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Let D denote a convex set of a real linear space X throughout this talk.

Perturbation of Convex Functions by Bounded Functions
Let δ ≥ 0 and let f : D → R be of the form f = g + h,
where g : D → R is convex and ‖h‖ ≤ δ, i.e., |h(x)| ≤ δ for all x ∈ D.
Then, for all x , y ∈ D and t ∈ [0,1],

f (tx + (1− t)y) = g(tx + (1− t)y) + h(tx + (1− t)y)

≤ tg(x) + (1− t)g(y) + δ

≤ tg(x) + (1− t)g(y) + t
[
h(x) + δ

]
+ (1− t)

[
h(y) + δ

]
+ δ

= tf (x) + (1− t)f (y) + 2δ.

More generally, for all n ∈ N, for all x1, . . . , xn ∈ D and t1, . . . , tn ∈ [0,1]
with t1 + · · ·+ tn = 1,

f (t1x1 + · · ·+ tnxn) ≤ t1f (x1) + · · ·+ tnf (xn) + 2δ.
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Definition (Hyers and Ulam [HU52])
Let δ ≥ 0. Then a function f : D → R is called δ-convex if

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) + δ, (x , y ∈ D, t ∈ [0,1]).

Theorem (Hyers and Ulam [HU52])
Let X be of finite dimension. Assume that f : D → R is δ-convex.
Then f is of the form f = g + h, where g : D → R is a convex function
and h : D → R is a bounded function such that ‖h‖ ≤ knδ, where the
positive constant kn depends only on n = dim(X ).

For the proof, use Helly’s theorem.
Hyers and Ulam also proved that

kn ≤
n(n + 3)

4(n + 1)
≈ n

4
.
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On the constant kn

Green [Gre52], Cholewa [Cho92] obtained much better estimations of
kn showing that, for large n,

kn ≤
log2(n)

2
.

Laczkovich [Lac99] compared this constant to several other
dimension-depending stability constants and proved that

kn ≥
log2(n/2)

4
.

This lower estimate shows that there is no stability results for infinite
dimensional spaces X .
A counterexample in this direction was earlier constructed by Casini
and Papini [CP93].
The stability aspects of δ-convexity were discussed by Ger [Ger94].
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Theorem (Characterization of Bounded Perturbations)
Let δ ≥ 0. Then a function f : D → R is of the form

f = g + h,

where g : D → R is a convex function and h : D → R with ‖h‖ ≤ δ,
if and only if, for all n ≤ dim(X ) + 1, x1, . . . , xn ∈ D and t1, . . . , tn ∈ [0,1]
with t1 + · · ·+ tn = 1,

f (t1x1 + · · ·+ tnxn) ≤ t1f (x1) + · · ·+ tnf (xn) + 2δ.
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Definition
A function f : D → R is called δ-Jensen convex if

f
(x + y

2

)
≤ f (x) + f (y)

2
+ δ (x , y ∈ D).

There is no analogous decomposition theorem for δ-Jensen-convex
functions by the counterexample given by Cholewa [Cho92].

However, one can get a Bernstein-Doetsch type regularity theorem:

Theorem (Ng and Nikodem, [NN93])
If f : D → R is bounded from above on a nonempty open subset of
H ⊂ D and δ-Jensen convex, then it is 2δ-convex.
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For locally upper bounded δ-Jensen-convex functions, one can obtain
the existence of an analogous dimension depending stability constant
jn (defined similarly as kn above). The sharp value of jn was found by
Dilworth, Howard, and Roberts [DHR99] who proved that

jn =
1
2

(
[log2(n)] + 1 +

n
2[log2(n)]

)
≤ 1 +

1
2

log2(n)

is the best possible value for jn.
(Here [·] denotes the integer-part function).

The connection between δ-Jensen-convexity and δ-Q-convexity was
investigated by Mrowiec [Mro01].

