Proceedings of GCM1 – Vancouver 1980

  • Post category:Proceedings



Schaible, S. and W.T. Ziemba (Eds.), Generalized Concavity in Optimization and Economics, Proceedings of the “First Conference on Generalized Convexity”, held at the University of British Columbia, Vancouver (British Columbia, Canada), August 4-15, 1980, Academic Press, New York, 1981.

Table of Contents

  • Avriel M., Diewert W.E., Schaible S. and W.T. Ziemba, Introduction to concave and generalized concave functions, pp.21-50.
  • Diewert W.E., Alternative characterizations of six kinds of quasiconcavity in the nondifferentiable case with applications to nonsmooth programming, pp.51-93.
  • Martin D.H., Connectedness of level sets as a generalization of concavity, pp.95-107.
  • Crouzeix J.P., Continuity and differentiability properties of quasiconvex functions on Rn, pp.109-130.
  • Zang I., Concavifiability of C2-functions: a unified exposition, pp.131-152.
  • Lindberg P.O., Power convex functions, pp.153-165.
  • Ferland J.A., Quasiconvexity and pseudoconvexity of functions on the nonnegative orthant, pp.169-181.
  • Schaible S., Generalized convexity of quadratic functions, pp.183-197.
  • Crouzeix J.P. and J.A. Ferland, Criteria for quasiconvexity and pseudoconvexity and their relationships, pp.199-204.
  • Crouzeix J.P., A duality framework in quasiconvex programming, pp.207-225.
  • Oettli W., Optimality conditions involving generalized convex mappings, pp.227-238.
  • Passy U., Pseudo duality and non-convex programming, pp.239-261.
  • Mond B. and T. Weir, Generalized concavity and duality, pp.263-279.
  • Di Guglielmo F., Estimates of the duality gap for discrete and quasiconvex optimization problems, pp.281-298.
  • Ben-Tal A. and A. Ben-Israel, F-convex functions: properties and applications, pp.301-334.
  • Borwein J.M., Convex relations in analysis and optimization, pp.335-377.
  • Borwein J.M. and H. Wolkowicz, Cone-convex programming: stability and affine constraint functions, pp.379-397.
  • Brumelle S.L. and M.L. Puterman, Newton’s method for w-convex operators, pp.399-414.
  • Schaible S., A survey of fractional programming, pp.417-440.
  • Ibaraki T., Solving mathematical programming problems with fractional objective functions, pp.441-472.
  • Craven B.D., Duality for generalized convex fractional programs, pp.473-489.
  • Cambini A., An algorithm for a special class of generalized convex programs, pp.491-508.
  • Diewert W.E., Generalized concavity and economics, pp.511-541.
  • Kannai Y., Concave utility functions-existence, constructions and cardinality, pp.543-611.
  • Weber R.J., Attainable sets of markets: an overview, pp.613-625.
  • Eichhorn W., Concavity and quasiconcavity in the theory of production, pp.627-636.
  • Eichhorn W. and W. Gehrig, Generalized convexity and the measurement of inequality, pp.637-642.
  • Von Hohenbalken B., The simplicial decomposition approach in optimization over polytopes, pp.643-659.
  • Craven B.D., Vector-valued optimization, pp.661-687.
  • Jeroslow R., Some influences of generalized and ordinary convexity in disjunctive and integer programming, pp.689-699.
  • Karlin S. and Y. Rinott, Univariate and multivariate total positivity, generalized convexity and related inequalities, pp.703-718.
  • Kallberg J.G. and W.T. Ziemba, Generalized concave functions in stochastic programming and portfolio theory, pp.719-767.