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Problem Definition

• Optimization involving ratios of functions. That is,

(P) sup
x∈X

f (x)

g(x)

where X = {x ∈ C |hj(x) ≤ 0, j = 1, 2, . . . , n} is called a
fractional program.
• When f , g , hj are affine, (P) is a linear fractional program.
• When f , g are quadratic and hj affine, (P) is called a
quadratic fractional program.
• When f ≥ 0 is concave and g > 0 and hj are convex, (P) is
called a concave fractional program.
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• In some applications, more than one ratio can be considered.
Particularly,
The generalized fractional program:

(P) λ∗ = max
x∈X

min
1≤i≤n

{ fi(x)

gi(x)
}

The sum-of-ratios program:

(P) λ∗ = max
x∈X

∑

1≤i≤n

{ fi(x)

gi(x)
}

The multi-objective fractional program:

(P) λ∗ = min
x∈X
{( f1(x)

g1(x)
, . . . ,

fn(x)

gn(x)
)}

All functions gi > 0.
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Traditional LP models try to decide on the best combination
of different activities over a fixed time horizon by maximizing
the profit subject to resources constraints:

(LP) max Z =
n∑

j=1

(pj − vj)xj

s.t.
m∑

j=1

aijxj ≤ bi , i = 1, 2, . . . ,m.

where pj is the given market prices per unit (under conditions
of perfect competition); vj the variable costs per unit of
activity xj ; bi are the capacities, usually representing the floor
spaces of a warehouse; the availability of transportation
equipments; sizes of machines; or management staffs, etc.
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Problems in the profit maximizing LP model

I Many, perhaps most, real world systems are dynamic, so
naturally the time factor should be an important decision
variable. The LP model does not take into consideration
various decisions over different time horizons.

I In reality, there are no such perfect market prices. Usually
the entrepreneur has to decide not only the activity levels
xj , but also the prices p′j of their products. The profit
maximizing model above is of little help to the price fixer.
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I The economic fixed costs such as the lease payments of
warehouses, the cost of the machines, annual salaries of
management staffs are often lurking behind the set of
capacity constraints. Let FC be the totality of the fixed
cost. Then, the LP model above either ignores the fixed
cost, or allocates the fixed cost equally to each activity:

max
n∑

j=1

(pj − vj)xj = max
n∑

j=1

(pj − vj)xj − FC

=
n∑

j=1

(pj − vj −
FC∑n
j=1 xj

)xj

In either case, the LP model above provides almost no
guideline to the accountant for valuing the finished goods
inventory of the firm.
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Full-cost Objective

Z =
n∑

j=1

kj

(
vj +

vjxj∑
vjxj
· FC

xj

)
xj −

∑
vjxj − FC

proposed by Colantoni, Manes, Whinston, The Accounting
Review, 1969.
• The total fixed costs are allocated based on the proportion
which total variable costs of that activity bear to total variable
costs of all activities.
• The perfect market price is replaced by kj , the mark-up of
activity j , multiplying the full cost of that activity. (For
government projects, kj often has an upper bound like 110%
or 120% subject to audit.)
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• Each entrepreneur has his own considerations for the k ′j s. If
kj ’s are given parameters in the model, it is a
sum-of-linear-ratios problem. If kj ’s are also decision variables,
a quadratic fractional programming occurs.
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Container ship stowage planning (Picture: Port of
KaoHsiung)
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• A linear programming model may be set up to find the best
combination of cargoes to be loaded in a ship, in terms of
maximum profit.
• However, depending on weights, lengths, or other characters
of goods, some kinds of cargo containers are loaded, or
unloaded, more slowly than others.
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I For example, to maintain the stability and safety of the
ship, heavier containers should be placed lower than the
lighter ones, causing shifts of containers in doing so.
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Figure: Loading information: Weight, LCG, VCG, TCG.
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Figure: Bay planning on a vessel
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GCGC

Figure: One of the most important cost for a containership
company is the yearly rental fee for a berth.
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I A stowage plan is necessary to improve the efficiency in
loading/unloading the vessel subject to safety regulations.
The purpose is to reduce the number of shifting at ports
and on ships.

I To this end, traditional profit-maximization LP model
may not be useful as it does not consider the loading time
of different cargoes, and thus fails to pass a proper share
of the yearly rental fee of the berth to different types of
containers.
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• An objective function taking into account of the loading
time is suggested as follows: (Fractional Programming, B.D.
Craven, 1988)

max

∑
i(pi − C1ki)xi − C2T∑

i kixi + T

where pi is the unit profit for cargo of type i ; C1 is the cost
per unit time at ports; ki the loading time for cargo i ; C2 is
the cost per unit time at sea, and T the journey time.
• Given ki , this is a single ratio linear fractional programming.
If ki ’s are also decision variables representing different stowage
plans, it becomes a quadratic fractional programming problem.
• The objective function can be viewed as to allocate the fixed
costs at ports (berth/equipments rental fees) by prorating to
various types of cargoes based on loading/unloading times.
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Congestion Control

I In a wireless telecommunications network, two wireless
devices (e.g. cell phone base stations, computer accessing
points, etc.) are connected through a set of links (l),
called sessions.