If D ⊂ R and the δ-convexity inequality is supposed to be valid for all
x , y ∈ D except a set of 2-dimensional Lebesgue measure zero then
one can speak about almost δ-convexity. Results in this direction are
due to Kuczma [Kuc70] (the case δ = 0) and Ger [Ger88] (the case
δ ≥ 0).
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Zs. Páles (University of Debrecen) Approximate Convexity Kaohsiung, July 15–19, 2008 7 / 20



Perturbation of Convex Functions by p-Lischitz Functions
Let ε ≥ 0, p ∈ (0,1], and let f : D → R be of the form f = g + h, where
g : D → R is convex and h : D → R is (ε,p)-Lipschitz, i.e.,

|h(x)− h(y)| ≤ ε‖x − y‖p (x , y ∈ D).

Then, for all x , y ∈ D and t ∈ [0,1],

f (tx + (1− t)y) = g(tx + (1− t)y) + h(tx + (1− t)y)

≤ tg(x) + (1− t)g(y) + t
[
h(tx + (1− t)y)− h(x)

]
+ th(x)

+ (1− t)
[
h(tx + (1− t)y)− h(y)

]
+ (1− t)h(y)

≤ tf (x) + (1− t)f (y) + tε‖(1− t)(x − y)‖p + (1− t)ε‖t(x − y)‖p

≤ tf (x) + (1− t)f (y) + 2ε
(
t(1− t)‖x − y‖

)p
.

More generally, for all x1, . . . , xn ∈ D and t1, . . . , tn ∈ [0,1] with
t1 + · · ·+ tn = 1,
f (t1x1 + · · ·+ tnxn) ≤ t1f (x1) + · · ·+ tnf (xn) + 2ε

∑
1≤i<j≤n

(
ti tj‖xi − xj‖

)p
.
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Various Definitions, Recent Research Directions
A function f : D → R satisfying, for some C ∈ R

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) + C
(
‖x − y‖

)p

is called p-paraconvex (cf. Rolewicz [Rol80, Rol79, Rol80b, Rol80a,
Rol80c, Rol00, Rol01, Rol02, Rol05, Rol99];
More generally, f is called α-paraconvex if

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) + α
(
‖x − y‖

)
.

Recently, Luc, Ngai, and Théra [LVNT00, VNLT00] have introduced the
following notion: f is approximately convex, if for all x0 ∈ D, for all
ε > 0, there exists δ > 0 such that

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) + ε‖x − y‖

if x , y ∈ B(x0, δ).
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Definition
Let ε, δ ≥ 0 be constants. A function f : D → R is called (ε, δ)-convex if

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) + εt(1− t)‖x − y‖+ δ

for x , y ∈ D, t ∈ [0,1].

It is not difficult to see that if f is of the form f = g + h + `, where
— g : D → R is convex,
— h : D → R is bounded with ‖h‖ ≤ δ/2,
— ` : D → R is (ε/2)-Lipschitz then f is (ε, δ)-convex.
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Theorem ([Pál03])
Let I ⊂ R be an interval, f : I → R and ε, δ be nonnegative numbers.
Then the following conditions are pairwise equivalent:

(i) f is (ε, δ)-convex on I, i.e., for all x , y ∈ I, t ∈ [0,1].

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) + εt(1− t)|x − y |+ δ

(ii) For x ,u, y ∈ I with x < u < y ,

f (x) + δ − f (u)

x − u
≤ f (y) + δ − f (u)

y − u
+ ε;

(iii) There exists a function p : I → R such that, for x ,u ∈ I,

f (u) + p(u)(x − u) ≤ f (x) +
ε

2
|x − u|+ δ;

(iv) If x1, . . . , xn ∈ I, t1, . . . , tn ≥ 0, t1 + · · ·+ tn = 1 and u := t1x1 + · · ·+ tnxn,
then

f (u) ≤ t1f (x1) + · · ·+ tnf (xn) +
ε

2

(
t1|x1 − u|+ · · ·+ tn|xn − u|

)
+ δ.
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ε

2
|x − u|+ δ;

