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Preface

A large number of decision making and optimization problems can be
formulated as follows: Given a set of feasible alternatives and a binary
relation better than for a consistent mutual comparison of alternatives, find
the best alternative. As a rule, the set of feasible alternatives is specified by a
number of conditions as a subset of a given underlying set. The underlying set
is usually equipped with some mathematical structure that can be more or less
helpful in searching for the best feasible alternative. For almost all parts of this
book, the underlying set is a finite-dimensional Euclidean space.

In a typical deterministic framework, the binary relation enabling compari
son of alternatives is represented by a real-valued function f mapping the set of
feasible alternatives into the set of real numbers in such a manner that a feasible
alternative x is better than a feasible alternative y if and only if f (x) > f (y )
or f (x) < f (y), one of these possibilities selected. In the former case the
problem of finding the best alternative becomes that of maximizing f over the
set of feasible alternatives; in the latter case, minimization of f is required.
Construction of such an objective function may be a nontrivial task. Moreover,
for some practically relevant binary relations such representations do not exist.
It is therefore sometimes preferable or necessary to represent some relations
by means of several functions. The meaning of maximization or minimization
with respect of several real-valued functions may vary according to the under
lying binary relation. For example: in some situations, the decision maker can
be interested in finding a Pareto maximizer; in other situations, his wish may
be to find a compromise solution.
Convexity of sets in linear spaces, and concavity and convexity of func

tions lie at the root of beautiful theoretical results that are at the same time
extremely useful in the analysis and solution optimization problems, regard
less of whether the optimization is required with respect to a single objective
or multiple objectives. Fortunately, not each of these results relies necessarily
on convexity or concavity. Some of them, for example the results guaranteeing



xii GENERALIZED CONCAVITY

that each local optimum is also a global optimum, can be derived for substan
tially wider classes of problems. A large portion of the first part of this book
is concerned with several types of generalized convex sets and generalized
concave functions. In addition to their applicability to nonconvex optimiza
tion, they are used in the second part, where decision making and optimization
problems under uncertainty are investigated.
Uncertainty in the problem data often cannot be avoided when dealing with

practical problems. It may arise from errors in measuring physical quantities,
from errors caused by representing some data in a computer, from the fact
that some data are approximate solutions of other problems or estimations by
human experts, etc. Over the last thirty years, the fuzzy set approach proved to
be useful in some of these situations. It is this approach to optimization under
uncertainty that is extensively used and studied in the second part of this book.
Usually, the membership functions of fuzzy sets involved in such problems

are neither concave nor convex. They are, however, often quasiconcave or
concave in some generalized sense. This opens possibilities for application of
results on generalized concavity to fuzzy optimization. Interestingly, despite
of this obvious relation, the interaction between these two areas has been rather
limited so far. It is hoped that the presented combination of ideas and results
from the field of generalized concavity on the one hand and fuzzy optimization
on the other hand will be of interest to both communities and will result in an
enlargement of the class of problems that can be satisfactorily handled.

In Chapter 1, for reader's convenience, we review some basic notation and
concepts necessary for understanding of the text, particularly, we present some
introductory elements of linear algebra and calculus.
In Chapter 2, we deal with generalized convex sets. The most natural

generalization of convex sets are starshaped sets. As further generalization
of starshaped sets we obtain path-connected sets, invex sets and univex sets.
Finally, we introduce a new class of generalized convex sets.
Chapter 3 begins with the classical definitions of concave and quasiconcave

functions. Then we introduce starshaped functions, quasiconnected functions,
and a concavity of functions with respect to suitable sets of mappings and
functions. This approach enable us to cover several other ways of introducing
generalized concavity known from the literature. Differentiable generalized
concave functions are also studied and mutual relationships among different
classes of functions are presented. An application to constrained optimization
is discussed.
In Chapter 4, we deal with functions defined on the n-dimensional

Euclidean space R n and having their values in the unit interval [0, 1] of real
numbers. Such functions naturally appear in optimization under uncertainty
where they can be interpreted as membership functions of fuzzy subsets of
R n or possibility distributions, etc. Using the notions and properties of trian-
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gular norms and triangular conorms, we introduce and study new classes of
functions related to concavity. We call them (cI>, T) -concave functions because
they are defined by choosing a class cI> of suitable mappings and a triangular
norm T. We focus on deriving conditions under which local maximizers of
such functions are also global maximizers.