I The capacity of each link (data rate, bits per second, for
example, 10Mbit/s) is adjustable, depending upon the
transmitted power of the device and the interferences
from other nodes. The stronger the power and the less
the interferences, the better the throughput.

R. L. Sheu Fractional Programming: a survey, recent developments, and applications – to be presented in Summer School of GCM9



Introduction to fractional programming and applications
Generalized concavity and fractional duality

Methods and Algorithms

The average congestion level on a particular link l over a
period of T time slots is defined by

CL(l ,Pl ,t , f
s
l ,t) =

Total loaded flows

Total Capacity
=

∑
s∈S ,t∈{1,2,...,T} f s

l ,t∑
t∈{1,2,...,T} Cl ,t

The congestion control problem in a wireless
telecommunication network is to determine the best power
level Pl ,t for each link l at different time slot t and to decide
the data routings (f s

l ,t) subject to the capacity defined by Pl ,t ,
so that all required transmission rates for each session are met
in such a way that the highest congestion level in this network
is minimized.

min
Pm

l,t ,f
s
l,t

max
l∈L

CL(l ,Pl ,t , f
s
l ,t)
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min
Pm

l,t ,f
s
l,t

max
l∈L

∑
s∈S ,t∈{1,2,...,T} f s

l ,t∑
t∈{1,2,...,T} Cl ,t

s.t. Cl ,t =
∑

m∈M

W m log2(1 +
hm

l Pm
l ,t

W mσ +
∑

l ′∈L,l ′ 6=l hm
l ′ P

m
l ′,t

),∀l , t;

Pm
l ,t ≤ Pmax ,∀l ∈ L, t ∈ {1, 2, . . . ,T}

∑

s∈S

f s
l ,t ≤ Cl ,t , ∀l ∈ L, t ∈ {1, 2, . . . ,T}

∑

l∈IL(i)∪OL(i),m∈M

x(Pm
l ,t) = 1, ∀i ∈ N , t ∈ {1, 2, . . . ,T}

∑

l∈IL(i),t∈{1,2,...,T}

f s
l ,t−

∑

l∈OL(i),t∈{1,2,...,T}

f s
l ,t = rsT IIS(i)(s),∀i ∈ N , s ∈ S−OS(i)

Pl ,t ≥ 0, f s
l ,t ≥ 0,∀m ∈ M , s ∈ S , l ∈ L, t ∈ {1, 2, . . . ,T}
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Decision variables (in red):
Pm

l ,t : Transmission power on channel m, link l and time t.
f s
l ,t : Flow rate of session s on link l at time t.

x(Pl ,t) : x(Pl ,t) = 1 if Pl ,t > 0; 0 otherwise.
Parameters:
S : Set of sessions(demands).
N : Set of nodes(devices).
M : Set of available channels.
W m : Bandwidth of channel m, m ∈ M .
hm

l : Channel response of channel m on link l,m ∈ M , l ∈ L.
rs : Required transmission rate of session s.
IL(i) = {l = (k , i) ∈ L}
OL(i) = {l = (i , j) ∈ L}
IS(i) = {s = (ns , nd , rs) ∈ S : nd = i}
IA(s) : IA(s) = 1 , if s ∈ A , otherwise IA(s) = 0.
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Advertising strategy

I Companies advertise to promote a product or an idea.
For example, in March 2000, Coca-Cola unveiled a major
shift for its Diet Coke brand. It aimed to exude energy
and create a more upbeat image. The target audiences
were among the age group ranging from 25 to 49, and
the main theme of the message is “be-true-to-yourself”.

I When an advertising campaign is launched, the message
is first seen and read. The advertising effectiveness grows
slowly until it is believed and memorized at which time
the effectiveness bursts out. Finally, the marginal effect of
the advertisement fades even with a heavy broadcasting
frequency. This can be described by a logistic curve.
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effectiveness

run  time
( )budget

1
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I It is then important to evaluate the advertising
effectiveness subject to a given budget. Does it
communicate well with the target audiences? Does it
stimulate or change the consumers’ buying behavior?

I Maximizing the advertising effectiveness subject to the
broadcast runtime will lead to consume all the
broadcasting budget. This does not make too much sense
as the final stage of the campaign is, though, still
“effective”, yet “inefficient” with a very low “marginal
effect (effectiveness per unit budget)”.
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I What Coca-Cola did was to campaign
“be-true-to-yourself” by a long-run series. The next
advertising (sequel) follows immediately when the
marginal effect of the previous one starts falling.

I This amounts to determining the largest marginal effect
of each advertisement, namely, to maximize a slope
function – a ratio of two functions.
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The sequel follows immediately when the marginal

effect of the previous one starts falling.

effectiveness

run  time
( )budget

1
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Other Applications

I An equilibrium model for an expanding economy
introduced by J. von Neumann. ( A model of general
economic equilibrium, Review of Economic Studies 13,
1945)

I The growth rate is determined by

growth rate = max
x

( min
1≤i≤p

outputi(x)

inputi(x)
),

where x denotes a feasible production plan of the
economy and the efficiency measures are expressed as
output-input ratios that are to be optimised under a
max-min criterion.
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Optimizing efficiency

I In some resource allocation problems, the efficiency
measures can be the ratio of “profit to revenue”.