(iv) If x1, . . . , xn ∈ I, t1, . . . , tn ≥ 0, t1 + · · ·+ tn = 1 and u := t1x1 + · · ·+ tnxn,
then

f (u) ≤ t1f (x1) + · · ·+ tnf (xn) +
ε

2

(
t1|x1 − u|+ · · ·+ tn|xn − u|

)
+ δ.
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Proof of (i)⇒(ii): Assume that f is (ε, δ)-convex and let x < u < y be in
I. Choose t ∈ [0,1] such that u = tx + (1− t)y , that is let
t = (y − u)/(y − x). Then by the (ε, δ)-convexity of f , we get

f (u) ≤ y − u
y − x

f (x) +
u − x
y − x

f (y) + ε
(y − u)(u − x)

y − x
+ δ,

which is equivalent to (ii).
Proof of (ii)⇒(iii): Assume that (ii) holds and define

p(u) := sup
x∈I, x<u

( f (x) + δ − f (u)

x − u
− ε

2

)
u ∈ I.

Then, due to (ii), we have
f (x) + δ − f (u)

x − u
− ε

2
≤ p(u) ≤ f (y) + δ − f (u)

y − u
+
ε

2

for all x < u < y in I. The left inequality yields (iii) if x < u, and
analogously, the right inequality reduces to (iii) if x > u.
The case x = u is obvious.
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Proof of (iii)⇒(iv): To deduce (iv) from (iii), let x1, . . . , xn ∈ I,
t1, . . . , tn ≥ 0, t1 + · · ·+ tn = 1 and u := t1x1 + · · ·+ tnxn. Then,
substituting x by xi in (iii), multiplying this inequality by ti , and adding
up the inequalities so obtained, we get

f (u) =
n∑

i=1

ti [f (u) + p(u)(xi − u)]

≤
n∑

i=1

ti
(

f (xi) +
ε

2
|xi − u|+ δ

)
=

n∑
i=1

ti f (xi) +
ε

2

n∑
i=1

ti |xi − u|+ δ,

which is the desired inequality.
Proof of (iv)⇒(i): Taking x1 = x , x2 = y , t1 = t , and t2 = 1− t in
condition (iv), one can see that the inequality (iv) reduces to (i).
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Theorem (First decomposition) ([Pál03])
Let f : I → R and ε, δ ≥ 0. Then f is (ε, δ)-convex if and only if there
exists an (ε,0)-convex function φ : I → R such that ‖f − φ‖ =≤ δ/2.

The proof of the implication⇒ is easy. To prove the converse,
assume that f is (ε, δ)-convex and apply the previous theorem.
Then there exists a function p : I → R such that, for all x ,u ∈ I,

f (u) + p(u)(x − u) ≤ f (x) +
ε

2
|x − u|+ δ;

Define, for x ∈ I,

φ(x) := sup
u∈I

(
f (u) + p(u)(x − u)− ε

2
|x − u| − δ

2

)
Then we have that φ(x) ≤ f (x) + δ/2 for all x ∈ I.
On the other hand, f (x)− δ/2 ≤ φ(x). Thus, ‖f − φ‖ ≤ δ/2.

Finally, one can show that φ is (ε,0)-convex.
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Definition
A function p : I → R is called ε-nondecreasing if, for all x ≤ y in I,

p(x) ≤ p(y) + ε.

Theorem ([Pál03])
Let I ⊂ R be an open interval and p : I → R. Then p is
ε-nondecreasing if and only if there exists a nondecreasing function
q : I → R such that ‖p − q‖ ≤ ε/2.

Proof of⇒. Assume that q is nondecreasing such that ‖p − q‖ ≤ ε/2.
Then for x ≤ y , we have

p(x) ≤ q(x) + |p(x)− q(x)| ≤ q(y) +
ε

2
≤ p(y) +

ε

2
+ |p(y)− q(y)| ≤ p(y) + ε.

Thus, p is ε-nondecreasing.
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Proof of⇐. Conversely, assume that p is ε-nondecreasing and define

q(x) := sup
x∈I, x≥v

(
p(v)− ε

2

)
(x ∈ I).

Then q is obviously nondecreasing. By its definition, we have that

p(x)− ε

2
≤ q(x).

On the other hand, using that p is ε-nondecreasing, p(v) ≤ p(x) + ε for
all v ≤ x , whence

q(x) = sup
x∈I, x≥v

(
p(v)− ε

2

)
≤ p(x) +

ε

2
.