In Chapter 5, we prepare a material for further study of multi-objective
optimization problems by analyzing some properties of general aggregation
operators applied to criteria in the form of generalized concave functions. We
look for conditions guaranteeing some attractive local-global properties of
aggregating mappings. In this context we review mainly well known classes
of averaging aggregation operators: compensative operators, order-statistic
operators and OWA operators. We present also general classes of aggregation
operators generated by Sugeno and Choquet integrals.

In Chapter 6, we deal with fuzzy sets. Already in the early stages of the
development of fuzzy set theory, it has been recognized that fuzzy sets can be
defined and represented in several different ways. We define fuzzy sets within
the classical set theory by nested families of sets, and then we discuss how this
concept is related to the usual definition by membership functions. Binary and
valued relations are extended to fuzzy relations and their properties are exten
sively investigated. Moreover, fuzzy extensions of real functions are studied,
particularly, the problem of establishing sufficient conditions under which the
membership function of the function value is quasiconcave. Sufficient con
ditions for commuting the diagram "mapping - a-cutting" is presented in the
form of classical Nguyen's result.

In the second part of this book, we are concerned with applications of the
theory presented in the first part.

In Chapter 7, we consider the problem to find a "best" decision in the set of
feasible decisions with respect to several criteria functions. Within the frame
work of such a decision situation, we deal with the existence and mutual
relationships of three kinds of "optimal decisions": Weak Pareto-Maximizers,
Pareto-Maximizers and Strong Pareto-Maximizers - particular alternatives sat
isfying some natural and rational conditions. We study also the compromise
decisions maximizing some aggregation of the criteria. The criteria considered
will be functions defined on the set of feasible decisions with the values in the
unit interval. As mentioned above such functions can be interpreted as mem
bership functions of fuzzy subsets and will be called fuzzy criteria. Later on,
in Chapters 8 and 9, each constraint or objective function of the fuzzy mathe
matical programming problem will be associated with a unique fuzzy criterion.
From this point of view, Chapter 7 could follow the Chapters 8 and 9, which
deal with fuzzy mathematical programming. Our approach is, however, more
general and can be adopted to a more general class of decision problems. The
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results of Chapter 5 are extended and presented in the framework of multi
criteria decision making.
Fuzzy mathematical programming problems (FMP) investigated in Chap

ter 8 form a subclass of decision-making problems where preferences between
alternatives are described by means of objective functions defined on the set
of alternatives in such a way that greater values of the functions correspond to
more preferable alternatives. The values of the objective function describe ef
fects from choices of the alternatives. The chapter begins with the formulation
of a FMP problem associated with the classical mathematical programming.
problem (MP). After that we define a feasible solution of FMP problem and
optimal solution of FMP problem as special fuzzy sets. From practical point
of view, a-cuts of these fuzzy sets are important, particularly the nonempty
a-cuts with the maximal a. Among others we show that the class of all MP
problems with (crisp) parameters can be naturally embedded into the class of
FMP problems with fuzzy parameters.

In Chapter 9, we deal with a class of fuzzy linear programming problems
(FLP) and again introduce the concepts of feasible and optimal solutions - the
necessary tools for dealing with such problems. In this way we show that the
class of classical linear programming problems (LP) can be embedded into the
class of FLP problems. Moreover, for FLP problems we define the concept
of duality and prove the weak and strong duality theorems. Furthermore, we
investigate special classes of FLP - interval LP problems, flexible LP prob
lems, LP problems with interactive coefficients and LP problems with centered
coefficients.
In Chapter 10, we first recall elementary concepts and basic models of

deterministic machine scheduling. Then we discuss some of them in nondeter
ministic situations. We present motivation examples characterizing difficulties
that may occur under uncertainty of problem parameters. Then we investigate
some particular fuzzy models with fuzzy due dates, fuzzy processing times and
fuzzy precedence relations. Finally we discuss some directions of the future
research in the area of fuzzy machine scheduling.
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