I In portfolio selection model, the efficiency measures could
be “return to risk”; “earning per share”; “dividend per
share”; or “liquidity”.

I A routing problem in a transportation network used to
minimize the “cost-to-time” ratio.

I In a wireless network, the interference among different
local transmissions is one of the most important issues.
The signal-to-noise ratios are thus to be max-minimized.

SNRl =
PlGll

n +
∑

j 6=l PjGjl
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Optimizing quadratic ratios

I In numerical analysis, the eigenvalues of a matrix can be
calculated as constrained maxima of the Rayleigh
quotient, a ratio of two quadratic forms.

I In study for predictability in asset returns, the measure for
predictability is to be optimized:

λ(m) =
m′Γ0(ẑ)m

m′Γ0(z)m
,

where Γ0(z) = Γ0(ẑ) + Σ, Γ0(ẑ) is a covariance matrix. It
is assumed that Σ, and therefore Γ0(z) is positive
definite. The vector m is a particular linear combination
of the primary assets.
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Survey papers and books

I S. Schaibled published a bibliography collecting 1198
articles of fractional programming. (in R. Horst and P. M.
Pardalos (Eds.), Handbook of Global Optimization,
1995). A more recent version by Frenk and Schaible
appeared in Encyclopedia of Optimization, C. A. Floudas
and P. M. Pardalos, Eds., 2001.

I I. M. Stancu-Minasian has a series of 6 bibliographies.
The first three appeared in Pure and Applied
Mathematika Sciences, 13 (1981), 17 (1983) and 22
(1985). The forth to sixth ones in Optimization 23
(1992), 45 (1999), 55 (2006))

I B. D. Craven published a book (1988) discussing
important concepts of multi-ratios problems. Fractional
programming, Sigma Series in Applied Mathematics.
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Generalized concavity for ratios

I The ratio of two functions is, in general, not concave.

I For a concave fractional function(a concave function
divided by a convex function), it is only quasi-concave.

I Generalized concavity properties of special family of ratios
can be summarized into the following three tables. (in
“Generalized concavity,” by Avriel, Diewert, Schaible, and
Zhang, Plenum Press, 1988.)
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The Ratio Φ1/Φ2

Φ2

Φ1 > 0, concave > 0, convex
≥ 0 − s. qcv

concave
≥ 0 s. qcx −

convex

• s. qcv: semistrictly quasiconcave
• s. qcx: semistrictly quasiconvex
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The Ratio Φ/l
l

Φ > 0 < 0
concave s. qcv s. qcx
convex s. qcx s. qcv

• l is affine
• s. qcv: semistrictly quasiconcave
• s. qcx: semistrictly quasiconvex
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The Ratio l/Φ
Φ

concave convex
l > 0 < 0 > 0 < 0
≥ 0 s. qcx s. qcx s. qcv s. qcv
≤ 0 s. qcv s. qcv s. qcx s. qcx

• l is affine
• s. qcv: semistrictly quasiconcave
• s. qcx: semistrictly quasiconvex
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Important notes for GC functions

I Quasi-concavity is a slight generalization of concavity.
Especially, any local maximum of a quasi-concave
function is global. In other words, quasi-concave
functions are unimodal.

I However, for a quasi-concave function, there might be
many critical points that are non-local maximum (like
points of inflection). This fails most first-order based
algorithms.

I Moreover, the ordinary Lagrangian duality no longer
possesses the strong duality (but still has the weak
duality) for a fractional program.
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Example

max
x>0
{ 1

x2
|x ≥ 1} = 1,

provided by S. Schaible, “Duality in fractional programming: a
unified approach”, Operations Research 24, 1976.

• This is a concave fractional program.

• The function 1
x2 is quasi-concave. It is convex indeed.

• Maximizing the quasi-concave function amounts to
maximizing a convex function (generally a tough
problem!!)

• The basic Lagrangian duality is not valid since

inf
u≥0
{sup

x>0
[(1/x2)− u(1− x)]} =∞.
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Duality for generalized concave fractional program

(GP) sup
x∈X
{ min

1≤i≤p

fi(x)

gi(x)
}

where X = {x ∈ C |hj(x) ≤ 0, j = 1, 2, . . . ,m},C is convex
compact.
For notational convenience, let F (x) = (f1(x), . . . , fp(x))t ;
G (x) = (g1(x), . . . , gp(x))t ; H(x) = (h1(x), . . . , hm(x))t .
Problem (GP) has the following equivalent form:

sup{τ |F (x)− τG (x) ≥ 0,H(x) ≤ 0, x ∈ C}.

Assume that F ≥ 0,G > 0. Then τ ≥ 0 and the constraint
set is convex.
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Given a continuous vector-valued convex function k , the
theorem of alternative asserts that exactly one of the following
alternatives is true:

I . k(x) ≤ 0, x ∈ X is consistent;

II . there exists y ≥ 0, s.t. y tk(x) > 0,∀x ∈ X .