The two inequalities obtained yield that ‖p − q‖ ≤ ε/2.
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Corollary ([Pál03])
Let φ : I → R be an (ε,0)-convex function on I, where ε ≥ 0. Then
there exists an increasing function q : I → R such that

φ(u) + q(u)(x − u) ≤ φ(x) + ε|x − u|+ δ (x ,u ∈ I).

By a previous theorem, there exists a function p : I → R such that

φ(u) + p(u)(x − u) ≤ φ(x) +
ε

2
|x − u| (x ,u ∈ I).

Interchanging x and u and adding up the two inequalities, we get

(p(u)− p(x))(x − u) ≤ ε|x − u| (x ,u ∈ I).

If x < u, then p(x)− p(u) ≤ ε, whence p is ε-nondecreasing.
By the previous result, there exists an increasing function q : I → R
such that ‖p − q‖ ≤ ε/2. Thus, for all x ,u ∈ I, we get

φ(u) + q(u)(x − u) ≤ φ(u) + p(u)(x − u) + |(p(u)− q(u))(x − u)|

≤ φ(u) + p(u)(x − u) +
ε

2
|x − u| ≤ φ(x) + ε|x − u|.
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Theorem ([Pál03])
Let φ : I → R and ε ≥ 0. Then there exists an increasing function
q : I → R such that, for x ,u ∈ I,

φ(u) + q(u)(x − u) ≤ φ(x) + ε|x − u|.

if and only if there exists a convex function g : I → R such that
` := φ− g is ε-Lipschitz.

Proof of⇐: Assume that φ = g + `, where g is convex and ` is
ε-Lipschitz. Then, there exists an increasing function q : I → R such
that

g(u) + q(u)(x − u) ≤ g(x) (x ,u ∈ I).

The function ` also satisfies

`(u) ≤ `(x) + ε|x − u| (x ,u ∈ I).

Adding up these inequalities, we get that φ satisfies

φ(u) + q(u)(x − u) ≤ φ(x) + ε|x − u| (x ,u ∈ I).
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Proof of⇒: Conversely, assume that

q(u)(x − u) ≤ φ(x)− φ(u) + ε|x − u| (x ,u ∈ I).

Define now g : I → R by g(x) :=
∫ x

x0
q, where x0 is a fixed element of I.

Then, q being nondecreasing, we get that g is a convex function.
To complete the proof, we show that ` := φ− g is ε-Lipschitz.
For, let x < y , x , y ∈ I be arbitrary. Let t0 = x < t1 < · · · < tn = y be an
arbitrary division of the interval [x , y ]. Substituting x := ti−1, u := ti for
i = 1, . . . ,n into the above inequality and adding the inequalities so
obtained, we get

n∑
i=1

q(ti)(ti−1 − ti) ≤
n∑

i=1

(
φ(ti−1)− φ(ti) + ε(ti − ti−1)

)
= φ(t0)− φ(tn) + ε(tn − t0) = φ(x)− φ(y) + ε(y − x).

Therefore, we obtain

g(x)− g(y) ≤ φ(x)− φ(y) + ε(y − x),

that is, `(y)− `(x) ≤ ε(y − x). . . . ` is ε-Lipschitz.
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Corollary ([Pál03])
Let φ : I → R and ε ≥ 0. If there exists a convex function g : I → R
such that ` := φ− g is ε/2-Lipschitz, then φ is (ε,0)-convex on I.
Conversely, if φ is (ε,0)-convex on I, then there exists a convex
function g : I → R such that ` = φ− g is ε-Lipschitz.

Theorem ([Pál03])
Let f : I → R and ε, δ ≥ 0. If f is of the form f = g + `+ h, where
g : I → R is convex, h : I → R is bounded with ‖h‖ ≤ δ/2, and ` : I → R
is ε/2-Lipschitz, then f is (ε, δ)-convex.
Conversely, if f is (ε, δ)-convex on I, then there exist a convex function
g : I → R, a bounded function h : I → R with ‖h‖ ≤ δ/2, and an
ε-Lipschitz function ` : I → R such that f = g + h + `.

Open Problem
What happens if f : D ⊆ X → R and D is not one dimensional?
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