic curve
joining the two points and staying in U.
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Zs. Páles (University of Debrecen) Geodesic Convexity and Optimization Kaohsiung, July 15–19, 2008 11 / 20



Geodesically Convex Functions

Definition
Let A ⊂ M be a g-convex set. A function f : A→ R is called g-convex
if, for any two points x , y ∈ A and arc-length-parametrized geodesic
curve γ : [0, `]→ A with γ(0) = x and γ(`) = y , we have

f (γ(t`)) ≤ tf (γ(0)) + (1− t)f (γ(`)) (t ∈ [0,1]).

Lemma
Let A ⊂ M be a g-convex set and f : A→ R be g-convex function.
Then, for all c ∈ R, the level set

{x ∈ A | f (x) ≤ c}

is also g-convex.
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Properties of Geodesically Convex Functions

Theorem
Let A ⊂ M be an open g-convex set. Then, a function f : A→ R is
g-convex if and only if it is g-convex in a g-convex neighborhood of
every point of A.

Theorem
Let A ⊂ M be an g-convex set and let f : A→ R be a g-convex function.
Then, a local minimum point for f is also a global minimum point.
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1st-order Characterization of Geodesic Convexity

Theorem
Let A ⊂ M be an open g-convex set, and let f : A→ R be C1-function.
Then, f is g-convex on A if and only if, for every pair of points x , y ∈ A
and an arc-length-parametrized geodesic curve γ : [0, `]→ A such that
γ(0) = x and γ(`) = y , we have

f (y)− f (x) ≥ ∇f (x)γ̇(0)`,

where ∇f (x) is the gradient of f at the point x .

Corollary
Let A ⊂ M be an open g-convex set, and let f : A→ R be g-convex
C1-function. If ∇f (x) is orthogonal to the tangent space TM(x) of M at
x , then x is a global minimum point of f on A. Furthermore, the set of
global minimum points is g-convex.

Zs. Páles (University of Debrecen) Geodesic Convexity and Optimization Kaohsiung, July 15–19, 2008 14 / 20



1st-order Characterization of Geodesic Convexity

Theorem
Let A ⊂ M be an open g-convex set, and let f : A→ R be C1-function.
Then, f is g-convex on A if and only if, for every pair of points x , y ∈ A
and an arc-length-parametrized geodesic curve γ : [0, `]→ A such that
γ(0) = x and γ(`) = y , we have

f (y)− f (x) ≥ ∇f (x)γ̇(0)`,

where ∇f (x) is the gradient of f at the point x .

Corollary
Let A ⊂ M be an open g-convex set, and let f : A→ R be g-convex
C1-function. If ∇f (x) is orthogonal to the tangent space TM(x) of M at
x , then x is a global minimum point of f on A. Furthermore, the set of
global minimum points is g-convex.
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2nd-order Characterization of Geodesic Convexity

Theorem
Let A ⊂ M be an open g-convex set, and let f : A→ R be C2-function.
Then, f is g-convex on A if and only if, for every point x ∈ A, the
following geodesic-Hessian matrix is positive semidefinite

Hg f (x) := Hf (x)|TM(x) + |∇fN(x)|B∇fN(x),

where Hf (x)|TM(x) is the Hessian of f at the point x restricted to the
tangent space TM(x) of M at x , and B∇fN(x) is the second fundamental
form of M in the normal direction of the vector ∇f (x).

The matrix vaued function Hg f determines a second-order
symmetrical tensor field on A.
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Constrained Optimization

Optimization Problem
Let f ,h1, . . . ,hn−k : Rn → R be Cm-functions (m ≥ 1).
Consider the problem (P) described as:

Minimize f (x) with respect to x ∈ M,

where the equality constraint set M is defined by

M := {x ∈ Rn | h1(x) = · · · = hn−k (x) = 0}.

Proposition
If h1, . . . ,hn−k : Rn → R are Cm-functions (m ≥ 1) and the vectors
∇h1(x), . . . ,∇hn−k (x) are independent for all x ∈ M, then M is a
k -dimensional Riemannian Cm-manifold with the metric structure
induced by the Euclidean metric.
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The Lagrange Principle, 1st Part

Lagrange Multiplier Theorem — Necessity

Let f ,h1, . . . ,hn−k : Rn → R be C1-functions such that the vectors
∇h1(x), . . . ,∇hn−k (x) are independent at x = x0 ∈ M. Assume that x0
is a local minimum point for the problem (P). Then there exist
multipliers µ1, . . . , µk ∈ R such that

∇f (x0)−
n−k∑
j=1

µj∇hj(x0) = 0.

If, in addition, f ,h1, . . . ,hn−k : Rn → R are C2-functions then, for all
v ∈ TM(x0) = {v ∈ Rn | ∇h1(x0)vT = · · · = ∇hn−k (x0)vT = 0},

vT
(

Hf (x0)−
n−k∑
j=1

µjHhj(x0)
)

v ≥ 0.
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The Lagrange Principle, 2nd Part

Lagrange Multiplier Theorem — Sufficiency

Let f ,h1, . . . ,hn−k : Rn → R be C2-functions such that the vectors
∇h1(x), . . . ,∇hn−k (x) are independent at x = x0 ∈ M. Assume that
there exist multipliers µ1, . . . , µk ∈ R such that

∇f (x0)−
n−k∑
j=1

µj∇hj(x0) = 0

and, for all
0 6= v ∈ TM(x0) = {v ∈ Rn | ∇h1(x0)vT = · · · = ∇hn−k (x0)vT = 0},

vT
(

Hf (x0)−
n−k∑
j=1

µjHhj(x0)
)

v > 0.

Then x0 is a local minimum point for the problem (P).
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Characterization of Geodesic Convexity

Definition
Let f ,h1, . . . ,hn−k : Rn → R be C1-functions such that
∇h1(x), . . . ,∇hn−k (x) are independent for all x ∈ M. Define

L(x) := f (x)−
n−k∑
j=1

µj(x)hj(x) (x ∈ M),

where

µ(x)T := ∇f (x)∇h(x)T (∇h(x)∇h(x)T )−1
(x ∈ M).

Theorem
Let M be connected and f ,h1, . . . ,hn−k : Rn → R be C2-functions such
that ∇h1(x), . . . ,∇hn−k (x) are independent for all x ∈ M. Then f is
g-convex on M if and only if, for all x ∈ M, the matrix HgL(x)|TM(x) is
positive semidefinite.
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Sufficient Condition of Global Optimality

Theorem
Let M be connected and f ,h1, . . . ,hn−k : Rn → R be C2-functions such
that ∇h1(x), . . . ,∇hn−k (x) are independent for all x ∈ M. Then f is
g-convex on M if and only if, for all x ∈ M and for all v ∈ TM(x),

vT
(

Hf (x)−
n−k∑
j=1

µj(x)Hhj(x)
)

v ≥ 0.

Corollary
Assume that the conditions and the statement of the above theorem
hold. If, for some x0 ∈ M,

∇f (x0)−
n−k∑
j=1

µj(x0)∇hj(x0) = 0,

then x0 is a global minimum point of problem (P).
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