We arrive the following dual program:

(GD) inf
u>0,v≥0

{sup
x∈C

utF (x)− v tH(x)

utG (x)
}.

The weak duality between (GP) and (GD) holds, that is,

value(GD) ≥ value(GP);

and the strong duality can be verified too.
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Remarks for the duality

I There are other dual forms in literature, and they may not
be equivalent.

I Unlike the Lagrange duality, (GD) is a type of
“non-linear” dual, which retains the fractional structure.

I The dual problem (GD) is again a generalized fractional
programming, involving only linear ratios. However, when
C is not finite, there are infinitely many of affine ratios
whose maximum is to be minimized.

I There is an Dinkelbach-type algorithm for solving
generalized fractional programming of infinitely many
ratios. (Lin and Sheu, 2005, “Modified Dinkelbach-type
algorithm for generalized fractional programming with
infinitely many ratios”, JOTA 126.)
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Duality for the sum-of-ratios program

I The sum-of-ratios function

p∑

i=1

fi(x)

gi(x)
is, in general, not of

any type of generalized concavity.

I Schaible (NRLQ, 1977) showed that, a sum of a linear
function and a ratio of affine functions need not be
quasi-concave.

I Very few theoretic result for the duality of the
sum-of-ratios problem has been reported so far.

I Scott and Jefferson (JOTA, 1998) obtained a kind of
duality, in a sense similar to what Craven called in 1977
(Bulletin of the Australian Mathematical Society) “the
quasi-duality”.
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(SP) min
x∈X

M∑

j=1

(
N∑

j=1

aijxj + gj)/(
N∑

j=1

bijxj + hj)

s.t. X = {x |
N∑

j=1

ckjxj ≤ 1, k = 1, 2, . . . ,K}

All vectors a, b, c , g , h and x are positive.
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Scott and Jefferson transform the sum-of-linear-ratios problem
into the format of the signomial programming:

(SP1) min
M∑

i=1

si ti
−1

s.t.
N∑

j=1

aijxjsi
−1 + gjsi

−1 ≤ 1, i = 1, . . . ,M ,

N∑

j=1

bijxjti
−1 + hjti

−1 ≥ 1, i = 1, . . . ,M ,

N∑

j=1

ckjxj ≤ 1, k = 1, 2, . . . ,K ,

x , s, t > 0.
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I The signomial programming is also known as an
(ordinary) geometric program with reverse constraints.

I The ordinary geometric program (Duffin, Peterson, Zener
1967) can be convexified via an exponential
transformation, and a complete duality can be derived.

I As a consequence of the reverse constraints, the
signomial program cannot be similarly convexified.

I Duffin and Peterson (JOTA 1973) derived the duality
theorem of the geometric program with reversed
constraints in the sense of equilibrium solutions.
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Signomial dual for sum-of-linear-ratios program

(SD1) max
δ,γ,β≥0

M∏

i=1

(1/δoi)
δoi

M∏

i=1

N∏

j=1

(aij/δij)
δij (bij/γij)

−γij

×
M∏

i=1

(gi/δi)
δi (hi/γi)

−γi

K∏

k=1

N∏

j=1

(ckj/βkj)
βkj

K∏

k=1

αk
αk

s.t.
M∑

i=1

δoi = 1;αk =
∑

j

βkj ; δoi =
∑

j

δij + δi ;

δoi =
∑

j

γij + γi ;
M∑

i=1

(δij − γij) +
K∑

k=1

βkj = 0.
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Nonconvex dual

I Taking the logarithm of the dual objective function, we
find (SD1) is indeed a DC program.

I The primal equilibrium solution (x , s, t) can be related
with the dual equilibrium solution (δ, γ, β) by a system of
equations (primal-dual conversion), so there is no duality
gap at each pair of primal-dual equilibrium solutions.
(Strong duality)

I The dual equilibrium solution may locate at a non-global
local maximum of (SD1) whereas the corresponding
primal solution could also be a maximizing point (a
max-max situation) or just a stationary point. In other
words, no weak duality theorem for the signomial dual of
the sum-of-linear-ratios model.
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I Having the strong duality (locally) without the weak
duality is typical of a non-convex dual program like the
signomial dual.

I Passy and Wilde (SIAM Journal on Applied Mathematics,
Vol. 25, 1967) proposed a quasi-maximization procedure
by finding all maximizing dual stationary points and then
choosing the minimum among them.

I This has much in common with the concept of Craven’s
quasi-duality. (Bulletin of the Australian Math. Society,
Vol. 16, 1977) and the recently developed “canonical
duality” by David Gao. (Duality principles in nonconvex
systems: theories, methods, and applications, Kluwer
Academic Publishers, 2000.)

I Nowadays, non-convex duality has become an important
research area in global optimization.
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Craven’s quasidual pair

Consider the following pair of problems:

(QP) quasiminx f (x), subject to k(x) ∈ K

and

(QD) quasimaxu,v g(u, v) = f (u)− vk(u)

s.t. f ′(u)− vk ′(u) = 0, v ∈ K ∗.

where K is a cone and K ∗ its conjugate cone. Problem (QD)
(indeed the Wolfe-type dual without convexity assumption), is
called a quasidual of (QP) if, (QP) has a quasimin at x = ξ,
(QD) has a quasimax at (u, v) = (µ, υ) and f (ξ) = g(µ, υ).
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The Craven concept of quasi-min

I In the simplest situation, the point a is called a quasimin
of f (x), if

f ′+(a) ≥ 0; f ′−(a) ≤ 0

where f ′+(a) is the right derivative of f at a should it
exist. Similarly, f ′−(a) is the left derivative. The definition
can be generalized to a much more general space without
one-side(directional) derivatives.

I The point a is a quasimax of f , if and only if, −f has a
quasimin at a.

I The quasimin and the quasimax are defined locally.
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Illustrative example for quasi-duality

Consider the concave minimization problem:

(QP) min
x≥0

f (x) = x − x2.

The “quasi-dual” is as follows:

(QD) max
λ≥0

u − u2 − λu, subject to 1− 2u − λ = 0

which is equivalent to

max g(u) = u2, subject to u ≤ 1

2
.
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½ 1

½

x

y

y= -x x
2

0

g

u
½

g u=
2

½

0

quasimin

quasimin

quasimax

quasimax

1
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I Therefore, (QP) and (QD) have two pairs of quasi-critical
points that do not have a duality gap.

I But there is no weak duality:

On x ≥ 0, u ≤ 1/2, f (x) � g(u).
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David Gao’s canonical duality

Consider

p(x) =
1

2
(

1

2
x2 − λ)2 − fx ,

where f is a given real value and λ > 0. Notice that p(x) is a
non-convex polynomial of degree 4. His canonical dual
functional is derived and defined as follows:

pd(y ∗) = L(y ∗, y ∗)

= (
f 2

2y ∗
− λ)y ∗ − 1

2
(y ∗)2 − f 2

y ∗

= − f 2

2y ∗
− 1

2
(y ∗)2 − λy ∗.
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Graphic interpretation for canonical dual

p y f 2y y 2 y
d 2 2
( *)=- / * * / - *λ-

p x = x 2 2 f x( ) ( / -λ) / - ( )
2 2

1
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It can be proved (and also can be seen from the graph) that,
both p(x) and pd(y ∗) have three critical points:

1. On x > 0, y ∗ > 0, the strong duality and the weak duality
hold (and thus called the perfect duality) so that
minx∈R p(x) = minx>0 p(x) = maxy∗>0 pd(y ∗). The
global minimum of p(x) can be easily obtained by
maximizing the concave function pd(y ∗) over the domain
y ∗ > 0.

2. On x < 0, y ∗ < 0, the other two pairs of primal-dual local
solutions have only strong duality, but no weak duality.
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Algorithms for generalized fractional programming

• J.P. Crouzeix, J.A. Ferland and S. Schaible, “An algorithm
for generalized fractional programs,” JOTA 47 (1985)
• J.P. Crouzeix and J.A. Ferland, “Algorithms for generalized
fractional programming,” Math. Prog. 52 (1991)
• J.C. Bernard and J.A. Ferland, “Convergence of
interval-type algorithms for generalized fractional
programming,” Math. Prog. 43 (1989)
• Barros, Frenk, Schaible, and Zhang, “A new algorithm for
generalized fractional programs,” Math. Prog. 72 (1996)
• Barros, Frenk, Schaible, and Zhang, “Using duality to solve
generalized fractional programming problems,” JOGO 8 (1996)
• Chen, Schaible, Sheu, “Generic algorithm for generalized
fractional programming,” JOTA, to appear. (2009)
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Dinkelbach-type algorithm

• Problem format:

(P) λ∗ = min
x∈X

max
1≤i≤n

{ fi(x)

gi(x)
}

where X is a nonempty compact subset of Rp, the
functions fi and gi are continuous on X , and gi are
positive on X .

• The “Dinkelbach-type” algorithm considers the following
parametric subproblems:

(Pλ) F (λ) = min
x∈X

max
1≤i≤n

{fi(x)− λgi(x)}.

Solving (P) amounts to finding the root of F (λ) = 0.
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l

f x - g x1 1 1 1( ) ( )l

f x - g x2 1 2 1( ) ( )l

f x - g x3 1 3 1( ) ( )l

f x - g x4 1 4 1( ) ( )l

• F (λ) = min
x∈X

max
1≤i≤n

{fi(x)− λgi(x)}.
• Given x1 ∈ X , we obtain n linear functions in λ.
• The slopes are {−gi(x1)}, i = 1, 2, ..., n.
• −∞ < −M ≤ −gi(x) ≤ −m < 0.

1
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l

f x - g x1 1 1 1( ) ( )l

f x - g x2 1 2 1( ) ( )l

f x - g x3 1 3 1( ) ( )l

f x - g x4 1 4 1( ) ( )l

Fx
1
( )l

• Given x1 ∈ X , the maximum function Fx1(λ) = max
i
{fi(x1) −

λgi(x1)} is piecewise linear, convex and decreasing.

1
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l

Fx
1
( )l

Fx
2
( )l

F( )l

Fx
3
( )l

• F (λ) = min
x∈X

max
1≤i≤n

{fi(x)− λgi(x)} = min
x∈X

Fx(λ)

• F (λ) is the greatest lower bound function of Fx(λ), ∀x ∈ X .

1
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General properties for F (λ)

• F is decreasing and continuous.
• Denote the optimal value of (P) to be λ∗. Then,
F (λ) < 0, for λ > λ∗; F (λ) > 0, for λ < λ∗; and F (λ∗) = 0.

£f*

F(£f)

F(£f)<0 £f>£f*if

F(£f)>0 £f<£f*if

1
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l

• y ∈ Y = {yi ∈ Rn|∑ yi = 1, yi ≥ 0}.
• yT {f(x1)− λg(x1)} is the surrogate of {fi(x1)− λgi(x1)}n

i=1.

1

R. L. Sheu Fractional Programming: a survey, recent developments, and applications – to be presented in Summer School of GCM9



Introduction to fractional programming and applications
Generalized concavity and fractional duality

Methods and Algorithms

l

y  f x  - g x  }
T
{ (  ) (  )1 1l

• y ∈ Y = {yi ∈ Rn|∑ yi = 1, yi ≥ 0}.
• yT {f(x1)− λg(x1)} is the surrogate of {fi(x1)− λgi(x1)}n

i=1.

1
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l

min x - x }i i 1 i 1{ ( ) ( )f gl

y  f x  - g x  }
T
{ (  ) (  )1 1l

F fx max1 i( )= { ( ) }i 1xl l- (x )gi     1

• y ∈ Y = {yi ∈ Rn|∑ yi = 1, yi ≥ 0}.
• yT {f(x1)− λg(x1)} is the surrogate of {fi(x1)− λgi(x1)}n

i=1.

1
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l

y  f x  - g x  }
T
{ (  ) (  )1 1l

y  f x  - g x  }
T
{ (  ) (  )2 2l

Fx1( )l Fx2( )l

Fy( )l

• Fy(λ) = minx yT {f(x)− λg(x)} ≤ minx maxi{fi(x)− λgi(x)} = F (λ)

1
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F( )l
Fx( )l

Fy( )l

• Fy(λ) is concave, decreasing and Fy(λ) ≤ F (λ) ≤ Fx(λ),
∀x ∈ X, y ∈ Y, λ ∈ R.

1
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l

Fx1( )l( 0Fx1

+
)( )l

• (U0+)(λ) = max{−mλ,−Mλ}.
• m = min

x∈X
{ min
1≤i≤n

gi(x)}, M = max
x∈X

{max
≤i≤n

gi(x)}

1
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l

Fx1( )l( 0Fx1

+
)( )l

Fx2( )l

( 0Fx2

+
)( )l

• (U0+)(λ) = max{−mλ,−Mλ}.
• m = min

x∈X
{ min
1≤i≤n

gi(x)}, M = max
x∈X

{max
≤i≤n

gi(x)}

1
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l

Fx1( )l( 0Fx1

+
)( )l

Fx2( )l( 0U
+
)( )l

( 0Fx2

+
)( )l

• (U0+)(λ) = max{−mλ,−Mλ}.
• m = min

x∈X
{ min
1≤i≤n

gi(x)}, M = max
x∈X

{max
≤i≤n

gi(x)}

1
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l

Fy( )l

( 0L
+
)( )l

(F 0 )y

+
( )l

• (L0+)(λ) = max{−mλ,−Mλ}.
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F( )l

l*
l

lk

Ulk( )l

Llk( )l

= the  translation  of
( 0U

+
)( )l to (l lk k, ( ))F

(l lk k, ( ))F

= the translation of

( 0L
+
)( ) tol (l lk k, ( ))F

1
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F( )l

l*
l

tk lk
sk

Ulk( )l

Llk( )l

Ik

1
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F( )l

l*
l

tk lk

lk+1

sk

Ulk( )l

Llk( )l

Ik

X

1
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F( )l

l*
l

tk lk

lk+1

sk tk 1+sk 1+

Ulk+1( )l

Ulk( )l

Llk( )l

Llk+1( )l

Ik

1
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F( )l

l*
l

tk lk

lk+1

sk tk 1+sk 1+
I      Ik 1 k+ += [ , ]Ç s tk+1     k 1

Ulk+1( )l

Ulk( )l

Llk( )l

Llk+1( )l

1
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F( )l

l*
l

tk lk

lk+1

sk tk 1+sk 1+

lk 2+

X

Ulk+1( )l

Llk+1( )l Ulk( )l

Llk( )l
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Generic Dinkelbach-type algorithm

Step0 (Initialization) Let I1 = (−∞,+∞), k = 1 and choose
λ1 ∈ I1.

Step1 Determine an optimal solution xk for

F (λk) = min
x∈X
{max

1≤i≤n
{fi(x)− λkgi(x)}}

= max
1≤i≤n

{fi(xk)− λkgi(xk)}.

If F (λk) = 0, then stop.
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Generic Dinkelbach-type algorithm

Step2 Determine an interval of convergence.
Compute

sk = min{λk +
F (λk)

m
, λk +

F (λk)

M
}

and

tk = max{λk +
F (λk)

m
, λk +

F (λk)

M
}.

Update Ik+1 = Ik ∩ [sk , tk ].

Step3 Choose λk+1 ∈ Ik+1.
Replace k by k + 1. Go to Step1.
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Theorem
Let {λk} and {Ik}∞k=1 be infinite sequences generated by the
generic Dinkelbach-type algorithm. Then,

|Ik+1| ≤
(

1− m

M

)
|Ik | and lim

k→∞
Ik = {λ∗}. Moreover, the two

subsequences {λj}j∈J and {λj}j /∈J converge to λ∗ linearly,
from the right and the left, respectively.

† This theorem, and therefore the generic algorithm unifies all
the Dinkelbach-type algorithms before 1996.
‡ The convergence proof is carried out through geometric
observations and fundamental properties of convex functions.
Consequently, the classical results are either refined or
strengthened with new insights.
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Lemma 1

A B C

P

a
1

a
2

a
3

1
m-

2
m- a2

a1+a2
= 1− m2

m1

Consider a triangle PAC with PA ⊥ AC and B lies on AC.
Let AB = a1, BC = a2, PA = a3. Suppose that the slopes of
the line PB, PC are −m1 and −m2 respectively. Convergence is
assured if PB is not vertical and PC is not horizontal.

1
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F( )l

l*
l

P

ABC tktk 1+ lklk+1
sk sk 1+

( )
k

U
l

l

1
( )

k

U
l

l
+

-m1

k

( )
k

L
l

l

1
( )

k

L
l

l
+

-m2

k

• To estimate mk
1 and mk

2 for the convergence of {tk}.
• λk+1 − λ∗ ≤ (1− m

M )(λk − λ∗), ∀k.

1
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F( )l

l

A B C

P

-m1

k

lk
sk lk+1

sk 1+ l* tktk 1+

( )
k

L
l

l

1
( )

k

L
l

l
+

-m2

k

• To estimate mk
1 and mk

2 for the convergence of {sk}.
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Methods for the sum-of-ratios problem

Consider the sum-of-ratios problem of the following form:

min
x∈D

q∑

s=1

fs(x)

gs(x)

where fs : Rn → R and gs : Rn → R are continuous on D and
gs(x) > 0, ∀x ∈ D, s = 1, 2, . . . , q, where D is a compact
connected subset in Rn.
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I This is a NP-complete problem due to Freund and Jarre.
(JOGO 19, 2001)

I Most studies have focused on the sum-of-linear ratios
problem. (E.g., Benson, JOTA 121, 2004; Konno and
Abe, JOGO 15, 1999; Konno and Fukaishi, JOGO 18,
2000; Kuno, JOGO 22, 2002.)

I For the sum-of-nonlinear-ratios, see for example, Benson,
JMAA 263, 2001; Benson, JOTA 112, 2002; Benson
JOGO 22, 2002; Phuong and Tuy, JOGO 26, 2003.

I The branch-and-bound approach is the most popular.
However, due to the combinatorial nature, it is quite
difficult to handle a high dimensional feasible region or go
beyond the sum of ten linear ratios.
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Stochastic Search Algorithm

I A sort of method equipped with a random mechanism.
I The term “randomness” does not mean to find the global

optimum totally by chance. Indeed, most probabilistic
algorithms adopt deterministic policies to direct the local
search, whereas repeatedly random sampling is used only
to escape non-global local optima.

I Random sampling does not require much from the
problem structure. Therefore, it is robust to hard core
problems.

I Commonly used stochastic algorithms include simulated
annealing, evolutionary methods, multilevel methods, and
partitioning methods. Most methods are not just
heuristics but have a proof for convergence in probability.
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The Electromagnetism-like method

I A kind of stochastic algorithm developed by Birbil, Fang
and Sheu (JOGO 30, 2004) for solving global
optimization problems with a box constraint.

I The method draws a finite population of sample particles
from the domain; associate each of them a “charge”
according to their objective values; and move the particles
by mimicking the electromagnetism theory of physics.

I The method is applied to the image space of fs , gs by
decomposing (P) into a series of single ratio problems
each of which is solved by the Dinkelbach algorithm.

I Large scale numerical experiments on problems up to sum
of eight linear ratios with a thousand variables are
reported. (By Wu, Sheu, Birble, to appear in JOGO
2008).
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The canonical dual approach†

The problem is to minimize the sum of a quadratic function
and the ratio of two quadratic functions:

(P) min
x∈χ

f (x) +
g(x)

h(x)

where f (x) = 1
2
x tQx − ptx , g(x) = 1

2
x tGx ,

h(x) = 1
2
x tHx − btx with Q ∈ Rn×n being symmetric,

G ∈ Rn×n symmetric positive semi-definite, H ∈ Rn×n

negative definite and f , b ∈ Rn. Assume that
µ−1

0 = h(H−1b) > 0, δ ∈ (0, µ−1
0 ], and that the feasible

domain χ = {x ∈ Rn | h(x) ≥ δ > 0}.
† This work is jointly by Fang, Gao, Sheu, and Xin, submitted to

JOGO, 2008
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I We first parameterize (P) into a family of subproblems:

θ(µ) = inf
x∈χµ

f (x) + µg(x),

according to the values of h(x), where
1

h(x)
= µ ∈ [µ0, δ

−1] and

χµ = {x ∈ Rn | h(x) ≥ µ−1 ≥ δ > 0}, which is a
(possibly non-convex) quadratic program subject to one
quadratic constraint.

I The original problem is reduced to the one-dimensional
problem of minimizing θ(µ) over µ ∈ [µ0, δ

−1].

min
x∈χ

f (x) +
g(x)

h(x)
= inf

µ∈[µ0,δ−1]
θ(µ).
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I The canonical dual functional of θ(µ) is derived:

Pd
µ (σ) =

σ

µ
− 1

2
(p − σb)T G−1

µ (σ)(p − σb)

over the domain S+
µ = {σ ≥ 0 | Gµ(σ) � 0} where

Gµ(σ) = Q + µG − σH .

I The topological properties of S+
µ : It is a ray with the

boundary point max{0, σmax} where σmax represents the
maximum root of det Gµ(σ) = 0. If σmax < 0, the ray is
closed and S+

µ = [0,∞). If σmax ≥ 0, the ray is open and
S+
µ = (σmax ,∞).
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Analytic properties of

Pd
µ (σ) = σ

µ − 1
2(p − σb)T G−1

µ (σ)(p − σb)

1. It is C 1 concave.

2. d
dσ

Pd
µ (σ) = 1

µ
− x(σ)T (1

2
Hx(σ)− b).

3. d2

dσ2 Pd
µ (σ) = −(Hx(σ)T − b)T G−1

µ (σ)(Hx(σ)T − b)

4. Pd
µ (σ) can not be unbounded on S+

µ .

where x(σ) = G−1
µ (σ)(f − σb).
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Perfect Duality

Theorem: If σµ is a global maximizer of Pd
µ (σ) over S+

µ , then
(Pd

µ ) is perfectly dual to (Pµ) in the sense that the vector

xµ = G−1
µ (σµ)(p − σµb)

is a global minimizer of (Pµ), and

min
x∈χµ

Pµ(x) = Pµ(xµ) = Pd
µ (σµ) = max

σ∈S+
µ

Pd
µ (σ).
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Theorem: If

lim
σ→∞

dPd
µ (σ)

dσ
< 0

and

lim
σ(∈S+

µ )→∂S+
µ

dPd
µ (σ)

dσ
≥ 0, or S+

µ = {0}

hold for every µ ∈ [µ0, δ
−1], then

min
x∈chi

f (x) +
g(x)

h(x)
= min

µ∈[µ0,δ−1]
Pd
µ (σµ).

where σµ is a global maximizer of Pd
µ (σ) over S+

µ .
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Numerical example for minimizing f(x)+g(x)/h(x)

f (x) =
1

2
xT Qx−pT x , g(x) =

1

2
xT Gx , h(x) =

1

2
xT Hx−bT x ,

with

Q =

[
−1 6
6 5

]
, G =

[
5 1
1 2

]
, H =

[
−7 3
3 −2

]
,

p =

[
−8
2

]
, b =

[
5
3

]
.

The constraint set χ = {x ∈ Rn | h(x) ≥ δ = 0.01} is an
ellipse together with all its interior.
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Existence of global maximizer σµ of Pd
µ (σ) for

µ ∈ [0.04926, 100]

• First compute the boundary of S+
µ as

∂S+
µ =




{−6.9− 3µ + 0.1

√
5581 + 3920µ + 720µ2},

if µ ∈ [0.04926, 1.609);
{0}, if µ ∈ [1.609, 100].

•

−20.29 ≤ lim
σ→∞

dPd
µ (σ)

dσ
≤ −13.6, for µ ∈ [0.04926, 100]

lim
σ→∂S+

µ

d

dσ
Pd
µ (σ) =∞, when µ ∈ [0.04926, 1.609);

• The primal problem can be solved by min
µ∈[0.04926,100]

Pd
µ (σµ).

R. L. Sheu Fractional Programming: a survey, recent developments, and applications – to be presented in Summer School of GCM9



Introduction to fractional programming and applications
Generalized concavity and fractional duality

Methods and Algorithms

Minimizing Pd
µ (σµ)

• We use the line search with the Armijo’s rule and thus it is
not necessary to solve σµ for each µ ∈ [0.04926, 100].
• It took only 6 times of line search to reach the global
minimum of Pd

µ (σµ) at µ = 0.69076 with a value of −7.0766.
• A total of 22 function evaluations in 1.0615 cpu seconds to
reach the optimal solution for this example.
• Compared to 82.84 seconds taken by applying the grid
method (with a grid size of 0.01), our approach is much faster
in speed and more precise in solution quality.
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Thank you for your attention!
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